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Abstract: Soil’s consolidation is a geotechnical problem resulting from a stress-transfer process
that initiates when the load is applied to the water contained in the soil, producing a reduction
in pore water pressure and rearranging the solid particles, and thus causing a decrease in soil
volume. Therefore, consolidation is a coupled flow–mechanical problem. Coupled models have been
developed to simulate this phenomenon while considering different theories, providing consistent
results. This paper presents an elastoplastic coupled model of consolidation under Terzaghi’s effective
stress formulated using the equations of transient flow, balance moment, motion, and the critical
state model that considered elastoplastic strains. The coupled model algorithm provided fast and
easy results due to its flexibility, as it allowed combinations in loading and boundary conditions.
Additionally, it considered the external/internal water flow as an inflow or outflow, which modified
the pore water pressure and produced changes in the horizontal and vertical displacements. The
numerical results obtained showed an appropriate behavior of the consolidation phenomenon, as well
as the evolution of the vertical Uy and horizontal Ux displacements, water pressure pw, volumetric εv

and deviatoric εq strain, mean σp and deviatoric σq stress, volumetric variation ∆εv, and elastic/plastic
behavior of the finite elements while considering the yield surface of the critical state.

Keywords: expansive soil; coupled models; saturated consolidation; unsaturated consolidation

1. Introduction

Any infrastructure development such as buildings and roads on saturated compress-
ible cohesive soils (solid particles and water) should be avoided [1] because implications
are generated for infrastructure performance and stability [2] due to their low bearing
capacity [1], consolidation phenomenon [3], and settlement [4]. Consequently, the study of
consolidation is one of the main problems of geotechnical engineering [5,6]. Consolidation
is a decrease in soil volume that occurs over a period as a result of the water expulsion from
the pores caused by the applied load [1,6–13] Volume changes result in differential settle-
ment, leading to pavement cracking, pipe failure and foundation damage [1,14–16]. These
damages can be more expensive than those associated with natural disasters [17]. The first
theory of saturated soil consolidation was proposed by Terzaghi in 1930 [6–9,12,13,18,19] to
predict the change in excess water pore pressure and settlement of the subsoil [10]. Based
on this theory, the soil is saturated, Darcy’s law is applicable, the relationship between
effective stress and strain is linear, and permeability (saturated hydraulic conductivity) and
compressibility remain constant [9].

Moreover, most terrestrial materials exhibit behaviors inconsistent with saturated
soils [4,10]; therefore, researchers extended the theory of consolidation of saturated soils
to unsaturated soils [19]. These soils consist of three phases: solid, water, and air [7,20,21],
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and are exposed to climatic changes [22]. Their hydromechanical behavior is sensitive to
moisture changes [23]; i.e., if the soil becomes wet it will swell and its strength will decrease.
If it dries out, the soil will shrink and crack [23,24]. Changes in water content depend on
hydraulic behavior [16], which governs infiltration, water flow (hydraulic conductivity),
and soil water absorption (retention curve) [25]. Soil water infiltration helps replenish
groundwater and depends on topography, density, texture, and initial water content of the
soil, and serves to measure the soil water retention curve (SWRC) [2,26]; while the hydraulic
conductivity represents the ease with which water can pass through a soil and depends
on the fluid properties (viscosity and chemistry), soil pore size, and temperature [27,28].
In addition, the SWRC relates the degree of saturation to soil suction [29]; this has been
used to determine the water retention of an unsaturated soil [30]. These are not unique to a
soil; its shape and position are not the same and its wetting and drying paths are different,
showing the hysteresis phenomenon, which means that for one value of suction, there are
two values of degree of saturation [29,31]. For this reason, the hysteresis of the SWRC
should be considered to estimate the behavior of unsaturated soils [32].

On the other hand, the consolidation of saturated soils is governed by the effective
stress, as it relates to the soil’s stiffness property [33] The effective stress combines the
applied stress and water pore pressure, enabling the conversion of a multiphase porous
medium to an equivalent single-phase continuous one [34,35]. Likewise, [36] established
that effective stress can also describe the consolidation and SWRC behavior of unsaturated
soils. Therefore, the consolidation problem has been formulated by coupling soil strain
and pore water pressure [6]. Due to this, two approaches to consolidation are known:
(a) the uncoupled theory, which cannot model all aspects of saturated soils consolidation
but provides sufficiently accurate solutions; and (b) the coupled theory, which provides a
coupling between the magnitude and progress of settlement, resulting in more accurate
solutions [4,7,19]. Similarly, there are two methodologies to investigate the effect of hy-
dromechanical coupling for the consolidation of unsaturated soils: (1) uncoupled modeling
using independent stress state variables; and (2) coupled modeling of air and water flow
and strain [9]. Based on what has been described, the use of effective stress is simple,
requires fewer parameters to describe the behavior of unsaturated soil, and allows for
natural hydromechanical coupling [37]. Thus, a proper analysis requires the coupling of
flow with consolidation and the inclusion of SWRC hysteresis effects [2,38] and a viscous
component [39].

This motivated several researchers to analyze the problem of saturated consolidation
and how it was affected by different variables. These works were listed in Dong et al. [9], in
which it was observed that Fox and Berles [40] and Gibson et al. [41] analyzed large strains;
stratified soils were studied by Fox Patrick et al. [42] and accretion layers by Fox [43];
vertical and radial flows were applied in Fox Patrick et al. [44]; a constant strain rate was
considered by Pu et al. [45] and Wissa Anwar et al. [46]; secondary compression effects
appeared in Brandenberg Scott [47]; solute transport was discussed by Fox Patrick [48];
and variation in hydraulic conductivity and compressibility was taken into account by
Indraratna et al. [49]. Self-weight was included in Qi et al. [2], Wang et al. [18], and
Wang, et al. [50]. The study of unsaturated soils has progressed from the theory of Blight [51]
and Liakopoulos [52], but Fredlund and Hasan [53] considered the nonlinear behavior
of air and water flow. This theory was extended in 2D models by Dakshanamurthy and
Fredlund [54] and Darkshanamurthy et al. [8] and 3D models by Zhou and Zhao [4] and
Ho et al. [11]. In addition, one-dimensional unsaturated consolidation was studied by
Zhou and Zhao [4], Shan et al. [12], Zhou et al. [19], and Qin et al. [21], while axisymmetric
unsaturated consolidation was studied by Ho et al. [11].

During the last three decades, constitutive models have been developed based on
elastoplastic theory, as it allows the modeling of the nonlinear and hysteretic behavior
of soil [55,56]. These aimed to carry out hydromechanical coupling, such as in the Ba-
sic Barcelona Model (BBM) and the Drucker–Prager Model (DPM), which were defined
with respect to mean and deviatoric stress [57]; while Arroyo and Rojas [34] developed a
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fully coupled hydromechanical model under effective stresses that accurately predicted
the transition between saturated and unsaturated states as well as between elastic and
elastoplastic states, but with limitations in the prediction of volumetric strains. Due to
this, there are no analytical solutions for hydromechanical coupling in unsaturated soils;
therefore, it is necessary to employ numerical techniques such as the finite element (FE)
method [6,7,13,38] in order to simplify the nonlinear behavior of the unsaturated consoli-
dation theory, assuming that water permeability and air transmittance are constant [12].
As a result, several coupled models have been developed to simulate saturated soils con-
solidation [58–61]. These models were based on: (a) the soil being saturated; (b) water
phase being incompressible; (c) solid phase being incompressible but with a compressible
arrangement; and (d) Darcy’s law governing the behavior of the flow through the soil. In
addition, some authors contributed improvements by incorporating certain theories: the
theory of small strains was used by Bentler [58]; the principle of virtual work was used by
Manzolillo et al. [61]; and the mass conservation law was considered in the models
in [59] and in Manzolillo et al. [61]. The last two employed Terzaghi’s effective stress and
Galerkin’s solution method of weighted residuals, respectively. Additionally, Krishnamoor-
thy [60] considered the nonlinear behavior of soil and used the hyperbolic relationship of
Duncan and Chang [62]. All these models reported consistent results with those obtained in
the domain and in the laboratory while showing advantages and disadvantages, suggesting
that they can be improved.

The literature shows that consolidation of compressible cohesive soils should be
analyzed by means of a fully coupled numerical FE model under the concept of effective
stresses able to generate the transition between the saturated and unsaturated states, as well
as between the elastic and elastoplastic states, allowing researchers to obtain an adequate
consolidation behavior under different boundaries conditions, applied stresses, and water
flow into the soil. The above is done to reduce the time and cost of this type of analysis.

The objective of this paper was to formulate and develop the elastoplastic coupled
model (flow–mechanical–critical state) for the saturated consolidation of soils under effec-
tive stresses while considering the “Moment Balance Laws”, “transient flow” (flow) and
“Motion” (mechanical) equations in which Terzaghi’s “effective stress” was introduced.
The inner product between vector functions was used while considering the “Principle of
Virtual Work” associated with the “Variational Principle of Minimum Potential Energy” in
combination with the finite element method (FEM) and Galerkin’s method, which includes
a time step that allows the evolution of displacements and water pore pressure as an
approximate solution. Additionally, the model was formulated to extend it to unsaturated
consolidation, as it permitted the introduction of Bishop’s effective stress, which included
the Terzaghi effective stress (σ-ua) and the matrix stress (χψ) representing the product of
the chi parameter and the soil suction this last parameter was obtained from the SWRC.
The variation of permeability with respect to soil suction (hydraulic conductivity) could
also be obtained from the SWRC.

2. Governing Equations

The applied stress to a saturated soil will cause it to undergo a reduction in soil volume
resulting from the expulsion of water from the pores in a time-dependent manner, gener-
ating the transient process called consolidation. However, much of the planet is covered
by three-phase (unsaturated) soils: solid, liquid, and air. These soils experience variations
in their water content produced by climatic conditions that subject them to wetting and
drying cycles. Therefore, a numerical procedure is required to obtain the solution to a
coupled consolidation problem (saturated–unsaturated) using the finite element method.
Thus, the proposed coupled elastoplastic model was formulated and prepared consid-
ering the consolidation of saturated soil, but it could be modified for the consolidation
of unsaturated soil after coupling the variation in hydraulic conductivity with respect
to the degree of saturation obtained from the soil water retention curve (SWRC). Hence,
soil mechanical deformation and the flowing water pressure constitute a coupled field



Water 2022, 14, 2958 4 of 27

problem. Considering the above, the following assumptions were considered: (a) complete
saturation and incompressibility of water; (b) incompressible solid phase (soil skeleton);
and (c) Darcy’s law governed the flow behavior through the soil. Additionally, the theory
of small deformations was used. According to continuum mechanics theory, the governing
equations are provided below:

2.1. Equilibrium Equations

According to the formulation of the elastoplastic model shown in Appendix A of this
paper and the balance laws of continuum mechanics and considering the Piola–Kirchhoff
stress tensor S in the Lagrangian configuration, this tensor provides the measured force per
unit area in the reference configuration [63]:

divS + b0 =
..
χρ0, (1)

In this study, div is the divergence operator that measures the difference between
the outgoing and incoming flux of a vector field on the surface surrounding a control
volume. The body forces b0 = 0 and acceleration field

..
χ = 0 were considered because the

consolidation process could be regarded as a quasistatic process.

2.2. Continuity Equations

divv− .
ε = 0, (2)

In Equation (2), v is the field velocity and
.
ε is the strain derivative of the field. Thus,

Equations (1) and (2) are the basic phenomenological equations of the coupled problem
(see Appendix A). This coupling procedure depends on the application of the principle
of virtual work, which indicates that the work developed by the internal forces within a
system equals the work performed by the external forces acting on the system [64]. This
principle is associated with the variational principle of the minimum potential energy [65].

2.3. Darcy’s Law

vi = kij
(
γwhj

)
/γw, (3)

where vi is the flow velocity field, kij is the soil permeability coefficient, γw is the volumetric
mass of water, and hi is the piezometric level, which can be evaluated according to the
reference level z; i.e., hi = pw/γw + z.

2.4. Boundary Conditions

The boundary conditions are related to the pore water pressure at all boundaries and
to the applied stress load at the surface. Two additional conditions were added: surface
water flow produced by meteorological conditions and water flow into the soil due to pipe
failure. All boundaries Ω evolve over time and include Dirichlet ΩD and Newman ΩN
boundaries. Hence, the boundary conditions can be written in terms of prescribed values:

(a) Pore pressure conditions:

u = û for ∂ΩD, (4)

(b) Applied stress to the surface:

Sn = f for ∂ΩN , (5)

(c) Superficial water flow:

Q = Q̂ for ∂Ω f , (6)

(d) Water flow into the soil:

Qs = Q̂s for ∂Ω f , (7)
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(e) Displacements on the soil boundary:

U = Ûs for ∂Ωu, (8)

3. Constitutive Equations
3.1. Phenomenological Case of the Solid in the Soil

The inner product was set in Equation (1) while integrating the volume Ω of the body
under study. Note that divS ∈ V (vector space V) and such inner product associates a
work. For simplicity of writing, φT is indicated at this point as ϕ, showing that it is a vector
function and the product ϕdivS is a scalar function; rewriting in alternate notation gives:∫

V
divSϕdV =

∫
V

φTdivSdV =
∫

V
ϕdivSdV =

∫
V

ϕiσij,jdV = 0, (9)

Since σij,j is equivalent to S, σij,j = ∂σij/xj is the divergence of the tensor S. Moreover,
using the derivative in j of the expression ϕiσij,j according to the derivative product rule,
Equation (9) becomes (10): ∫

V

(
ϕiσij

)
jdV −

∫
V

ϕi,jσijdV = 0, (10)

Applying the “Divergence Theorem” [63] for an arbitrary scalar field ϕ with Γ is
given as: ∫

V

(
ϕiσij

)
jdV =

∫
Γ

(
ϕiσij

)
jndA =

∫
Γ

ϕiσijnjdA, (11)

Substituting (11) into (10) gives:∫
V

ϕi,jσijdV =
∫

Γ
ϕiσijnjdA, (12)

The stress tensor S considers Terzaghi’s effective stress equation involving stresses in
both the soil skeleton and water contained in soil pores; hence, in index notation it is given
as in Equation (13):

S = S
′
+ pwI, (13)

where S is the soil total stress tensor, S
′

is the soil effective stress, pw is the pore water
pressure (hydrostatic stresses), and I is the identity tensor = ∑

i
ei ⊗ ei.

σij = σ
′
ij + pwδij, (14)

Substituting (14) into (12) results in:∫
V

ϕi,jσ
′
ijdV +

∫
V

ϕi,j pwδijdV =
∫

Γ
ϕiσijnjdA, (15)

On the other hand, ϕi,j associates the derivative of a vector function corresponding
in turn to a tensor, whereas any tensor A = E + W can be represented as the sum of a
symmetric tensor plus an antisymmetric tensor [63], which in index notation are E = ϕ(i,j)
and W = ϕ[i,j]; therefore, ϕi,j = ϕ(i,j) + ϕ[i,j] when substituting into the first integral of (15)
and recalling that the inner product W·S = 0, since W ∈ Asim.∫

V
ϕiσ
′
ijdV =

∫
V

ϕ(i,j)σ
′
ijdV, (16)

The term ϕ(i,j) relates the strain tensor in the index notation ε
ϕ
ij = ϕ(i,j).

The field equations of elastostatics use the constitutive equation S = C[E], which
relates the stress tensor to the infinitesimal strain tensor, which in index notation is σ′ij = Cεij
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(derived from Hooke’s law). Thus, considering the strain tensor and Hooke’s law in
(16) obtains: ∫

V
ϕiσ
′
ijdV =

∫
V

ϕ(i,j)D
′
ijklε

u
kldV, (17)

By substituting (17) into (15), it is possible to obtain:∫
V

ϕ(i,j)D
′
ijklε

u
kldV +

∫
V

ϕi,j pwδijdV =
∫

Γ
ϕiσijnjdA, (18)

According to the strain tensor, ε
ϕ
ij = ϕ(i,j) and it applies for pwδij, as δij = 0 for i 6= j.

In addition, recalling that σijnj = Sn in accordance with the “Cauchy hypothesis” of stress
existence [63], Sn = s(n) = t ≡ vector of surface tractions, so Equation (18) takes the form:∫

V
ϕ(i,j)D

′
ijklε

u
kldV +

∫
V

ε
ϕ
ij pwdV =

∫
Γ

ϕitjdA, (19)

The finite element approximation (Galerkin) requires:

ϕ =
[
Nϕ

]
{φ}, u = [Nu]{U},

u = [Nu]{U}, εu
kl= [Bu]{U},

ε
ϕ
ij=

[
Bϕ

]
{φ}, pw =

[
Np
]
{pw},

(20)

where [N] is the matrix of shape functions and [B] is the matrix of derivatives of
shape functions.

(ε
ϕ
ij)

T
= {φ}T[Bϕ

]T ,
{

ε
ϕ
ii

}
=
[
Bϕi
]
{φ},

{
ε

ϕ
ii

}T
= {φ}T[Bϕi

]T , (21)

Equations (20) and (21) allow their variations to be set in the following form (where δij
is the “Kronecker Delta”):

{δϕ} =
[
Nϕ

]
{δφ}, {δϕ}T = {δφ}T[Nϕ

]T ,{
δε

ϕ
ij

}
=
[
Bϕ

]
{δφ},

{
δε

ϕ
ij

}T
= {δφ}T[Bϕ

]T ,{
δε

ϕ
ii

}
=
[
Bϕi
]
{δφ},

{
δε

ϕ
ii

}T
= {δφ}T[Bϕi

]T ,

(22)

Applying the “Virtual Work Theorem” [63] and substituting the variations in the fields
ϕ and ε in Equation (19) gives:∫

V
(δε

ϕ
ij)

T
D′[Bu]{U}dV +

∫
V

(
δε

ϕ
ii

)T[
Np
]
{pw}dV =

∫
Γ
(δϕ)TtjdA, (23)

Equation (23) establishes the expression of the virtual work in which a small variation
in the function ϕ was applied to generate such work. When substituting the variations
according to Equations (22) and the unitary isotropic tensor m [64], which correlates the
degrees of freedom of the adjoint functions

[
Bϕ

]T and
[
Np
]
, it can be written as:∫

V
{δφ}T[Bϕ

]T
[D][Bu]{U}dV +

∫
V
{δφ}T[Bϕ

]T〈m〉
[
Np
]
{pw}dV =

∫
Γ
{δφ}T[Nϕ

]TtjdA, (24)

because {δφ}T does not involve integration variables. Since it is a common term on both
sides of the equality, Equation (24) becomes:∫

V

[
Bϕ

]T
[D][Bu]dV{U}+

∫
V

[
Bϕ

]T〈1 1 0〉T
[
Np
]
dV{pw} =

∫
Γ

[
Nϕ

]TtjdA, (25)

The identification of the matrices with the subscripts ϕ, u, and p allowed us to recog-
nize where their approximation originated.
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3.2. Phenomenological Case of the Flow in the Soil

By integrating the phenomenological Equation (2) in the volume of the body under
study and proceeding analogously to the case of soil solids, applying an inner product with
an arbitrary function θ to generate a work gives:∫

V
divvθdV −

∫
V

.
εθdV =

∫
V

θTdivvdV −
∫

V
θT .

εdV = 0, (26)

Denoting for the moment, as was done in (9) ϑ = θT , and reminding that divv in index
notation is divv = vi,i, then (26) transforms into:∫

V
ϑvi,idV −

∫
V

ϑ
.
εiidV = 0, (27)

Considering and applying the derivative product rule in (27) gives:∫
V
(ϑvi),idV −

∫
V

ϑ,ividV −
∫

V
ϑ

.
εiidV = 0, (28)

According to the “Divergence Theorem” [63] in the first term of (28), where vini = qi,
and considering Equation (3), which establishes Darcy’s law, results in:∫

V
ϑ,j

[
kij(γwh),j/γw

]
dV +

∫
V

ϑ
.
εiidV =

∫
Γ

ϑqidA, (29)

Here, εii = ui,i; therefore,
.

εii =
.

ui,i. Furthermore, the piezometric level h = (pw/γw) + z
can be shown in terms of the water pore pressure pw and the reference head z:∫

V
ϑ,j
(
kij/γw

)
{pw}dV +

∫
V

ϑ,jkijz,jdV +
∫

V
ϑ

.
ui,idV =

∫
Γ

ϑqidA, (30)

The finite element approximation (Galerkin) requires:

ϑ = [Nθ ]{θ}, ϑT = {θ}T [Nθ ]
T ,

ϑ,j = [Bθ ]{θ}, ϑT
,j = {θ}

T [Bθ ]
T ,

{pw} =
[
Np
]
{p}, {pw},j =

[
Bp
]
{p},

(31)

u= [N]{U}, εii= u = [Bui]{U} (32)

When deriving Equation (32), the result is:{ .
εii
}
= [Bui]{

.
U}, (33)

indicating that the associated variations in (34) apply the “Principle of Virtual Work” in
Equation (30):

{δϑ} = [Nθ ]{δθ}, {δϑ}T = {δθ}T [Nθ ]
T ,{

δϑ,j
}
= [Bθ ]{δθ},

{
δϑ,j
}T

= {δθ}T [Bθ ]
T ,

(34)

When substituting (34) into (30), the unit isotropic tensor m gives:∫
V
{δϑ}T [Bθ ]

T(kij/γw
)[

Bp
]
{pw}dV +

∫
V
{δθ}T [Nθ ]

Tm[Bui]{
.

U}dV =
∫

Γ
{δθ}T [Nθ ]

TqidA, (35)

In Equation (35), the term
∫

V ϑ,jkijz,jdV was not considered because it depends on
the reference level at which the piezometric level is evaluated, which for the problem
reviewed was not included. On the other hand, substituting the matrix [Bui] for the product
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of the unit isotropic tensor in the coupling matrix and extracting the term {δϑ}T from the
integrals obtains:∫

V
[Bθ ]

T(kij/γw
)[

Bp
]
dV{pw}+

∫
V
[Nθ ]

T1 1 0T [Bui]dV{
.

U} =
∫

Γ
[Nθ ]

TdA{qi}, (36)

Here, [Bθ ] has a correspondence analogous to
[
Bp
]
. In addition, kij is associated with

the permeability matrix [k].
The final discrete coupled Equations (25) and (36) can thus be written as follows:

[K]{U}+ [KV ]
T{pw} = {F}, (37)

[KV ]
{ .

U
}
+ (1/γw)[Kh]{pw} = {Q}, (38)

where [K] is the soil stiffness matrix, [KV ]
T is the transpose coupling matrix, {U} is the nodal

displacement vector, {pw} is the nodal pore water pressure vector, {F} is the external force
vector, [KV ] is the coupling matrix, [Kh] is the drainage matrix, {Q} is the external/internal
water flow vector, and {

.
U} is the nodal displacement velocity vector.

The resulting matrices in Equations (37) and (38) suggest the following integral forms
(Equation (39)):

[K] =
∫

V
[
Bϕ

]T
[D][Bu]dV,

[KV ]
T =

∫
V
[
Bϕ

]T1 1 0T[Np
]
dV,

[Kh] =
∫

V [Bθ ]
T [k]

[
Bp
]
dV,

(39)

Matrices [Bi] contain the derivatives of the shape functions; [k] is the permeability
matrix, and a vector is needed to couple the values corresponding to the degrees of freedom
of the displacement {U} and pore water pressure {pw}.

The coupled model provides a solution for one-dimensional consolidation of satu-
rated soils, which were developed and expressed as Equations (37) and (38), and can be
formulated based on the concept of effective stresses. Therefore, coupling the critical state
model (Cam-clay) to the above model also yields the mean effective σp and deviatoric σq
stresses in the elastoplastic behavior of saturated soils [66].

The strain in the critical state model can be evaluated while considering the yield
surface f as follows:

f = σ2
q −M2σp

(
σ0 − σp

)
, (40)

M =
6 sin ϕ

3− sin ϕ
, (41)

where M is the slope of the critical state line or stress path in the CD triaxial test method,
ϕ is the soil internal friction angle, and σ0 is the preconsolidation stress, which can be
considered a material hardening parameter. In the event of plastic strains, the stress can
evolve the hardening law in Equation (42):

(∆σ0)i =
υσ0

(λ− κ)

(
∆εP

v

)
i
, (42)

where ∆εP
v is the variation in the plastic volumetric strain and λ and κ are the slopes of the

virgin and unloading sections, respectively, of the compressibility curve of the saturated
consolidation test method.

According to Castro Barco [67], the yield surface ( f = 0) represents an ellipse in the
σp-σq (σq is the deviatoric stress). The yield surface is the limit of the elastic stress states.
These stresses within this limit only give rise to elastic strain increments; therefore, in
this case the stiffness matrix is the stiffness matrix of the elastic component [K] = [Ke].
Conversely, while stresses that tend to exceed the limit give rise to increases in plastic
strains, in this case, both elastic and plastic strains occur, where the stiffness matrix is a



Water 2022, 14, 2958 9 of 27

composite of elastic and plastic components [K] = [Ke] +
[
Kp
]
. Therefore, the terms of

Equations (37) and (38) are maintained and only the stiffness matrix [K] is modified. Then,
Equation (37) can be rewritten as Equation (43):(

[Ke] +
[
Kp
])
{U}+ [KV ]

T{pw} = {F}, (43)

The coupled model established in Equations (37) and (38) was formulated in terms
of Cartesian stresses

(
σx, σy, and σz

)
and strains

(
εx, εy, and εz

)
, while the critical state

provides constitutive equations formulated while considering both volumetric εv and
deviatoric εq strains. Due to the above, the constitutive Equation (43) must be transformed
as a function of both the stresses

(
σx, σy, and τxy

)
and strains

(
εx, εy, and γxy

)
. Hence, since

this case involves plane strain, then εz = 0 even though σz exists.{
εv
εq

}
=

[ 1
K 0
0 1

3G

]{
σp
σq

}
→
{

σp
σq

}
=

[ 1
K 0
0 1

3G

]−1{
εv
εq

}
, (44)

σp =
σx + σy + σz

3
,σz =

υE
(1 + υ)(1− 2υ)

(
εx + εy

)
, σq = σ1 − σ2, (45)

K =
E

3(1− 2υ)
, G =

E
2(1 + υ)

=
τxy

γxy
=

τmax

γmax
, E =

3(1 + e0)(1− 2υ)σapl

κe f
, (46)

where υ and E are Poisson’s ratio and the elastic modulus, respectively, of the soil;
σ1, σ2, and σ3 are the principal stresses applied in the CD triaxial test process corresponding
to the stresses σx, σy, and σz, respectively; εx, εy, and εz are the strains along the correspond-
ing directions; and K and G are the volumetric (bulk) and shear moduli, respectively. The
last one relates shear stress and angular strain, e0 and e f are the initial and final void ratios,
respectively, and σapl is the applied surface stress.

Similarly, the stiffness matrix of the plastic component originates from the determina-
tion of the mean effective σ′p and deviatoric σ′q stresses as follows:

{
dσp
dσq

}
= − 1

M2σp
vσ0

(λ−κ)

M2(2σp − σ0
)

2σq

2σq
4σ2

q

M2(2σp−σ0)

−1{
dεP

v
dεP

q

}
, (47)

Finally, the constitutive equations of the elastoplastic coupled model of saturated soil
consolidation under effective stresses can be obtained as:(

[Ke] +
[
Kp
])
{U}+ [KV ]

T{pw} = {F}, (48)

[KV ]
{ .

U
}
+ (1/γw)[Kh]{pw} = {Q}, (49)

The resulting matrices in Equations (48) and (49) thus suggest the following integral
forms (Equation (50)):

[Ke] =
∫

V
[
Bϕ

]T
[De]

[
Bϕ

]
dV[

Kp
]
=
∫

V
[
Bϕ

]T[Dp
][

Bϕ

]
dV

[KV ]
T =

∫
V
[
Bϕ

]T〈1 0〉T
[
Np
]
dV

[Kh] =
∫

V [Bθ ]
T [k][Bθ ]dV,

(50)

To solve Equations (48) and (49), a solution procedure can be applied. The variables
include the soil displacement U and the pore water pressure pw at that time. One of the
procedures used in this paper entailed the application of the finite difference method in
time combined with Galerkin’s method to obtain theta values. The approximate values
refer to the external forces F acting on the soil surface, external/internal water flow in the
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soil Q, pore water pressure pw, displacement of the soil mass, and rate of movement in
terms of the velocity.

{F} = {Fa}+ θ{{Fb} − {Fa}}
{Q} = {Qa}+ θ{{Qb} − {Qa}}
{pw} = (1− θ){pwb}+ θ{pwa}
{U} = (1− θ){Ub}+ θ{Ua}{ .

U
}
= ({Ub} − {Ua})/∆t,

(51)

where {Fa}, {Qa}, {pwa}, and {Ua} are the initial vectors; {Fb}, {Qb}, {pwb}, and {Ub} are
the vectors after time interval ∆t; θ is the value of Galerkin’s parameter in the numerical
time evolution solution; and ∆t is the time step to avoid numerical oscillations according to
the following relationship (for triangular finite elements) [68]:

∆t ≤ α

1− θ
, αmin =

2A
9CV

, (52)

where A is the area of the linear triangular finite element and CV is the soil consolidation coefficient.
Finally, the elastoplastic coupled model algorithm was developed in Fortran code to

visualize the saturated consolidation phenomenon and its temporal evolution.

4. Numerical Examples and Results

To validate the elastoplastic coupled model, two numerical examples were examined:
(1) a foundation slab covering the entire soil surface, in which vertical flow was allowed only
at the bottom boundary, representing the simulation of typical Terzaghi’s one-dimensional
consolidation; and (2) an isolated footing partially covering the surface, in which vertical
flow was allowed at the bottom and top boundaries. In both cases, lateral displacement
was restricted.

4.1. Case I: Vertical Flow (Bottom Boundary) under Lateral Restrictions

The typical case of one-dimensional consolidation due to a rectangular foundation
slab of length L = 5.0 m and infinite width (plane strain state) transferring a uniform load
F = −80 kPa (F = −8.0 Ton/m2) onto a clayey soil stratum with thickness H = 3.0 m
was analyzed. The Ux and Uy displacements were restricted both at the lateral boundaries
and at the bottom boundary of the soil. In addition, a sand layer occurred below the clay
layer, permitting the bottom boundary of the clay layer to drain and indicating a pore
pressure of zero.

Similarly, the lateral boundaries did not allow water flow. Therefore, the vertical
flow (bottom boundary) was studied. The mesh spacing was set to 0.25 m to use the
calibration curves obtained. Figure 1 shows the soil domain under study and Table 1 lists
the soil properties needed for the mechanical analysis. In this analysis, the time step was
∆t = 13.93 days.
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Table 1. Properties of the saturated soil for mechanical analysis of the foundation.

Soil Property Symbol Magnitude

Elastic modulus E 20,000 kPa 2000 Ton/m2

Poisson’s ratio υ 0.35
Coefficient of permeability (x direction) kx 1.184 × 10−4 m/day 1.37 × 10−9 m/s
Coefficient of permeability (y direction) ky 1.184 × 10−4 m/day 1.37 × 10−9 m/s

Preconsolidation stress σ0 −120.0 kPa −12.0 Ton/m2

Internal friction angle ϕ 30◦

Lambda λ 0.20
Kappa κ 0.02

Time for analysis t 1379.07 days
Time step ∆t 13.93 days

Figure 2 shows the pore water pressure distribution at time steps of 13.93, 682.57, and
1379.07 days. The pore water pressure distribution gradually decreased with increasing
depth because the change in the applied stress distribution also decreased with increasing
depth. Thus, at 13.93 days, the pore pressure value reached −79.8 kPa (−7.98 Ton/m2) be-
low the foundation and was very close to the applied stress value of −80 kPa (−8 Ton/m2);
however, when approaching the lower boundary, the pore pressure reached zero because
flow was permitted. Therefore, when considering only one impermeable boundary, the
water contained in the soil domain needed a longer drainage time and covered a greater
distance while the filtration rate was very low, resulting in a required analysis time of
1379.07 days.
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Additionally, when comparing Figure 2a–c, we observed that the pore pressure de-
creased over time until a value close to zero was reached. This behavior was appropriate
and correct when analyzing the soil consolidation problems, which evolved over time.

In addition, the Mandel–Cryer phenomenon as described by Conte [7] was observed
due to the sensitivity of the model, which caused the excess pressure to increase to infinity.
For this reason, it was required to calibrate the model and obtain calibration curves to
reduce this effect by determining the imminent point at which the pore water pressure
began to dissipate.

Figure 3 shows the symmetrical behavior of horizontal displacement Ux. The founda-
tion produced displacement to the right (positive) and left (negative) from the centerline
of the domain. The largest displacements occurred in the top third (near the top bound-
ary) while displacement was restricted at the lateral and bottom boundaries; hence, the
displacements were very small or negligible. As shown in Figure 3a–c, the maximum value
of −0.0007 m (−0.700 mm) was observed at 13.93 days, but over time, this value increased
to −0.000713 m (−0.713 mm). This indicated that the largest displacements occurred at
the beginning of the consolidation process; i.e., at the time of foundation emplacement.
Subsequently, the displacements decreased due to soil rearrangement, which was attributed
to pore pressure dissipation throughout the domain.
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The behavior of vertical displacement Uy is shown in Figure 4. It was evident that
the vertical displacements at the top boundary were greater and decreased with increas-
ing depth due to the distribution of the applied stress. As shown in Figure 3a, during
the first 13.93 days after the beginning of the consolidation process, in the superficial
corners, the magnitude of the displacements at −0.01579 m (−1.579 cm) was larger than
that of the displacements in the central zones at −0.008755 m (−0.8755 cm), producing
a concave profile of superficial displacements due to the large FE size; thus, with finer
meshing, this effect could be reduced. This effect could only be observed through the
coupled model and could not be observed via classical mathematical functions. In con-
trast, the Uy displacements near the bottom boundary were already very small or zero.
In addition, at 682.57 days (equivalent to 50% of the analysis time), the maximum Uy
displacements changed to 3.368 cm, and at the end of the analysis time, the displacements
reached 3.373 cm (as shown in Figure 4b). This indicated that significant displacements
could occur after 50% of the consolidation time, which was consistent with Terzaghi’s
consolidation theory.
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Figure 5 shows the evolution of the profile of the vertical displacements of the su-
perficial nodes, revealing that the vertical displacements of the superficial boundary pro-
duced by the foundation were negative; i.e., settlement occurred. Figure 5 shows dif-
ferent soil superficial profiles for each time increment (a color line was obtained every
13.93 days); i.e., after 13.93 days, the foundation produced a settlement of −0.80 cm in the
center, while in the corner it was −1.50 cm (superior magenta line). At the end of the time
analysis, the settlements reached a magnitude of −2.65 cm in the center and −3.30 cm in
the corner (bottom magenta line). Based on this finding, we deduced that the soil stratum
volume decreased. This behavior was consistent with the type of analysis performed.
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Figure 5. Soil superficial profile of the vertical displacements.

Figure 6 shows the finite element mesh of the soil stratum and thus the behavior
(elastic and/or plastic) they were under according to the value of the parameter f . When
considering this meshing, the behavior of the FEs within the soil stratum could be identified
at any time step during the application of the foundation-applied stress. As shown in
Figure 6a, for ∆t = 13.93 days, 90% of the finite elements within the domain exhibited elastic
behavior (stress and strain) or blue zones. Over time (as shown in Figure 6b), 75% of the FEs
exhibited plastic behavior (red zones), and at the end of the analysis time; i.e., 1379.07 days
(as shown in Figure 6c), all FEs exhibited plastic behavior. Because the low permeability
impeded the pore pressure dissipation process and due to the lateral restrictions; i.e., at
the bottom and top, the soil was subjected to plastic strains (irreversible) at the end of the
consolidation process.
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4.2. Case II: Vertical Flow (Top and Bottom Boundary) under Lateral Restrictions

Additionally, a rectangular isolated footing of length L = 2.5 m and infinite width
(plane strain state) was analyzed. The footing was placed at the center below the top
boundary of the domain and applied a uniform stress F = −80 kPa (F = −8.0 Ton/m2) on
the clayey soil stratum with thickness H = 3.0 m.
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The top boundary permitted water flow in the unloaded zones (to the left and right of
the footing). Similarly, the bottom boundary also allowed water flow, indicating that the
pore pressure at these boundaries was zero. Ux displacements were restricted at the lateral
boundaries, while at the bottom soil boundary, Ux and Uy were also restricted. The meshing
was set to 0.25 m in order to use the calibration curves obtained. Figure 7 shows the study
domain loaded by the footing, while the soil properties needed for mechanical analysis
are listed in Table 2. According to the calibration curve (see Figure A3 in Appendix B), to
perform the analysis, the time step was set to ∆t = 4.385 days, while the analysis time was
set to t = 877 days.
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Table 2. Properties of the saturated soil for mechanical analysis of the isolated footing.

Soil Property Symbol Magnitude

Elastic modulus E 20,000 kPa 2000 Ton/m2

Poisson’s ratio υ 0.35
Coefficient of permeability (x direction) kx 1.184 × 10−4 m/day 1.37 × 10−9 m/s
Coefficient of permeability (y direction) ky 1.184 × 10−4 m/day 1.37 × 10−9 m/s

Preconsolidation stress σ0 −120.0 kPa −12.0 Ton/m2

Internal friction angle ϕ 30◦

Lambda λ 0.20
Kappa κ 0.02

Time for analysis t 877 days
Time step ∆t 4.385 days

Through numerical analysis, Figure 8 reveals that the pore water pressure of the
soil subjected to the above conditions exhibited a very consistent behavior. After the
analysis time and time step of the calibration curve were obtained (see Figures A3 and A4
in Appendix B), it was observed that the pore water pressure did not approach infinity.
Conversely, it was evident that the pressure began to decrease over time. Thus, Figure 8a
shows that after 4.385 days of consolidation, the pore water pressure was −57.89 kPa
(−5.789 Ton/m2), which represented a reduction of 27.64% with respect to the stress
applied by the footing (−80 kPa). Similarly, after 434.115 days (as shown in Figure 8b), the
pore water pressure decreased 99.65% (−0.276 kPa) compared to the applied stress. At the
end of the analysis time; i.e., 872.615 days (as shown in Figure 8c), it was evident that the
pore water pressure approached zero, representing a typical consolidation phenomenon.
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In addition, Figure 8 shows that the pore water pressure at the top boundary, which
was not loaded (to the left and right of the footing), reached zero. Similarly, the bottom
boundary exhibited the same behavior because these boundaries allowed water to drain
and the pore pressure within the domain to dissipate.

Figure 9 shows the evolution of the horizontal displacements Ux with the consolidation
time. Figure 9 shows symmetric behavior of the horizontal displacements Ux. On the
basis of performed numerical analyses, we obtained, at the center of the top boundary,
produced displacements to the left (negative) and right (positive) from the centerline of
the stratum. After 4.385 days (as shown in Figure 9a), the maximum value ranged from
−0.004102 m (−0.4102 cm) to 0.004205 m (0.4205 cm) just at the strip below the footing.
However, with increasing depth, the displacements were very small and almost negligible.
Additionally, over time (as shown in Figure 9b,c), this value decreased to 0.00314 m
(0.314 cm). This indicated that the largest Ux displacements occurred at the beginning
of the consolidation process. Thus, when the consolidation time exceeded 50% of the
analysis time, the displacements continued to increase but at a smaller magnitude due to
rearrangement of the solid soil particles and pore water pressure dissipation throughout
the domain.
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(c) 872.615 days.

Figure 10 shows the distribution and behavior of vertical displacements Uy. During
the first 4.385 days (as shown in Figure 10a) after the start of the consolidation process,
at the top boundary of the domain; i.e., the loaded zone (central strip and interior of
the domain), the displacements were negative (typical of loaded zones) and reached a
maximum value of −0.01202 m (−1.202 cm). However, in the unloaded zones, the vertical
displacements were positive, with a value of +0.006679 m (+0.6679 cm). This indicated
that the isolated footing settled across the entire contact surface with the soil, which
produced a combination of vertical and horizontal displacements within the domain that
generated, in turn, upward (positive) vertical displacements in the unloaded zones at the
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top boundary. Additionally, after 434.115 (Figure 10b) and 872.615 days (Figure 10c), the
footing generated settlement within the central strip of the domain; while at the unloaded
surface, lateral boundaries, and bottom boundary, the displacements were zero. Thus, by
analyzing the Uy displacements shown in Figure 10, it could be inferred that the domain
experienced settlement in the loaded zone and uplift in the unloaded zones, indicating
permanent strains.
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Figure 10. Uy displacement distribution below the footing at (a) 4.385, (b) 434.115, and
(c) 872.615 days.

The above is clearly shown in Figure 11. This figure shows the variation in the soil
superficial profile of the vertical displacements of the superficial nodes, providing a clear
view of the evolution of the vertical displacements at the top boundary produced by load
application to this boundary and pore water pressure dissipation throughout the interior
of the domain (soil). Similarly, we observed how the superficial profile was strained, so we
could deduce that the loaded area experienced settlement (displacements below the red
dotted line), revealing a decrease in volume; while the unloaded area experienced uplifts
(displacements above the red line), revealing an increase in volume.
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Figure 11. Soil superficial profile of the vertical displacements of the superficial nodes.

Figure 12 shows the meshing domain of the FEs and indicates whether the behavior
of the FEs is elastic or plastic. This determination was based on the yield surface f ; for
f ≤ 0, the FEs exhibited elastic behavior, but for f > 0, the FEs exhibited plastic behavior.
As a result, at a time step of 4.385 days, a significant portion of the finite elements within
the domain experienced plastic stress and strain behavior (red zones in Figure 12a). Over
time until the analysis time was reached, the finite elements that exhibited plastic behavior
(below the unloaded zones) changed to exhibit elastic behavior (change from red to blue in
Figure 12b,c).
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Based on the above, a direct relationship could be observed between the vertical Uy
and horizontal Ux displacements because the area below the foundation (loaded) exhibited
plastic behavior. Furthermore, the secondary effects produced by loading also subjected
the unloaded areas to plastic behavior. The reason for this phenomenon was that the soil
flowed downward in the central loaded area, displacing the soil toward the sides and finally
lifting the sides and deforming the surface soil outward in the unloaded areas. When the
pore water pressure was very low—practically zero (at 434.115 days)—the finite elements
no longer exhibited plastic behavior but changed to exhibit elastic behavior and remained
so until the end of the time analysis process. The reason for this phenomenon was that
there were no longer any overpressure-producing permanent strains.

Notably, the proposed elastoplastic coupled model also captured the behavior of
(a) the volumetric strain εv, (b) the deviatoric strain εq, (c) the mean stress σp, (d) the
deviatoric stress σq, and (e) the volumetric variation ∆εv; the latter reflected the final value
compared to the total volume change in the domain as either positive (an increase in
volume) or negative (a decrease in volume).

Finally, a comparative analysis between the case studies in the present work revealed
that under the same soil properties, magnitude of the applied stress, and restrictions at the
lateral and bottom boundaries in both cases, but with different permeable boundaries, the
analysis time increased from Cases I to II (872.615 and 1393 days, respectively) and the time
step also increased from 4.385 to 13.93 days.

Based on Table 3, we deduced that when flow was permitted at the top boundary, the
time needed for the pore water pressure to decrease or dissipate was less than that in the
analysis case that did not allow surficial flow. This result was congruent with the behavior
of the consolidation phenomenon under both conditions; i.e., the time needed for the pore
water pressure to dissipate was shorter because water flowed toward the two boundaries,
which suggested that the travel distance of water through the soil was also shorter; hence,
the pore water pressures were lower. In the opposite case, with the top boundary sealed,
water traveled a greater distance to be discharged, and as a result, the pore water pressures
were higher.
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Table 3. Comparative analysis in conditions with and without superficial flow.

With Superficial Flow Without Superficial Flow

Time Step Water Pore Pressure Time Step Water Pore Pressure

(Days) (kPa) (Ton/m2) (Days) (kPa) (Ton/m2)

4.385 −57.89 −5.789090 13.93 −79.87 −7.987030
434.115 −0.132 −0.013244 682.57 −0.219 −0.021974
872.615 −0.000 −0.000027 1379.07 −0.000 −0.000046

5. Discussion

When analyzing the pore water pressure (pw) behavior, it was possible to observe the
Mandel–Cryer phenomenon described by Conte [7], which explains that an excess pressure
exists at the beginning of such a process due to the applied stress; this excess pressure
increases and then begins to decrease until it is completely dissipated. The proposed model
showed this excess pressure but it increased to infinity; for this reason, it was necessary
to calibrate the model and obtain the calibration curves shown in Appendix B. Thus, the
behavior of the pore water pressure was consistent with those reported in the literature
reviewed. However, a direct comparison was not possible because the reviewed models
showed the analysis of a specific point of the stratum while the proposed model analyzed
the entire soil stratum by means of color maps.

Regarding horizontal displacements (Ux), the classical theory of consolidation de-
scribes that these displacements are zero; however, the proposed model demonstrated
small displacements, but these did exist. Likewise, after analyzing the horizontal displace-
ments, it was observed that in the two cases of study, the settlements were symmetrical
when tracing a line center. In addition, it was remarkable to identify higher displacements
occurring in the first quarter of the analysis time that were becoming lower and lower due
to this. This behavior was correct and consistent with the consolidation phenomenon.

The vertical displacements (Uy) in the two case studies showed higher-magnitude
displacements occurring in the superficial zone (below the foundation) that decreased
as the depth increased. This was consistent with the distribution of the applied stress
because it decreased as the depth increased, having less of an effect each time. Likewise, the
displacements evolved over time, presenting those of higher magnitude at the beginning
of the process, but as time progressed, they decreased considerably. Additionally, due
to the Mandel–Cryer phenomenon and the combination of the vertical and horizontal
displacements, it was possible to observe the superficial profile of the soil at each time step.
The profile revealed that when the soil was subjected to an applied stress, it experienced
settlements (negative displacements), but in nonloaded zones (around the foundation),
expansions or swellings (positive displacements) were manifested. Such behavior cannot
be determined using classical theories, nor did the literature models reviewed report it.

On the other hand, the elastoplastic model evaluated the value of the yield surface
f to identify at each time step the behavior (elastic and/or plastic) of each finite element
in the mesh. As a result of this analysis, at the beginning of the process in the two case
studies, the FEs under the foundation were in elastic behavior (blue zones); then the FEs
evolved to plastic behavior (red zones). Therefore, at the end of the analysis process, the
loaded zones experienced permanent strains. Likewise, in the periphery of the foundation,
the FEs were under plastic behavior, which evidenced that the swellings on the surface
were permanent strains. Finally, the calibration curves revealed that when there were two
permeable vertical boundaries instead of one, the analysis time and time step were shorter.
This indicated that the consolidation process would take less time because the water could
flow through two boundaries and permit the water pore pressure to dissipate faster. This
behavior is typical in consolidation processes and was in accordance with the classical
theory and literature models reviewed.
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6. Conclusions

In this paper, an elastoplastic coupled model (flow–mechanical–critical state) was
formulated and developed to study the consolidation of saturated soils under effective
stresses and their transition from elastic to elastoplastic behavior and/or vice versa. Based
on this investigation, the following conclusions could be derived:

The variation in consolidation in saturated soils was determined by the rate at which
the fluid pressure in the soil could be reduced. Thus, the process of strain (mechanical
behavior) and the distribution of the water pressure (hydraulic behavior) in soils is a
coupled flow–mechanical process. Thus, the use of the coupled model represented an
integral solution to the coupling problem, yielding approximate solutions that reproduced
the hydromechanical behavior of the soil in a complete way.

The proposed elastoplastic coupled model indicated that the resulting coupling equa-
tions confirmed that the approach and formulation were adequate and exhibited correct
coupling and congruence in the matrix product process.

Simulations using the proposed elastoplastic coupled model algorithm provided
fast and easy results due to its flexibility, since it permitted an infinite combination of
conditions: (1) boundaries, (2) loads, and (3) flow patterns. The first condition could
consider restrictions at the bottom and lateral boundaries or not. The second condition
could consider constant or time-varying values. The third condition could allow internal or
external flow, which in turn could exhibit constant or evolving values over time.

The numerical results revealed an appropriate behavior of the consolidation phe-
nomenon under the conceptual framework of the effective stress of saturated soil, sup-
porting its feasibility and reliability. The water pore pressure behavior presented an
overpressure at the beginning (Mandel–Cryer effect), but as time passed it tended to zero.
The vertical and horizontal displacements were greater below the foundation and decreased
with depth and decreased with time. The soil superficial profile evolved with time and
showed the permanent strains at the surface (settlements and/or swellings). The model
showed that the FE in the zones below the foundation were initially in elastic behavior,
but at the end of the process, they evolved to the plastic regime and showed permanent
strains. Therefore, the model was consistent with Terzaghi’s consolidation theory, and if
two boundaries were permeable instead of one, the analysis time was shorter and would
permit water to flow more quickly.

7. Future Work

The analysis process does not end here: the different combinations of boundary
conditions, loading levels, flow patterns, and soil properties considered in the many
simulations we performed to improve the model must be examined. However, due to space
limitations, only the most recurrent and significant consolidation problems were included.

The proposed elastoplastic coupled model was formulated and prepared while consid-
ering saturated soil consolidation but could be modified for unsaturated soil consolidation
after coupling the variation in the hydraulic conductivity with respect to the saturation
degree obtained from the soil water retention curve (SWRC). This process should be incor-
porated into the permeability matrix.
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Appendix A

Elastoplastic Coupled Model Formulation of the Soil Consolidation (Flow–Mechanical–Critical-State)

During a movement, mechanical interactions between parts of a body or between
a body and its environment are described by five types of forces: (1) contact forces be-
tween separate parts of a body; (2) contact forces exerted at the boundary of a body by
its environment; (3) body forces exerted at points inside the body by the environment;
(4) contact forces exerted at points inside the body by the environment; and (5) contact
forces exerted at points inside the body by the environment [63].

One of the most important and far-reaching axioms in the continuum mechanics is
Cauchy’s Hypothesis about the mode of contact forces. Thus, Cauchy assumed the existence
of a density of surface forces s(n, x, t) defined by each vector n and all (x, t) on the trajectory
T of the motion (Figure A1a). The field has the following properties: let L be a surface
oriented in Bt with a positive unit normal vector n at the point x. Then, s(n, x, t) is the
force per unit area exerted on the surface L of the material on the negative side of L by the
material on the positive side. In fact, if C is an oriented surface tangent to L at x and has
the same positive unit normal vector, then the force per unit area at x is the same at both C
and L (Figure A1b).
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Figure A1. Existence of the surface force density s(n, x, t) between the surfaces L and C [63].

To determine the contact forces between two separate parts P and D at time t (Fig-
ure A2a), it is sufficient to integrate at time t over the contact surface. Thus, Equation (A1)
gives the force exerted on P at D at time t. Here, n is the external unit normal vector for
∂Pt at x. ∫

L
s(n, x, t)dAx ≡

∫
L

s(n)dA (A1)
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For points on the boundary of Bt, s(n, x, t)—with n the external unit normal vector for
∂Bt at x—gives the surface force per unit area applied to the body by the environment. This
force is referred to as the surface tractions. In either case, given a part P, it represents the
total contact forces exerted on P at time t (Figure A2b).∫

∂Pt
s(n)dA (A2)

The environment can exert forces at points inside the body; such is the case of gravity.
These forces are determined by the vector field b on the trajectory T; b(x, t) gives the force
per unit volume exerted by the surroundings on x. Thus, (A3) gives that part of the force
caused by the environment on P.∫

Pt
b(x, t)dVx ≡

∫
Pt

bdV (A3)

Following the above discussion, we can denote s as the surface forces, b as the body
forces, and the force f(P, t) on a part P at time t by:

f(P, t) =
∫

∂Pt
s(n)dA +

∫
Pt

bdV (A4)

Thus, the basic axioms connecting motion and force are the momentum balance laws.
These laws state that for every part P at time t:

f(P, t) =
.
l(P, t) (A5)

An obvious consequence of (A5), and considering that the linear momentum of a body
B is the same as that of a particle of mass m(B) associated to the center of mass of B, is:

.
l(B, t) = m(B)

..
α(t) (A6)

.
l(B, t) =

∫
Pt

.
vρdV (A7)

Thus, by introducing (A6) into (A4), the momentum balance law can be written as:∫
∂Pt

s(n)dA +
∫

Pt
bdV =

∫
Pt

.
vρdV (A8)

Cauchy’s Theorem: This theorem is one of the central results of continuum mechanics.
Its main statement is that s(n) is linear in n. It specifies the existence of stresses. It says: let
(s, b) be a system of forces for body B during a motion. Then, a necessary and sufficient
condition to satisfy the momentum balance laws is the existence of a tensor field T (named
Cauchy stress) such that [63]:

(a) For each unit vector n
s(n) = T(n) (A9)
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(b) The tensor T is symmetric;
(c) The tensor T satisfies the motion equation:

divT + b = ρ
.
v (A10)

Piola–Kirchhoff Stress Tensor: However, the Cauchy’s stress tensor T measures the
contact forces per unit area in the deformed configuration. In many problems of interest,
it is not convenient to work with the Cauchy’s stress tensor T because the deformed
configuration is not known in advance. For this reason, the stress tensor that gives the
measured force per unit area in the reference configuration was introduced [63].

Let (X, T) be a dynamic process. Then, given the part P, writing it in terms of the total
surface force on P at time t as an integral over ∂P gives:∫

∂Pt
TmdA =

∫
P

det(F)TmF−TndA (A11)

where m and n are the external unitary normal fields in ∂Pt and ∂P, respectively; while Tm
is the material description of T. Then, if it holds that:

S = det(F)TmF−T (A12)

hence: ∫
∂Pt

TmdA =
∫

P
SndA (A13)

This stress tensor S is denoted as the Piola–Kirchhoff stress tensor in (A12) and Sn in
(39) is the surface force per unit area measured in the reference configuration [63].

Similarly, if b is the body forces corresponding to (X, T), then:∫
Pt

bdV =
∫

P
bmdet(F)dV =

∫
Pt

b0dV (A14)

The reference body forces denoted as b0 give the measured body forces per unit
volume in the reference configuration.

The Piola–Kirchhoff stress tensor S satisfies the balance Equation (A15) and the field
Equation (A16): ∫

P
SndA =

∫
Pt

b0dV =
∫

Pt
Xρ0dV (A15)

divS + b0 =
..
χρ0 (A16)

On the other hand, let F be the gradient tensor of the deformation function f ,
which indicates:

F = ∇ f (A17)

The determinant of F establishes the ratio between the volume of the deformed field
with respect to the original volume [63]. This gives:

detF =
Vf

Vi
(A18)

This expression is general and involves the body with its internal phases. Likewise,
when evaluating Vf y Vi for a unit volume, we obtain:

detF ∼= 1 + ε (A19)

where ε is the volumetric strain of the body.

ε = εx + εy + εz (A20)
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Deriving expression (A19) in time, we obtain:

.
(detF) ∼=

.
ε (A21)

However, according to the theorem of the “Transport of Volume” [63]:

.
(detF) = divv (A22)

where v is the velocity of the particle; therefore:

divv− .
ε = 0 (A23)

Equations (A16) and (A23) were the basic phenomenological equations for this study.
The procedure to determine the coupling equations consisted of the application of the

“Principle of Virtual Work”, which expresses “The work developed by the internal force in
a system is equal to the work developed by the external forces acting on it”. This principle
associates the “Variational Principle of Minimum Potential Energy”. We proceeded in this
study in an analogous way and established an inner product through vector functions.

Appendix B

Calibration Curves of the Elastoplastic Coupled Model (Flow–Mechanical–Critical-State)

A calibration was conducted to identify the variables that significantly influenced the
results. To accomplish this task, the following variables were considered: (a) the saturated
permeability coefficient ky, (b) the type of lateral restriction, and (c) the time step ∆t. In
contrast, θ = 0.9 was defined as an adequate value to prevent numerical oscillations and
the elastic modulus E was defined by Equation (46). Finally, Figures A3 and A4 show
the calibration curves for the different combinations of flow conditions with and without
lateral restrictions, respectively.
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Figure A3. Calibration curves of the elastoplastic coupled model under vertical flow, no lateral flow,
and lateral restraints.

When analyzing the results obtained from the simulations and as shown in Figure A3,
the dependence of the time step ∆t and analysis time t on the permeability coefficient k
was evident. For example, for k = 8.64× 10−4 m/day (k = 1× 10−8 m/s), the time step
should be ∆t = 13.93 days, and the minimum analysis time should reach t = 139.3 days.
Thus, if the permeability were reduced 10 times; i.e., for k = 8.64× 10−5 m/day, the time
step should have been increased by the same order; i.e., ∆t = 139.3 days, and the minimum
analysis time should have been 10 times longer (t = 1393 days) to ensure that the pore
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pressure dissipated to zero. Three equations representing the model calibration curves for
the different vertical flow conditions without lateral flow and with lateral restrictions are
shown in Figure A1.

∆t =
1.393× 10−7

k(in m/s)
one vertical flow, no lateral flow, lateral restrictions (A24)

∆t =
4.380× 10−8

k(in m/s)
two vertical flows, no lateral flow, lateral restrictions (A25)

∆t =
3.730× 10−8

k(in m/s)
two vertical flows, no lateral flow, lateral restrictions (A26)

Figure A4 shows behavior analogous to that depicted in Figure A3, but in these
calibration curves, flow across the lateral boundaries was added and no lateral restrictions
were considered. Finally, in the simulations under these conditions, the calibration curves
provided equations that allowed for the determination of the required time step ∆t and
analysis time t as a function of the permeability coefficient k.
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∆t =
1.640× 10−7

k(in m/s)
one vertical flow, no lateral flow, no lateral restrictions (A27)

∆t =
4.400× 10−8

k(in m/s)
two vertical flows, no lateral flow, no lateral restrictions (A28)

∆t =
5.300× 10−8

k(in m/s)
two vertical flows, lateral flow, no lateral restrictions (A29)
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