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Abstract: Insufficient understanding of the microbial communities and associated microbial pro-
cesses in geological reservoirs hinders the utilization of this rich data source for improved resource
management. In this study, along with four interwell tracer tests at a 1478-m deep fractured crystal-
line-rock aquifer, we analyzed the microbial communities in the injected and produced water by
high-throughput sequencing. The microbial community similarities across boreholes during an in-
terwell flow scenario frequently encountered in reservoir development was explored. Despite the
significant tracer recoveries (~30%) in all tracer tests and the cumulatively >100,000 L of exogenous
water (carrying exogenous microbes) injected into the 10-m-scale reservoir, the overall structure of
produced-fluid microbiome did not increasingly resemble that of the injectate. However, producers
with better connectivity with the injector (based on tracer test results) did have more amplicon se-
quence variants (ASVs) that overlapped with those in the injectate. We identified possible drivers
behind our observations and verified the practicality of repeated microbial sampling in the context
of reservoir characterization and long-term monitoring. We highlight that injector-producer micro-
bial profiling could provide insights on the relative connectivities across different producers with a
given injector, and that the associated logistical needs may be comparable or even less than that of
classic tracer tests.

Keywords: reservoir characterization; tracer test; microbial community; microbial profiling; deep
subsurface; fractured rock; groundwater; fracture characterization; interwell connectivity; microbial
transport

1. Introduction

Microorganisms widely inhabit geological reservoirs and can affect or inform the ex-
ploitation of subsurface resources, such as groundwater [1-3], hydrocarbon [4-8] and ge-
othermal energy [9,10], in various ways. Microbial community composition data of for-
mation fluids, probed by modern high-throughput sequencing technology, is a rich data
source that remains largely untapped in most subsurface reservoirs [1,2]. A thorough un-
derstanding of the microbial processes in geological reservoirs is the premise for utilizing
microbial data for improved subsurface resource management. However, research on the
deep biosphere is rare and usually hindered by limited sample accessibility [11]. Microbial
data also pose challenges for the data assimilation of typical reservoir models because of
both its high dimension (i.e., each datapoint consisting of thousands of microbial species)
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and the complex, coupled drivers behind the observed patterns that are still poorly un-
derstood.

Microbial processes in subsurface reservoirs can be classified into two major catego-
ries: metabolic [6,7,12-16] and hydrodynamic [17-19] (subcategories of deterministic pro-
cess and stochastic process in microbial ecology [20-22], respectively). Metabolic pro-
cesses refer to the change in microbial community composition after disturbance to reser-
voir environmental conditions (e.g., ionic concentrations, oxygen level, organic carbon
availability, etc.) because different taxa have different physiologies, metabolic capabilities,
and hence different levels of fitness to the changed environment [18,23]. For example, in
aquifer systems, recharge events can significantly shift groundwater microbial communi-
ties by altering groundwater hydrochemical properties and stimulating the growth of op-
portunistic microbes [17,24,25]. In petroleum reservoirs, water injection is a common prac-
tice for enhanced oil recovery and/or hydraulic fracturing and is known to stimulate del-
eterious activities of sulfate-reducing bacteria that cause hydrogen sulfide production
(i-e., souring) [6,7,14-16]. Hydrodynamic processes, on the other hand, refer to the passive
dispersal capacity of microbial cells along with fluid flow because of their small body
sizes. In deep, fractured aquifers where the energy-limited environment permits only ex-
tremely slow cell metabolism [26,27], natural or human-induced shifts in groundwater
mixing could lead to variations in fluid-associated microbial community structure primar-
ily by advective transport [18]. In shallow geological formations, hydrodynamic process
can play important roles in microbial community dynamics as well [17,19].

In the context of subsurface resource extraction, the relative contribution of metabolic
and hydrodynamic processes depends not only on the characteristics of the reservoir be-
ing developed, but also the specific type of reservoir operational scenarios. A reservoir
can be water-based (e.g., groundwater and geothermal) or hydrocarbon-based (e.g., oil
fields and shale). Reservoir operation can involve production of reservoir fluids under
natural formation pressure or by pumping (i.e., primary production) [4], water injection
to displace reservoir fluids out of a different well and/or hydraulically stimulate reservoir
permeability (i.e., interwell displacement) [6,18], and injection/flowback into/from a single
well (i.e., single well push-pull) [7]. A better understanding of the spatial and temporal
patterns of microbial community structure under different scenarios provides not only
grounds for utilizing microbial data for improved resource management, but also valua-
ble insights for deep biosphere ecology research.

In this study, we analyzed the microbial community composition alongside four ar-
tificial tracer tests during a long-term flow test at a deep-subsurface aquifer with sparse
permeable fractures. The repeated tracer tests were conducted in order to characterize the
evolution of the interwell permeable fracture network over time [18,28-30]. Performed on
or near the same date of microbial community analyses, the tracer test results also pro-
vided useful information for microbial data interpretation from a hydrodynamic perspec-
tive. The objective of this work is to compare the interwell tracer test data with the micro-
bial community data of several injector-producer well pairs in a fractured reservoir. Pat-
terns and correlations between the two types of data were identified, and the potential of
injector-producer microbial profiling as a new tool for flowpath characterization was
demonstrated. The significance and practicality of the two data sources for reservoir char-
acterization were compared and discussed. Besides its practical value, this study also pre-
sents an example of the microbial community composition in a water-based reservoir, un-
der an “interwell displacement” operational scenario (specifically, with a single injector
and multiple producers). Our findings expand the current knowledge of microbial pro-
cesses in deep geological reservoirs and may have implications for the microbial ecology
under natural groundwater recharge events, such as by heavy rainfall or river intrusion.
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2. Materials and Methods

2.1. Enhanced Geothermal Systems (EGS) Collab Project Experiment 1: Field Site Description
and Long-Term Flow Test

The field experiments were conducted at the EGS Collab Experiment 1 testbed at the
Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. SUREF is the
former Homestake gold mine which became a dedicated science facility after mine closure
in 2001 [1]. Located along the west mine drift 1478-m (4850-ft) below surface (Figure 1a),
the mesoscale (10-100 m) testbed was within a naturally fractured aquifer with an active
hydrologic system [31] and a dominant rock type of sericite-carbonate-quartz phyllite [32].
The testbed had a total of 8 60-m long boreholes drilled subhorizontally into the drift wall,
4 of which (E1-I, E1-P, E1-PDT, E1-PST) are relevant to this study hence are displayed in
Figure 1b. The EGS Collab Experiment 1 included a 10-month (April 2019-February 2020)
flow test between an injection borehole and several producing boreholes through a hy-
draulic-natural fracture network [18,33,34]. Throughout the flow test, mine industrial wa-
ter (sourced from a shallow dolomitic limestone karst near SURF) was injected into the
formation via a 1.8-m long straddle packer interval 50-m deep in borehole E1-I (henceforth
referred to as Inj, as shown in Figure 1b), at a constant volumetric rate of 400 mL/min and
a pressure up to 34.5 MPa. The constant injection pressurized the system and maintained
outflow from 4 producing ports, E1-PDT, E1-PST, PI, and PB, at near atmospheric pres-
sure. E1-PDT and E1-PST were 2 producing wells, whereas PI and PB refer to 2 segments
along the same producing well E1-P and were hydraulically isolated by a set of straddle
packers [18]. Throughout the rest of this paper, we will refer to the borehole segments
with inflow or outflow as Inj, PDT, PST, PI, and PB (Figure 1b). Meanwhile, each borehole
will be referred to as E1-I, E1-PDT, E1-PST, and E1-P. Note that E1-PDT and E1-PST are
equivalent to PDT and PST, respectively, because the 2 wells were producing from their
entire 60-m span (i.e., no straddle packers that isolate any segments in E1-PDT or E1-PST).
Although PI and PB are 2 segments in the same well E1-P, they will henceforward be
described as if they were 2 separate wells, for clarity. Total volumetric flow rate from the
producing wells was initially ~70% of the injection rate, and gradually increased to ~98%
near the end of the flow test [28,32].

(b)

Top-down View
Plunge = 60°
Azimuth = 0°
Looking North

Figure 1. Deep-subsurface field site description. (a) Location of the EGS Collab testbed 1478-m
below surface at the SURF in Lead, South Dakota, USA. (b) Configuration of the 4 boreholes rele-
vant to this study, including 1 injector (borehole E1-I) and 3 producers (boreholes E1-P, E1-PST,
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and E1-PDT). The specific borehole intervals relevant to fluid flow include Inj (packer interval of
E1-I), PI (packer interval of E1-P), PB (below the packer interval of E1-P), PDT (entire span of E1-
PDT), and PST (entire span of E1-PST). All boreholes were drilled sub-horizontally into the drift
wall with nonintersecting trajectories. Figure modified from [18].

Operational disturbance was minimized throughout the long-term flow test. Alt-
hough disturbed briefly by unforeseen issues such as pump failures, the flow test contin-
ued largely uninterrupted throughout the 10-month time span (see details in [18]). The
injected industrial water was initially at an ambient temperature of approximately 20 °C
then chilled to 12 °C approximately 3 weeks after flow test initiation, although the outflow
remained approximately 30 °C without significant temperature decrease (<1 °C) through-
out the course of the flow test [18,32]. The reason for chilling the injectate was to investi-
gate heat extraction in the context of EGS. For the purpose of this study, however, the
chilling did not appear to have any direct influence on the comparison of microbial and
tracer data and hence will not be further discussed.

2.2. Conservative Tracer Tests and Collection of Microbial Samples

Four conservative tracer tests [35,36] were conducted weeks to months apart during
the 10-month flow test to characterize the flow pathways between Inj and each of the pro-
ducing wells [28]. In each tracer test, a concentrated solution of carbon nanoparticle tracer
(3-5 nm diameter, highly water soluble and inert) called “C-Dots” [37-39] was pushed
into the main injection flow line by a dedicated ISCO pump, and its concentration was
monitored in each producing well continuously for up to 2 days. Tracer samples were
collected in 10-mL sampling tubes at a certain time interval (down to 10-20 min). The
concentrations of C-Dot tracer were measured via fluorescence detection with excita-
tion/emission wavelengths of 361/468 nm [28]. The tracer concentrations in the outflow
were normalized by the concentration of the injected tracer pulse and plotted against cu-
mulative volume produced to generate tracer breakthrough curves (BTCs) in each pro-
ducing well.

On or near the date of each tracer campaign, microbial sampling was performed to
analyze the microbial communities of the injected industrial water and the outflow from
each producing well. On each date for microbial sampling, inflow into Inj as well as out-
flows from PDT, PST, PI, and PB were collected into 4-L acid-washed (5% hydrochloric
acid) cubitainers until filled. The collected fluid samples were then passed through 0.22
um Sterivex Duropore filters (EMD Millipore cat# SVGP01050) using sterile/acid-washed
supplies to concentrate microbial cells onto the filters. The filters were frozen on site in
dry ice and stored at -80 °C until analysis.

For a summary of tracer campaign dates and the nearest microbial sampling dates,
see Table Al. Note that the microbial samples involved in this study belong to a 282-day
microbial sampling campaign conducted roughly weekly from April 2019 to January 2020
and were partly described in our recent publication with a different focus [18]. Through-
out the rest of this article, each tracer campaign will be referred to according to the date
on which it was initiated (Table Al). Such naming fashion is consistent with other EGS
Collab publications [28] and the metadata in our public data repository (see Data Availa-
bility Statement) for ease of comparison.

2.3. Genomic DNA Extraction, Library Preparation and 16S Ribosomal RNA (rRNA) Gene
Amplicon Sequencing

DNA extraction from the filters and library preparation for 165 rRNA gene amplicon
sequencing were performed according to the protocols detailed in [18]. Briefly, genomic
DNA was extracted from each filter using the Qiagen AllPrep DNA/RNA Mini Kit (cat#
80204) following the manufacturer’s instructions with modifications to the cell disruption
and DNA elution steps [18]. DNA yield was recorded for each extraction using a Qubit
3.0 fluorometer and the Qubit dsDNA High Sensitivity Assay Kit (Invitrogen cat#



Water 2022, 14, 2921

5 of 22

(Q32851). The DNA yield was divided by the fluid sample volume that passed the entire
filter accounting for the fraction of filter (usually half) extracted from, and the resulting
concentration was divided by an approximate DNA mass per cell [40] to yield an approx-
imate cell density (#cells/mL) in the fluid samples (described previously in [18]). Polymer-
ase chain reaction (PCR) was performed on the extracted DNA using universal 16S pri-
mers 515F-Y/926R [41] which target the V4 and V5 hypervariable region of the 165 rRNA
gene of both bacteria and archaea. A second-round PCR was conducted to add unique
barcodes to the first-round PCR products (dual indexing). Blanks were included in every
round of PCR with no amplification observed, confirming the absence of contaminants.
The PCR products were cleaned up, pooled in equimolar concentrations, purified again,
and sequenced on an Illumina MiSeq 2 x 250 bp paired-end sequencing platform at the
UC Davis Genome Center.

2.4. High-Throughput Sequencing Data Processing

Primer sequences were trimmed from the raw sequencing reads using cutadapt [42].
The sequences were quality filtered by truncating reads beyond 220 bases so that bases
with quality scores <30 were discarded. Sequences that did not exactly match proximal
primers, had more than 2 expected errors, or contained ambiguous bases (Ns) were dis-
carded as well. The high-resolution DADA2 method [43] was used for the inference of
amplicon sequence variants (ASVs), removal of sequencing errors, merging forward and
reverse sequencing reads allowing no mismatches in the overlap region, removal of chi-
meras, and generation of an ASV table. The ASVs were assigned taxonomy using the Silva
v132 database implemented in DADA2 [44]. A phylogenetic tree of all ASVs was con-
structed using DECIPHER [45] and phangorn [46] in R to allow the calculation of phylog-
eny-aware distances between communities.

2.5. Diversity and Statistical Analyses

All diversity and statistical analyses on the sequencing data were performed in the R
statistical software (version 4.0.2) [47]. Alpha diversity indices (Shannon and Inverse
Simpson) were calculated using ‘estimate_richness’ function in phyloseq package. Note
that the sequencing data was not rarefied in this study [17,48]. Rarefaction curves, how-
ever, were calculated to make sure the alpha diversity metrics had stabilized well before
the minimum sequencing depth was reached (see Section 3.2). Beta diversity analysis was
performed to evaluate the degree of differentiation in community compositions among all
sample pairs using weighted Unifrac [49,50] as the distance metric. Weighted Unifrac dis-
tance takes into account not only the presence/absence of taxa and their relative abun-
dance, but also their phylogenetic relatedness, giving distantly related taxa more weight
than closely related taxa when calculating the distance. The weighted Unifrac distances
among all sample pairs were first computed (function ‘Unifrac’ in phyloseq, using data at
the ASV level) to generate a distance matrix, then hierarchical clustering was performed
(“ward.D2” method in function ‘hclust’ in stats package) to visualize the distance matrix
via a dendrogram. The number of overlapping ASVs among sampled wells over the pe-
riod near each tracer campaign was calculated and visualized via Venn diagrams using
function ‘venn’ in package eulerr.

3. Results
3.1. Long-Term Flow Test, Overall Geochemistry, and Tracer Data

The respective outflow rate in each producing well not only varied among wells, but
also changed over time, indicative of a dynamically changing network of flowpaths
[18,28,32]. The flow rate was highest in PI and PDT during the first two weeks of the flow
test (~100 mL/min) while outflow from PB was <50 mL/min. Following this, however, PDT
flow rate dropped to below 50 mL/min in June 2019 and remained below 50 mL/min there-
after, while flow rates in PI and PB increased to >200 mL/min and ~100 mL/min,
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respectively. The outflow from PST remained <50 mL/min throughout the long-term flow
test. For the entire flow rate history, see [18] and [51].

Weekly geochemistry data (major cations and anions, pH, EC) for the produced and
injected fluids during the long-term flow test was documented in [18]. Overall, fluids from
all producing wells were dominated by sulfate (60-1250 mg/L), calcium (70-490 mg/L),
magnesium (8—40 mg/L), and sodium (3-150 mg/L). In comparison, the ionic concentra-
tions of the injectate were much lower and more stable over time, dominated by calcium
(40-70 mg/L), magnesium (20-40 mg/L), and sulfate (3—6 mg/L). The pH of all fluids was
within the range of 7 to 8 (pH strip measurements). The EC values were estimated based
on geochemical data and ranged from 770-3800 puS/cm for PDT, 560-2360 uS/cm for PST,
410-2150 uS/cm for PI, 520-2150 uS/cm for PB, and 280-390 uS/cm for Inj [18].

Tracer breakthrough curves of each tracer campaign are shown in Figure 2. Normal-
ized tracer concentrations are plotted against the cumulative volume recovered (since the
start of each tracer test) to account for the differences in flow rate of each producing well
[28] (Figure 2a—d). Tracer concentrations were also plotted against elapsed time as a ref-
erence (Figure 2e-h). Total tracer mass recoveries as well as the single-well recoveries
were calculated according to [28] and summarized in Table 1. Total tracer recoveries were
generally approximately 30% (+8%). Tracer first arrival in each producing well was gen-
erally on the order of an hour with peak arrival within 10 hr, which was rapid compared
with full-scale geothermal reservoirs [28] but typical of mesoscale field tracer tests docu-
mented in the literature [52,53]. A prominent feature of the tracer test results is that the
interwell connectivities for Inj-PDT, Inj-PL, and Inj-PB were different at a certain time point,
and the relative connectivities across wells with the injector changed dramatically over
time (Figure 2). Note that PST had a negligible amount of tracer detected in all tracer tests
(ranging from 0 to 1.3% mass recoveries).

a b c d
(a) omz( ) o.mz( ) 0012( )
25 April tracer BTCs 1 May tracer BTCs 24 July tracer BTCs 22 October tracer BTCs
—PDT
—PI
—~PB
—~PST
0 0 . i - 0 e .
0 100 200 300 400 O 100 200 300 400 O 100 200 300 400 0 100 200 300 400
Volume recovered [L] Volume recovered [L] Volume recovered [L] Volume recovered [L]
e f h
( ) 0.012( ) 0.012 (g) 0.012 ( )
25 April tracer BTCs vs. time 1 May tracer BTCs vs. time ] 24 July tracer BTCs vs. time | 22 October tracer BTCs vs. time
o 0l 0 &Nb

0 20 40

Elapsed time [hr]

60 0 20 40 60 O 20 40 60 0 20 40 60
Elapsed time [hr] Elapsedtime [hr] Elapsedtime [hr]

Figure 2. Breakthrough curves (BTCs) of each producing well in the conservative tracer test con-
ducted on (a,e) 25 April, (b,f) 1 May, (c,g) 24 July, and (d,h) 22 October 2019, respectively, plotted
against cumulative volume recovered (a—d) and against elapsed time since the start of tracer injec-
tion (e-h).
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Table 1. Summary of single-well tracer mass recoveries and the total recoveries in each tracer test
campaign.

Tracer Campaign Date Tracer Recoveory at Each Well Total Tracoer Recovery
[%] [%]
PDT: 17.5
. PST: 1.3
25 April PI- 135 33.6
PB: 1.3
PDT: 11.1
PST: 0
1 May PL 10.7 224
PB: 0.6
PDT: 23
PST: 0.6
24 July PI- 06 37.6
PB: 2.1
PDT: 12
PST: 0
22 October PI- 2.8 344
PB: 6.4

3.2. Microbial Community Compositions in the Produced Fluids Were Distinct from Those in the
Injectate in All Four Tracer Campaigns

Among all the 50 microbial samples relevant to this study, there was an average of
32,216 reads per sample that passed the quality filter (~77.6% of the raw reads). All sam-
ples had over 10,000 reads that passed the quality filter. Over 95% of the samples had >
10,000 inferred ASVs (minimum number of inferred ASVs was 7711). Rarefaction curves
(Figure A1) confirm sufficient sequencing depth. Together with estimated cell concentra-
tions of roughly 105 cells/mL in both the injected and the produced fluids (Figure A2),
adequate sampling was confirmed for this study. A total of 4707 unique ASVs were iden-
tified. All ASVs were assigned taxonomy, grouped at the finest classification possible
down to the family level, and the ASV table was visualized in stacked bar plots showing
the relative abundance of each taxa in the whole microbial community of each fluid sam-
ple (Figure 3). The bar plots were arranged according to the order of the dendrogram
leaves of the hierarchical clustering results. In other words, the bar plots were grouped
according to their relative similarities (based on weighted Unifrac distance) for ease of
interpretation.
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Figure 3. Microbial community composition (shown as relative abundances) in the injectate and the
produced fluids near each tracer campaign. Stacked bar plots are ordered according to the hierar-
chical clustering results such that similar communities appear closer together, for ease of visualiza-
tion. The colored bars show the finest classification possible down to the family level. The borehole
name and date of sampling are labeled on the right side of each stacked bar with the naming fashion
of “borehole name (e.g., PST)—sample date (MMDDYY)” and color codes consistent with previous
figures (grey for Inj, green for PDT, purple for PST, red for PI, and brown for PB).

As shown in Figure 3, despite the continuous injection of mine industrial water into
the formation and the direct hydraulic connection between Inj and most producing wells
as indicated by the rapid tracer breakthrough and substantial total tracer recovery (~30%
* 8%), the microbial communities in all produced fluids were distinct from those in the
injectate. The major taxa in the injectate include the Spirosomaceae and Flavobacteriaceae be-
longing to the Bacteroidetes phylum, the alphaproteobacterial Sphingomonadaceae, the gam-
maproteobacterial Burkholderiaceae and Methylophilaceae, as well as members of the Verru-
comicrobia phylum. In contrast, major taxa in the produced fluids include Nitrosopumilaceae
belonging to Thaumarchaeota; Ignavibacteriales family SR-FBR-L83 (Bacteroidetes phylum);
clostridial families of the Firmicutes phylum, such as Lachnospiraceae, Peptococcaceae, and
Ruminococcaceae; Nitrospirae class Thermodesulfovibrionia; Omnitrophicaeota family
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Ommnitrophaceae; multiple members of the Cand. Patescibacteria; gammaproteobacterial fam-
ilies Acidiferrobacteraceae, Gallionellaceae, Hydrogenophilaceae, Rhodocyclaceae, and Sulfuricel-
laceae; as well as deltaproteobacterial members, such as Desulfobulbaceae and Desulfarcula-
ceae. This visually evident distinction between the injected and produced community
structures is confirmed by the hierarchical clustering results, which identified two major
clades (indicated by the two dashed squares overlaying the dendrogram in Figure 3) made
up of solely injectate communities and solely produced fluids communities, respectively.
Temporally, the injectate communities were quite stable, which is in stark contrast with
the produced communities which changed dramatically with time. The driver behind the
dynamic community structure in the produced fluids was likely the altered groundwater
mixing caused by the changing fracture aperture and/or geometry, as discussed in detail
in [18]. Alpha diversity analysis indicates that overall, communities in the produced fluids
had lower diversity than those in the injectate (Figure 4).

Species Richness Shannon Inverse Simpson
5]
75
4]
50
31
* 25
g7 H
* $ 0

Inj

Pl PB Inj PDT PST Pl PB Infj PDT PST Pl PB

Figure 4. Alpha diversity metrics on the microbial communities in each sample. Left: species rich-
ness (i.e., the total number of unique ASVs observed in each sample); Middle: Shannon index; Right:
inverse Simpson index.

3.3. Trends in "%ASV Ouverlap” Metric Consistent with Trends in Tracer Recovery across
Producing Wells

The microbial communities in the injectate and the produced fluids were further
compared at the finest taxonomic resolution of the ASV level (i.e., differentiation between
sequences that vary by down to one single nucleotide) by Venn diagram analysis. This
method allows any common ASVs shared between the injectate and the produced fluids
to be identified, even if the overlapping ASVs had such small relative abundances that
they did not stand out in the relative abundance plot in Figure 3 and did not contribute
much to the beta diversity analyses either. All sequences detected in each of the injec-
tion/production wells near the date of each tracer campaign (as defined in Table A1) were
included in each Venn diagram analysis (Figure 5). Note that the Venn diagram considers
only the presence/absence of unique ASVs, not their relative abundance.
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Microbial communities near the tracer campaign on:
25 April

2 samples/port
10 samples total

(a)

(b) 1 May (c) 24 July (d) 22 October
2 samples/port 3 samples/port 3 samples/port
10 samples total 15 samples total 15 samples total

Figure 5. Venn diagrams evaluating the number of shared ASVs among different wells near the
tracer campaign on (a) 25 April, (b) 1 May, (c) 24 July, and (d) 22 October. The number of ASVs
shared among all four producing wells are indicated by two asterisks; the number of ASVs shared
among any other four wells are indicated by one asterisk. The sum of all the numbers in each ellipse
represents the total number of unique ASVs detected in this well near (as defined in Table A1) this
tracer campaign.

Venn diagram analyses of the microbial communities in all four tracer campaigns
showed a consistent lack of shared ASVs across all injection/producing wells, as indicated
by the center values of merely two or fewer despite the hundreds to thousands of unique
ASVs detected in each well in each tracer campaign. The number of shared ASVs among
all four producing wells (indicated by two asterisks) is consistently larger than the number
of shared ASVs among any other four wells (indicated by one asterisk). This further high-
lights the distinct injectate communities compared to those of the produced fluids.

To interpret the Venn diagram quantitatively, giving emphasis to the shared ASVs
between injection-production well pairs, we define a “percentage of overlapping ASVs”
metric (abbreviated as “%ASV overlap”). The %ASV overlap is calculated by dividing the
total number of shared ASVs between a certain injection-production doublet (i.e., Inj-PDT,
Inj-PST, Inj-PI, or Inj-PB) by the total number of unique ASVs in Inj, among the microbial
samples near a certain tracer campaign (Figure 6). In other words, this metric represents
the percentage of Inj ASVs that were also detected in each producing well near each tracer
campaign. Overall %ASV overlap denotes the percentage of Inj ASVs that were also de-
tected in any of the producing wells (Figure 6a). Using this method, each of the four Venn
diagrams in Figure 5 gives four values of %ASV overlap along with an overall value,
which reveals additional information on any similarities between communities from each
producing well and those from the injectate. The calculated %ASV overlap metrics near
each tracer campaign are displayed in Figure 7 alongside the single-well tracer recoveries.
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Figure 6. Definition of “%ASV overlap” metric. Overall %ASV overlap denotes the percentage of Inj
ASVs that were also detected in any of the producing wells near a certain tracer campaign (a). %ASV

overlap in PDT/PST/PI/PB denotes the percentage of Inj ASVs that were also detected in PDT (b),
PST (c), PI (d), or PB (e), near this tracer campaign.

(b) 1 May (c) 24 July 32“60/ (d) 22 October
b
30% 30% 30% 5
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Figure 7. Percentage ASV overlap (as defined in Figure 6) in each producing well near the tracer
campaign on 25 April (a), 1 May (b), 24 July (c), and 22 October (d), with tracer recoveries of each
well included alongside for ease of comparison. Stars in the bar charts denote the largest single-well
%ASV overlap or tracer mass recovery near or in each tracer campaign. Values of overall %ASV
overlap, and total tracer recoveries of each tracer campaign are also indicated on each subfigure.

The values of %ASV overlap between the injectate and each producing well remained
small (only 0-6% as shown in Figure 7). However, the relative magnitude of %ASV overlap
among producing wells is roughly consistent with their relative tracer recovery in each
tracer campaign (Figure 8). For example, PDT had the largest C-Dot mass recovery of
17.5% and 11.1% in the 25 April and 1 May tracer campaigns, respectively. The largest
%ASV overlap for microbial samples during the same time period were 6.0% and 5.8%,
and were also from PDT (Figure 8a,b). In the 24 July and 22 October tracer tests, the largest
C-Dot mass recoveries were from PI (32.6% and 26.8%, respectively). The largest %ASV
overlap during that period were, interestingly, also from PI (3.1% and 4.2%, as shown in
Figure 8c,d). Such consistency in relative %ASV overlap with tracer mass recovery is even
true for the wells that had the second-largest tracer recoveries on 25 April (PI), 1 May (PI),
and 22 October (PB), as shown in Figure 8. Cross-plotting %ASV overlap with tracer re-
covery values in each time period reveals a consistent positive correlation in all cases (Fig-
ure 8e-h).
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Figure 8. Trends in %ASV overlap and tracer recovery values across producing wells near the tracer
campaign on 25 April (ae), 1 May (b,f), 24 July (c¢,g), and 22 October (d,h). (a—d) highlight the con-
sistent trends of the two types of data across wells. (e-h) cross-plot the %ASV overlap values (y-
axis) and the tracer recovery values (x-axis) in each time period, showing a positive correlation in
all cases.

4. Discussion

The focus of this study is to compare the conservative tracer data with microbial com-
munity data. We will, therefore, not go into much detail on the interpretation of tracer
breakthrough curves themselves (covered in [28]), or the dynamics of the microbial com-
munities (covered in [18]). The interwell tracer tests conducted at the EGS Collab testbed
are typical examples of the “interwell displacement” operational scenario in a “water-
based” reservoir, as classified earlier in this paper. The rapid, significant tracer break-
through in at least one of the producing wells in all tracer campaigns indicates good hy-
draulic connection with the injection packer interval. Somewhat to our surprise, however,
this months-long, continuous injection of exogenous water (cumulative volume on the
order of 100,000 L as of late-October 2019) into the mesoscale fractured reservoir and the
likely ~30% contribution of the injected water to the produced water (indicated by the
tracer recovery) did not cause the microbial communities in the produced fluids to in-
creasingly resemble those in the injectate. The %ASV overlap metric, on the other hand,
showed trends roughly consistent with the relative recoveries in the tracer tests, although
the absolute values of %ASV overlap remained much lower than the tracer recovery val-
ues. This suggests that a greater hydraulic connection between an injector-producer dou-
blet did contribute to enhanced transport of injectate microorganisms toward the outlet to
some extent. This enhancement, however, was very slight and did not have noticeable
effect on the overall structure of microbial communities in the produced fluids.

4.1. Possible Reasons for the Limited Influence of Injectate Microbes on the Produced Microbial
Community Profile

Groundwaters in deep geological reservoirs are populated with diverse native mi-
croorganisms that acquire energy through chemosynthesis without the need for sunlight
[54,55]. An easy explanation for the distinction between the injected and produced com-
munities is, therefore, that the produced fluids were mostly native groundwater displaced
by the injected water. Native water originated from a distinct environment from the
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injected water and hence carried distinct microbial populations. The conservative tracer
test results, however, suggested that the produced water did consist of a significant frac-
tion of injected water in all four tracer tests (and hence likely throughout the April-Octo-
ber time span). In other words, the substantial volumetric contribution of injected water
to the produced water did not result in the produced communities to resemble those of
the injectate.

4.1.1. Retention of Injectate Microbes in Contrast with Mobility of Produced Microbes

One possible explanation for this phenomenon is cell retention. In fact, significant
cell retainment in porous or fractured media after flow through (usually in the context of
subsurface bioengineering or bioremediation research) has been reported frequently. Pre-
vious bacterial transport experiments through a ~30-m scale fractured, saturated crystal-
line bedrock have observed <4% recovery of injected bacterial culture despite >90% recov-
ery of the conservative reference tracer [56]. Other researchers have observed >99% reten-
tion of injected bacteria in a sandy aquifer [57]. In laboratory-scale studies, cell retention
in sand packs or sandstone cores was frequently reported as well [58-60], and in some
cases, zero bacteria were detected in the outflow [61]. Plugging of pore throats by micro-
bial cells can also occur [62].

At the EGS Collab Experiment 1 testbed, the major flow conduits included a natural
fracture and a hydraulic fracture that intersected each other [18,33,34]. The rest of the for-
mation was either tight rock matrix or sealed natural fractures with negligible permeabil-
ity [18]. The natural fracture had a variable and overall large aperture up to several milli-
meters [1,33]. The hydraulic fracture, with which the injector packer interval intersected
directly, had an estimated aperture below several hundred microns [34]. However, be-
cause fractures in the natural environment have spatially-varying apertures leading to
tortuous flow pathways [63,64], microbial cells in the injectate may have been trapped at
locations where the aperture was smaller than their cell size or where the fracture was
partially closed. Alongside the size exclusion effect, microbial transport through fractures
is additionally affected by the surface chemistry, morphology, and motility of each spe-
cific microbial strain, as well as chemical factors of the mineral surface [56,58]. Injectate
microbes may have been attached to fracture surface sites to which the cell membranes
have good affinity [56,58]. Motile microbes, in particular, may be especially prone to fil-
tration because of their higher tendency to diffuse into the immobile water in small
cracks/pores and get attached [56,65,66].

The potential tendency for introduced microbial cells to be retained in porous/frac-
tured media, on the other hand, highlights the abundant indigenous microbes that did
transport out of the aquifer. A notable category of the produced-fluid members is, inter-
estingly, those with documented ultrasmall body size, for example, members of the phyla
Patescibacteria (also known as the Candidate Phyla Radiation or CPR) and Omnitrophicaeota
(also known as Omnitrophota, Omnitrophica or OP3) [67,68], both of which still lack cul-
turable representatives, yet were found to be prevalent in oligotrophic groundwater en-
vironments worldwide in high abundance [25,67-69]. Among the 50 samples in this study,
members of the Patescibacteria and Omnitrophicaeota phyla were prevalent and constituted
up to 39.3% and 16.1% of the produced communities, respectively. In our recent study
that encompassed the entire 282-day time-series microbial analysis of the EGS Collab Ex-
periment-1 long-term flow test, an Omnitrophicaeota-affiliated ASV alone constituted
35.4% of the entire community in PST at one point [18]. In fact, ultrasmall cells have the
evolutionary advantage that their increased surface-to-volume ratio optimizes the uptake
of sparse nutrients in oligotrophic environments [69,70]. The lack of nutrients, in turn,
further lead to reduction in cell size due to starvation [67,71]. Collectively, our observa-
tions along with past literature suggest that geological media may “select” for ultrasmall
microorganisms by filtration. Future research on reservoir biotechnologies, especially
those that involve injecting microbial cultures into the subsurface expecting microbes to
travel extended distances, such as microbially induced carbonate precipitation (MICP)
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[60,61] and microbial enhanced oil recovery (MEOR) [72], could therefore consider focus-
ing on native microorganisms with ready capabilities to migrate through geological me-
dia.

4.1.2. Survival Difficulty for Exogeneous Microbes

Besides physical retention, the injectate microbes that used to live in a shallow dolo-
mitic aquifer may have difficulty surviving in deep groundwater due to unfitness to sur-
vive in the deep environment (e.g., high salinity, limited oxygen and nutrients, etc.) and
competition with indigenous populations [73]. In fact, a number of field studies have ob-
served the unlikely persistence of allochthonous microbes in groundwater environments
[74-76]. The mean residence time for the C-Dots tracer in this work was several hours
(Figure 2e-h), which might be too short for cell survival issues to matter. However, the
residence time for the injected microbes can be longer than the inert tracer due to attach-
ment to mineral surfaces or diffusion into smaller cracks [56,58,66]. Furthermore, the con-
tinuous input of injectate microbes (i.e., a “step input” as opposed to the “pulse input” of
tracer) justifies considering the residence time of injected microbes (especially those po-
tentially retained and accumulated in the aquifer) to be on the order of months. It is there-
fore possible that some injectate microbes gradually died and ended up as necromass for
the survivors, and that their DNA eventually degraded and hence was not detectable in
the effluent.

4.1.3. Undistinguishable Signal

In our field experiment, conducting microbial sampling is similar to performing
tracer testing, in the sense that they both involved sampling the outflow to measure sus-
pended/dissolved substances therein. However, it is important to recognize that the two
processes are fundamentally different (see summary in Table 2):

e In each tracer test, a chemical substance known to transport conservatively in frac-
tured rocks [37] and with minimal/no background concentration was injected at a
concentration much higher than its detection limit to allow sufficient room for dilu-
tion when flowed through the reservoir: typical strategies for tracer test designs.
Tracer detection in the effluent is specific to the injected compound.

¢ In contrast, on each microbial sampling date, the injectate water and fluids from each
of the producing wells were simply collected into 4-L cubitainers until filled. The
injectate contained hundreds to thousands of microbial species that were heavily di-
luted individually. It was not very likely that the injected exogenous microbes could
transport conservatively (see Section 4.1.1). For any injectate microbes that managed
to arrive at the producing wells, their DNA would be buried in the DNA of indige-
nous microbes when all ASVs were sequenced together.

Table 2. Comparison of injected tracer and injected microbial community in this study.

Injected Tracer Injected Microbial Community
. .. Concentrated single chemi- Hundreds of ASVs injected altogether, indi-
Injection: . . . g
cal species vidual species heavily diluted
. Specific to injected com- Not. sp(?ci.fic to i.njecte.d C(?mmunity; se-
Detection: quencing is inclusive of indigenous commu-
pound .
nity
Background:  Minimal background Background could exist
Transport properties: Known conservativity Unknown and strain-specific

Taken together, the observed distinction between injectate and produced communi-
ties, or in other words, the failure of injectate communities to prevail in the produced
fluids, would seem fairly reasonable.

4.2. Percentage ASV Overlap as a New Indicator for Relative Interwell Connectivity
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Despite the limited influence of injectate communities on the overall structure of pro-
duced fluid communities, there turned out to be subtle but informative trends in %ASV
overlap between Inj and each producing well, as revealed by the Venn diagram analyses.
The absolute values of %ASV overlap between each well pair were generally small (0-
6%). However, the relative values of %ASV overlap among the four injection-production
well pairs (i.e., Inj-PDT, Inj-PST, Inj-PI, and Inj-PB) near each tracer campaign had trends
consistent with the trends in single-well tracer recoveries. We believe the driver behind
such patterns is an increased probability that Inj ASVs will arrive at the better-connected
producing well:

Consider the fraction of Inj ASVs that were also detected in each producing well (i.e.,
%ASV overlap) to comprise of two components: (1) ASVs that naturally existed in both
this producing well and the injectate, and (2) ASVs in Inj that managed to migrate and
arrive at this producing well. The possibility that component one (i.e., ubiquitous species)
existed cannot be excluded. Since ubiquitous species, if present, are likely to be every-
where, here we assume it does not vary much across producing wells. Therefore, the
trends in %ASV overlap would reflect trends in the probability for Inj ASVs to arrive at
each producing well, and therefore could reflect the relative connectivities between the
injection well and each of the producing wells.

Based on consistent observations across the four tracer campaigns described in this
study, we propose the use of %ASV overlap metric as a new indicator for evaluating rel-
ative connectivities among different producers with a given injector. Keep in mind that
the %ASV overlap metric should always be interpreted across producing wells (trends),
rather than focusing on individual values (magnitudes). The magnitudes of the values are
heavily influenced by the total number of unique ASVs in the injectate at the time of sam-
pling, which is the denominator of the equation to calculate the %ASV overlap metric (as
defined in Figure 6). Consequently, unlike classic tracer tests that can be informative for
both single-producer and multi-producer field settings, %ASV overlap metric may only
be informative when multiple producers are involved (i.e., when relative connectivity is
of interest). Another factor to consider is the sequencing workflow. In this study, all sam-
ples were handled using the same sample/data processing protocols, including 16S pri-
mers, sequencing platform, raw data processing parameters, and so on. When the work-
flow varies among sequencing batches, care needs to be taken for such fine-resolution
ASV-level comparisons to account for possible batch effects [2,11]. The %ASV overlap
metric is based on the presence/absence of unique ASVs and does not consider abundance.
Abundance data is subjected to a number of uncertainties, including variations of cell den-
sities and sequencing depth, which is beyond the scope of this study. However, it might
be a direction that deserves future research to further increase the informativeness of this
novel data source.

Practically, microbial sampling to obtain %ASV overlap involves different sampling
design and logistical needs compared with classic tracer testing, as summarized in Table
3. Based on our experience, although performing microbial sampling requires field per-
sonnel to be trained in aseptic sample handling and requires samples to be kept fro-
zen/cold, once protocols were established, the microbial sampling was easily repeated in
the long term. We were able to repeat the microbial sampling roughly weekly throughout
the 10-month flow test (>30 sampling campaigns total, outlined in [18]), and one person
performed the sampling from all five wells each time. In contrast, because tracer tests in-
volved the delineation of a tracer breakthrough curve for every producing well and that
each breakthrough curve typically consisted of 30-50 datapoints, a team of 3—4 people was
usually needed in each tracer campaign to prepare and calibrate the tracer solution, to
sample at high frequency, and to keep samples organized for on-site analysis or transpor-
tation to the laboratory. The sampling strategy may require real-time adjustment based
on on-site measured tracer concentrations to optimize the capture of tracer plume at the
producing wells [28]. Consequently, at least one person with tracer expertise and experi-
ence needs to be onsite to lead the team and make necessary decisions to ensure the



Water 2022, 14, 2921

16 of 22

success of the experiment. We suggest that both classic tracer tests and injector-producer
microbial sampling have their advantages and drawbacks (Table 3). Future studies and
field applications should select which method to adopt based on specific objectives and
available resources.

Table 3. Comparison between tracer test campaigns versus microbial sampling campaigns
throughout the 10-month flow test.

Tracer Test Microbial Sampling
Frequent Infrequent
Sampling: 30-50 samples/well/day One sample/well/day
10 mL/sample 0.5~4 L/sample
3—4 persons (with tracer expert)/campaign 1 person/campaign
Labor intensive Mostly wait time
Logistics: 4 ‘C~room temperature storage -80~-20 C storage
Relatively hard to standardize (<10 campaigns Easily standardized (>30 cam-
done) paigns done)

Peak arrival and recovery: relative connectivities
between an injection well and several production  Relative connectivities be-
Takeaways: wells tween an injection well and

Shape: nuances in flowpath parameters (flow several production wells *
modeling needed)

* 165 PCR primers and sequencing platform should be consistent across all samples compared to
avoid batch effects [2,11].

4.3. Comparison with Similar Geological Systems

In recent years, high-throughput sequencing has been widely used to profile micro-
bial communities in aquatic environments, including inland surface water [77,78],
groundwater [1,12,17,18,79,80], and marine systems [81,82]. This information contributes
to a better understanding of global biogeochemical cycles [11] as well as how animals/hu-
mans interact with the environment [9,83]. Practically, microbial community data can also
be helpful in the management of engineered systems [1,6,8,18,77].

Groundwater reservoirs, in particular, are characterized by substantial spatial heter-
ogeneity in terms of minerology, geochemistry, permeability, flow velocity, and so on
[17,84-86]. Deep aquifers are additionally characterized by stable environmental condi-
tions and hence stable structure of indigenous microbial communities [87] due to lack of
impact from surface hydrological events [88]. In this work, we consider the injection of
industrial water into the deep aquifer to be somewhat analogous to surface recharge
events into shallow aquifers as described in previous studies [19,25]. These shallow aqui-
fer studies observed community succession corresponding to periodic groundwater re-
charge but usually lacked microbial data of the recharge water. Therefore, the direct com-
parison between injected and produced microbiome achieved in this study can provide
new insights into the mechanism behind previously reported patterns as well as the fate
of allochthonous microbes in groundwater systems. However, keep in mind that our field
setting is still markedly different from a shallow aquifer because of the much lower per-
meability of the geological media and the lack of diel/seasonal surface effects.

In the context of engineered geological systems, our field setting is typical of com-
mercial geothermal reservoirs with reinjection, whereby wastewater is injected into the
reservoir for disposal, pressure maintenance, and ultimately sustainable heat extraction
[89]. However, to our knowledge, few studies have profiled the injector/producer micro-
bial communities in such settings. In petroleum reservoirs, interwell displacement (i.e.,
“waterflooding”) is a common practice to displace residual oil and enhance productivity
and has been extensively studied with respect to microbial diversity and metabolism
[5,6,90]. However, hydrocarbon reservoirs are fundamentally different from groundwater
reservoirs as microbial habitats because of the prevalence of organic carbon and the likely
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anthropogenic introduction of chemical additives [6,7,16]. The potential use of injector-
producer microbial profiling for characterizing interwell connectivities in petroleum res-
ervoirs, therefore, is an area that deserves further research.

5. Conclusions and Future Work

In summary, we found that on a one-year timescale, the continuous injection of ex-
ogeneous microbial communities into the deep-underground fractured aquifer did not
cause the overall structure of produced-fluid microbiome to increasingly resemble that of
the injectate, despite the tracer results which suggested significant contribution of the in-
jected water to the produced water. However, the %ASV overlap metric proposed in this
study was able to capture the subtle, increased similarities among highly connected wells
in terms of shared ASVs, revealing trends in relative connectivities between injector-pro-
ducer doublets consistent with conservative tracer test results. Given the unique logistical
advantages of microbial analyses for standardized, repeated implementation, we further
suggest that the combined microbial profiling of injected and produced fluids followed
by %ASV overlap analyses may be a promising new tool for long-term reservoir monitor-
ing. Future work is needed to compare the microbial communities in injected and pro-
duced water in other geological settings. Low-to-moderate temperature geothermal res-
ervoirs with reinjection programs are especially interesting ecosystems to be further ex-
plored. The %ASV overlap metric can be further evaluated in future studies in ground-
water, geothermal, and petroleum reservoirs, or readily applied as a novel means to mon-
itor injector-producer interwell connectivities for subsurface engineering or scientific re-
search purposes.
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Appendix A. Dates of Tracer Test and Microbial Sampling Campaigns

Table A1l. Summary of tracer campaign dates and each tracer campaign’s closest microbial sam-
pling dates. Note that on each microbial sampling date, one microbial sample was obtained from
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each of the five wells (Inj, PDT, PST, PI, and PB). Ten microbial sampling dates with five samples
total per date leads to a total of 50 microbial samples relevant to this study.

Tracer Campaign Date

Microbial Samples Near the Date of This

Campaign
. 24 April
25 April 25 April
1 May
1 May 9 May
18 July
24 July 23 July
1 August
15 October
22 October 22 October
31 October
Appendix B. Quality Assurance of Sequencing Data
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Figure A1l. Rarefaction curves for the microbial sample set based on Shannon and Inverse Simpson
diversity indices. Shannon and Inverse Simpson indices stabilized well before the minimum se-
quencing depth across all samples (7711 ASVs) was reached.
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Figure A2. Cell density from each well estimated from the yield of DNA extractions, displayed as
box (and whisker) plots. The thick black horizontal line within each box denotes the median of the

distribution of the 10 samples from each well. The bounds of the y-axis were selected based on
previously observed cell concentration values in continental subsurface fluids [11].
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