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Abstract: This study presents a low-carbon decision-making algorithm for water-spot tourists, based
on the k-NN spatial-accessibility optimization model, to address the problems of water-spot tourism
spatial decision-making. The attributes of scenic water spots previously visited by the tourists were
knowledge-mined, to ascertain the tourists’ interest-tendencies. A scenic water-spot classification
model was constructed, to classify scenic water spots in tourist cities. Then, a scenic water spot
spatial-accessibility optimization model was set up, to sequence the scenic spots. Based on the
tourists’ interest-tendencies, and the spatial accessibility of the scenic water spots, a spatial-decision
algorithm was constructed for water-spot tourists, to make decisions for the tourists, in regard to
the tour routes with optimal accessibility and lowest cost. An experiment was performed, in which
the tourist city of Leshan was chosen as the research object. The scenic water spots were classified,
and the spatial accessibility for each scenic spot was calculated; then, the optimal tour routes with
optimal spatial accessibility and the lowest cost were output. The experiment verified that the tour
routes that were output via the proposed algorithm had stronger spatial accessibility, and cost less
than the sub-optimal ones, and were thus more environmentally friendly.

Keywords: water-spot tourist; spatial decision-making; k-NN algorithm; scenic water-spot classification;
spatial accessibility; low-carbon and environmental protection

1. Introduction

Water-spot tourism is an important part of tourist activities, in which hydrophilic
behaviors and related activities are the main tourism content. The main function of water-
spot tourism is scenic water-spot traveling and sightseeing. The hydrophilic psychology
of tourists has always made water tourism the focus of tourism research, in which the
spatial decision-making of the water-spot tourists plays a very important role. Providing
high-quality spatial decision-making services for tourists is key to improving the quality
of water-spot tourism [1,2]. Tourists need to make a traveling plan before arriving at the
tourist city, but the tourists’ subjective awareness of the tourist city is often insufficient: they
usually do not know enough about the feature-attributes and spatial attributes of the scenic
water spots in the city. Firstly, the degree of awareness, regarding the feature-attributes of
the scenic water spots, determines whether the selected scenic spots can meet the tourists’
expectations, and helps them to obtain the best traveling experience. Individual differences
cause tourists to have discrepant feature-attributes awareness and expectations, while
different scenic water spots also have different feature-attributes, which means that the
same scenic water spot can differ greatly in its ability to satisfy the interests of the tourists.
Secondly, the degree of awareness, in regard to the spatial attributes of scenic water spots,
determines the quality of the tourists’ spatial decision-making, which directly affects the
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cost and the overall experience of the tour, and ultimately affects the tourists’ satisfaction.
Therefore, in view of tourists’ awareness, in regard to the feature-attributes and spatial
attributes of scenic water spots, studying the spatial decision-making method of water
tourism is key to improving tourists’ satisfaction [3,4].

Tourism activities in and around scenic water spots are not limited to appreciation of
the scenery, but also include mountaineering, photography, cruises, diving, tasting aquatic
products, swimming and so on. If tourists have insufficient knowledge of the tourist city’s
scenic water spots, it is difficult for them to judge whether the scenic spots can meet their
interests [5]. Therefore, when constructing a spatial decision-making model for tourists, it
was necessary to research the tourists’ interest-tendencies, in regard to the feature-attributes
of the scenic water spots. The method deemed feasible, for the gathering of original data,
was to collect details about favorite scenic water spots that the tourists had previously
visited. These original data were used to set up a scenic water spot classification model,
based on k-NN mining. The model was used to classify the scenic spots by their features
and attributes, and to ascertain the interest-tendencies of tourists in regard to the scenic
water spots. Based on this model, the tourist destination city’s scenic water spots were
studied, to determine their categories, so as to obtain the functional categories for each
scenic water spot, and thus satisfy the tourists’ interests [6]. The spatial accessibility of
the scenic water spots had an important impact on the tourists’ spatial decision-making,
in regard to the problems associated with the spatial attributes of the scenic water spots.
The stronger the spatial accessibility of a scenic water spot, the higher was the tendency,
from the outset, for the tourists to visit that scenic spot, and vice versa. The factors that
determined the spatial accessibility of the scenic water spots were mainly the maturity
of the city roads, traveling distance, and traveling time. Therefore, as to the results of
the research into features and attributes, and the classification of the scenic water spots,
studying the spatial accessibility model of scenic water spots based in tourist cities is key
to providing high-quality spatial decision-making for tourists.

As to the background of the problem, Wang et al. [7] analyzed the spatial accessibility
of A-level scenic spots in Ganzi Prefecture, Sichuan province, and studied their spatial
distribution characteristics, by using the research methods of nuclear density, imbalance
index and accessibility. Xu et al. [8], based in the highway network in Qinghai province,
analyzed the accessibility level and spatial pattern of scenic spots in Qinghai province, as
well as the factors causing the differences in highway-traveling-time accessibility among
scenic spots. Yang et al. [9] studied the spatial distribution pattern and highway accessibility
of red villages in Hunan province, and put forward countermeasures and suggestions for
optimizing the accessibility of red villages, and for promoting the development of red
tourism. Dong et al. [10] improved the gravitational field model, and used the model to
study the spatial accessibility of park squares in Wuhan. Li et al. [11] used spatial syntax
and network analysis to study the spatial accessibility of scenic agricultural leisure spots in
the suburbs of Wuhan. Taking Xi’an as an example, Wang et al. [12] studied the impact of
scenic spot accessibility on the flow of tourists at different traveling times, and analyzed the
influencing factors. Luo [13] measured and analyzed the accessibility of scenic spots in the
Lushan tourist area, and put forward optimization suggestions. By analyzing the existing
research, several problems were identified: firstly, research on the spatial accessibility of
scenic spots was limited to the level of spatial analysis—mostly analysis of the spatial
distribution of scenic spots—and did not take into account spatial accessibility as a factor in
tourist spatial decision-making modeling; secondly, findings on spatial accessibility had not
been used in tour-route planning, or in the practical application of serving tourists; thirdly,
research on the features and spatial attributes of scenic spots was insufficient: locations
and road network structures had been analyzed, but research on the attributes of the scenic
spots had been neglected. Thus, it had proven difficult to provide high-quality spatial
decision-making services for tourists.

In accordance with the above analysis, this study devised a low-carbon, decision-
making algorithm for water-spot tourists, based on the k-NN spatial accessibility optimiza-
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tion model. The study established a training set for scenic water spots that the tourists had
visited, and set up a feature-attributes classification model for scenic water spots in tourist
cities, based on the training set; the study used the mined knowledge from the scenic-spot
classification to satisfy tourists’ interests, and to establish feature-attributes tendencies [14].
The model mined the scenic water spots’ spatial attributes, by integrating spatial accessibil-
ity and then obtaining a spatial-accessibility optimization model for each classification’s
scenic spots. In accordance with the spatial-accessibility optimization model, combined
with the tourists’ traveling needs and daily schedules, a spatial decision-making algorithm
model on water-spot tour routes was constructed, which could provide optimal tourism
spatial decisions and the lowest costs for tourists [15]. When tourists chose the tour routes
with the lowest cost for sightseeing, it effectively reduced energy consumption and vehicle
exhaust emissions, thus realizing low-carbon and environmentally friendly traveling.

2. Methodology

In water-spot tourism, when tourists choose a city as the tourist destination, they
should first confirm the scenic water spots to be visited. The scenic water spots should fulfil
the interests of tourists, and have optimal spatial distribution [16–20]. Thus, the features
and attributes of scenic water spots must conform to the tourists’ interests—that is: by
knowledge-mining the scenic water spots that tourists have visited, a classification model
on the feature-attributes of scenic spots can be obtained, to function as a database of tourists’
interest-tendencies. The interest-tendencies model is used to classify the scenic water spots
of the tourist city, and then a classification model for the scenic water spots is constructed.
In order to ensure that the selected scenic water spots have the optimal spatial distribution,
a spatial accessibility model for the scenic water spots in the tourist city is set up, and then
the spatial accessibility intensity for each scenic spot is calculated [21–26]. Combining the
classification of scenic water spots and the spatial accessibility intensities, scenic water
spots that optimally match the tourists’ interests, and have the strongest spatial accessibility
intensities, can be recommended for tourists, and then the tourist spatial decision-making
model is set up. Figure 1 is a flow diagram of the methodology in this study.
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Figure 1. The flow diagram of the methodology in this study.

2.1. Scenic Water Spot Classification Model Based on k-NN Mining

As to the issue of matching with tourists’ interest-tendencies, firstly, a scenic water-spot
classification model is constructed, based on k-NN mining, to determine the classification
for the scenic water spots in tourist cities. The purpose of constructing the model is to
obtain the scenic-spot classification, based on the favorite scenic spots that the tourists
have visited, then to study the scenic water spots of the tourist city, and ascertain the
interest-tendencies in regard to the scenic water spots of the tourist city, in view of the
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individual preferences and scenic-spot classifications, so as to confirm each scenic water
spot’s capacity to satisfy the tourists’ interests. The first set of definitions is defined, and
the scenic water spot classification model is constructed, below.

Definition 1. The element of scenic water-spot classification set S(1, i1), and the scenic water spot
initial set S1

(1). Tourists randomly select mnumber of favorite scenic spots, with different features
and spatial attributes, from the scenic water spots they have visited, as the basic elements for setting
up the classification model; they define the selected scenic water spots as the elements S(1, i1) of
the classification set, 0 < i1 ≤ m, i1, m ∈ N. In accordance with the number m of elements
S(1, i1), a matrix S1

(1) with dimension (
⌊

m1/2
⌋
+ 1)× (

⌊
m1/2

⌋
+ 1) is constructed, to store the

set elements, which is defined as the scenic water spot initial set. The storage method of elements
in the initial set S1

(1) is that the element S1
(1)(x, y) footmark y is increased by column, and the

footmark x is increased by row.

Definition 2. Scenic water-spot classification C(u) and scenic water-spot classification set S1
(2).

Confirm the classification for the m number of scenic water spots, and define the classification that a
scenic water spot belongs to, as the scenic water-spot classification C(u), 0 < u ≤ p, u, p ∈ N, p is
the maximum number of the classification C(u).

According to the definition, the classification C(u) meets the following conditions:

(1) When S(1, i1) ∈ C(u), there should be S(1, i1) /∈ C(¬u);
(2) Arbitrary ∀C(u) 6= ∅;

(3) ∀C(u) ∩ ∀C(¬u) = ∅, C(1) ∪ C(2) ∪ ...∪ C(p) = S1
(1);

(4) The number of the classification C(u) is defined as q(u). It stands for the element
S(1, i1) number in the No. u classification C(u).

In order to set up the scenic water-spot classification model, it is necessary to optimize
set S1

(1). According to the element S(1, i1) number q(u) of each classification C(u), a matrix

S1
(1) with dimension p×maxq(u) is constructed to store the optimized set elements S(1, i1),

which is defined as the scenic water-spot classification set. The storage method meets the
following conditions:

(1) The No. u row of S1
(2) stores the elements S(1, i1) of the No. u classification C(u);

(2) The storage method for the arbitrary No. u row in the matrix is that the element
S1

(2)(u, y) footmark y is increased by column;
(3) If the element S(1, i1) number q(u) of the current C(u) row meets q(u) < maxq(u), the

latter maxq(u)− q(u) number of elements are set 0;
(4) The rows or the columns of S1

(2) are nonlinear-correlated; the row rank meets
rank(S1

(1))ro = p; the column rank meets rank(S1
(2))co = maxq(u).

Definition 3. The to-be-classified scenic water spot element S(2, i2) and the scenic water-spot
classification matrix S2. In the tourist city, the n number of scenic water spots that will be classified
are defined as the to-be-classified scenic water spot element S(2, i2), 0 < i2 ≤ n, i2, n ∈ N. After
classifying by the set S1

(2), the classified scenic water spots S(2, i2) are stored in a matrix S2, which
is defined as the scenic water-spot classification matrix. In each classification C(u), the number
of element S(2, i2) is t(u). Thus, the dimension of the matrix S2 is p×maxt(u). The elements
S2(x, y) of S2 and the storage method meet the following conditions:

(1) The No. u row of S2 stores the elements S(2, i2) of the No. u classification C(u);
(2) The storage method for the arbitrary No. u row in the matrix is that the element

S2(u, y) footmark y is increased by column;
(3) If the element S(2, i2) number t(u) of the current C(u) row meets t(u) < maxt(u), the

latter maxt(u)− t(u) number of elements are set 0;
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(4) The rows or the columns of S2 are nonlinear-correlated; the row rank meets rank(S2)ro =
p; the column rank meets rank(S2)co = maxt(u).

Definition 4. Scenic water-spot feature-attribute k(i), feature-attribute vector k and feature-
attribute normalization parameter δ(k(i)). Each scenic water spot has features that are different from
others. The kind of feature that a scenic water spot has is defined as the scenic water-spot feature-
attribute k(i). Set that a scenic water spot has w number of feature-attributes k(i), 0 < i ≤ w,
i, w ∈ N. Set up a 1 × w dimension vector and store the w number of feature-attributes k(i)
in the sequence of footmark i. The formed vector is defined as the feature-attribute vector k. In
the quantification process of k(i), as attributes k(i) have different value ranges, in order to make
each k(i) have the same impact in knowledge-mining the tourists’ interests, the feature-attribute
normalization parameter δ(k(i)) is introduced. When k(i) ∈ (0, 1], δ(k(i)) = 1; when k(i) ∈ (1, 10],
δ(k(i)) = 0.1; when k(i) ∈ (10,+∞), δ(k(i)) = 0.01. According to the definition, k(i), k and δ(k(i))

are all suitable for S(1, i1) and S(2, i2).

Definition 5. k-NN element feature distance d(S(1,i1),S(2,i2)). The neighborhood relationship
between S(1, i1) and S(2, i2) is determined by the k-NN element feature distance d(S(1,i1),S(2,i2)).
According to the Definition 4, the neighborhood relationship between S(1, i1) and S(2, i2) could
be calculated by the Euclidean distance. Vector elements are noted as k(1, i) and k(2, i); i stands
for the No. i attribute of vector k. According to the definition, the k-NN element feature distance
d(S(1,i1),S(2,i2)) is constructed as Formula (1).

d(S(1,i1),S(2,i2)) = Sqrt
w

∑
i=1

[
δ(k(i))(k(1,i) − k(2,i))

]2
(1)

According to the above definitions, the scenic water-spot classification algorithm,
based on k-NN mining, is constructed as follows. Figure 2 shows the modeling process of
the scenic water-spot classification algorithm, based on k-NN mining.
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Figure 2. The modeling process of the scenic water-spot classification algorithm, based on
k-NN mining.

Input: m number of S(1, i1), n number of S(2, i2), the set S1
(2).

Output: Matrix S2.
Step 1: Initialize a transition matrix ∆S1

(2) with the same dimension as S1
(2); the

dimension is p×maxq(u).
Step 2: Calculate the feature distance d(S(1, i1), S(2, 1)) between the No.1 element

S(2, 1) and the set data, traverse i1 in (0, m];
Sub-step 1: Calculate the feature distance d( between the element S(2, 1) and the No.1

row No.1 column element S(1, 1) of S1
(2)(1, 1) in S1

(2); store it in the No.1 row No.1 column
element ∆S1

(2)(1, 1) of ∆S1
(2);
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Sub-step 2: Calculate the feature distance d(S(1,2),S(2,1)) between the element S(2, 1)

and the No.1 row No.2 column element S(1, 2) of S1
(2)(1, 2) in S1

(2); store it in the No.1
row No.2 column element ∆S1

(2)(1, 2) of ∆S1
(2);

Sub-step 3: Traverse i1 ∼ (0, m], in line with the method of sub-step 1~2; calculate the
feature distance d(S(1,i1),S(2,1)) between the element S(2, 1) and the No. x row No. y column

element S(1, i1) of S1
(2)(x, y) in S1

(2); store it in the No. x row No. y column element
∆S1

(2)(x, y) of ∆S1
(2).

Step 3: Confirm the k number of the nearest neighborhood element S(1, i1) for k-NN
mining. Search the distance values d(S(1, i1), S(2, 1)) in ∆S1

(2); note the counter for the
classification C(ui) as count(C(ui)) and the total number as count(C(u)).

Sub-step 1: Initialize the counter count(C(u)) = 0, 0 < u ≤ p, u, p ∈ N;

Sub-step 2: Starting from the element ∆S1
(2)(1, 1), traverse all elements ∆S1

(2)(x, y) in
the sequence of footnote x and y. Find the global minimum value mind(S(1, i1), S(2, 1));
note its row number x ∼ ui and the column number y.

Iterate count(C(ui)) = count(C(ui)) + 1, count(C(u)) = count(C(u)) + 1.

Sub-step 3: Search the arbitrary element ∀∆S1
(2)(x1, y1) ∼ d(x1, y1) and judge:

(1) Other than the element ∆S1
(2)(x, y) with mind(S(1, i1), S(2, 1)), if there is no ¬∆S1

(2)(x1,
y1)∼¬ d(x1, y1) that makes ¬d(x1, y1) < d(x1, y1), the searching ends. Note the
row number x ∼ ui and column number y of ∀∆S1

(2)(x1, y1) ∼ d(x1, y1). Iterate
count(C(ui)) = count(C(ui)) + 1, count(C(u)) = count(C(u)) + 1.

(2) Other than the element ∆S1
(2)(x, y)with mind(S(1, i1), S(2, 1)), if there is a ¬∆S1

(2)(x1, y1)
∼¬ d(x1, y1) which makes ¬d(x1, y1) < d(x1, y1), continue searching until the
condition is not tenable. Output the current row number x ∼ ui and column
number y of ∀∆S1

(2)(x1, y1) ∼ d(x1, y1). Iterate count(C(ui)) = count(C(ui)) + 1,
count(C(u)) = count(C(u)) + 1.

Sub-step 4: Judge the counter: (1) If count(C(u)) < k, turn back to Sub-step 3 and
continue searching; (2) If count(C(u)) = k, the searching ends. Output the noted k number

of ∀∆S1
(2)(x1, y1), related elements S(1, i1) and feature attributes d(S(1, i1), S(2, 1)).

Step 4: Iterate to output count(C(ui)), 0 < ui ≤ p, ui, p ∈ N. Traverse to search the
maximum number in count(C(ui)). The related C(ui) is the classification that the element
S(2, 1) belongs to. Store S(2, 1) into the No. ui row No.1 column in S2.

Step 5: Turn back to the above Step 2~Step 4, continue calculating the feature distance
d(S(1, i1), S(2, i2)) between the No. i2 element S(2, i2) and the training set data, traverse i1
in (0, m], i2 in (0, n]. Calculate the classification C(ui) for S(2, i2) and store S(2, i2) into the
No. ui row No. y column in S2. When search till i2 = n, output the matrix S2.

2.2. Scenic Water Spot Spatial-Accessibility Optimization Model Based on Classification Matrix

In the study of water-spot tourism, the meaning of ‘spatial accessibility’ is described
on two levels: the first level is the accessibility between the selected starting point of the
tourists, when they arrive at the tourist city, and each scenic water spot; the second level
is the accessibility among the scenic water spots in the city. Both of these factors play an
important role in the tourists’ spatial decision-making. From the perspective of knowledge-
mining tourists’ interests, the classification matrix classifies the feature-attributes of scenic
water spots. The matrix reflects the capacities of different scenic water spots to satisfy the
tourists’ interests. The process of traveling in the city is a series of activities in geographical
space. Before the tourists arrive at the tourist city, the system first recommends the best
scenic water spots for the tourists [27–31]. The optimization degree of the scenic water
spots is reflected on two levels: the first level is optimal, in satisfying the tourists’ interests;
the second level has optimal accessibility in the tourism space. The classification matrix
of the scenic water spots satisfies the optimal conditions of the tourists’ interests, while
the spatial accessibility between the tourists’ starting points and the scenic water spots,
and the spatial accessibility among the scenic water spots, meet the optimal conditions of
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tourist spatial accessibility. Tourists travel in a city according to the planned route, which
involves the spatial accessibility between the starting point and the scenic spots, and among
each scenic spot. Therefore, in addition to satisfying the tourists’ interests, the expense
is also a matter of concern for tourists. The aim of tourist spatial decision-making is to
minimize the expense of the tour route, on the premise of satisfying the tourists’ interests. In
accordance with the above qualitative analysis of the scenic water spot spatial-accessibility
optimization, an optimization model of tourist spatial accessibility is constructed, based
on the classification matrix of scenic water spots. Several scenic water spots with the best
spatial accessibility are extracted from the ones that satisfy the tourists’ interests, and these
are set as the important elements of tourist spatial decision-making, in order to plan the
spatial tourist route with the lowest cost for tourists [32–35]. The second set of definitions
is proposed, and the spatial-accessibility optimization model is constructed, below.

Definition 6. Starting distance accessibility factor λ(1). In scenic water spot classification matrix
S2, tourists start from the point A and visit several scenic spots S(2, i2); the process forms an
unidirectional path A − S(2, i2) in the tourism space. The road-traveling distance of the path
A− S(2, i2) is noted as d(A− S(2, i2)), unit: km. The reciprocal of the road-traveling distance of
the path A− S(2, i2) is defined as the starting-distance accessibility factor, λ(1), shown in Formula
(2). The factor λ(1) reflects the spatial-accessibility intensity between the starting point and a scenic
spot. Thus, the higher the factor λ(1) value, the stronger the spatial-accessibility intensity of the
starting point A in relation to the scenic water spot S(2, i2); the lower the factor λ(1) value, the
weaker the spatial-accessibility intensity of the starting point A in relation to the water scenic spot
S(2, i2). The factor λ(1) value changes with the location of the starting point A. As different tourists
choose different starting points, the factor λ(1) should be a dynamic function.

λ(1) =
1

d(A− S(2,i2))
(2)

Definition 7. Average traveling distance accessibility factor λ(2). In the research area S2, the
average traveling distance between a certain scenic water spot S(2, i2) and other scenic water spots
S(2,¬ i2) is the standard by which to value the geographic spatial accessibility of S(2, i2), shown

in Formula (3). In the formula, the
¯

D represents the average traveling distance between a certain
scenic water spot S(2, i2) and other scenic water spots S(2,¬ i2). The higher the factor λ(2) value,
the stronger the globally geographic spatial accessibility of S(2, i2) in the research range; the lower
the factor λ(2) value, the weaker the globally geographic spatial accessibility of S(2, i2) in the
research range.

¯
D =

n
∑

¬i2=1
d(S(2,i2) − S(2,¬i2))

n
, λ(2) = 1/

¯
D (3)

Definition 8. The weighted average accessibility factor λ(3). In order to measure the average
accessibility intensity of the starting distance accessibility and the globally geographic spatial
accessibility, the weighted average accessibility factor λ(3) is introduced, shown in the Formula (4).
The weighted average accessibility factor reflects the comprehensive accessibility of the scenic water
spot S(2, i2), and it is the critical standard by which to recommend scenic water spots. The stronger
the factor λ(3) value, the stronger the impact of the water scenic spot S(2, i2) on the tourism spatial
decision-making; the weaker the factor λ(3) value, the weaker the impact of the water scenic spot
S(2, i2) on the tourism spatial decision-making.

λ(3) =
λ(1) + λ(2)

2
(4)
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Definition 9. Scenic water spot accessibility optimization matrix S2
opt. Based on the output scenic

water spot classification matrix S2, the matrix S2
opt with the same dimension p×maxt(u) is set

up, to store the scenic water spots with the optimized spatial accessibility. The matrix is defined as
the scenic water spot accessibility optimization matrix S2

opt. In the matrix, an arbitrary row stands
for one classification C(u). The number of element S(2, i2) in C(u) is t(u). The element S2

opt(x, y)
of S2

opt and the storage method meet the following conditions:

(1) The No. u row of S2
opt stores the elements S(2, i2) of the No. u classification C(u);

(2) The storage method for the arbitrary No. u row in the matrix is that the element
S2

opt(u, y) footmark y is increased by column;
(3) If the element S(2, i2) number t(u) of the current C(u) row meets t(u) < maxt(u), the

latter maxt(u)− t(u) number of elements are set 0;
(4) The rows or the columns of S2

opt are nonlinear-correlated; the row rank meets
rank(S2opt)ro = p; the column rank meets rank(S2

opt)co = maxt(u).

In accordance with the above analysis and definitions, combining with the matrix S2,
factor λ(1), λ(2) and λ(3), the scenic water spot spatial-accessibility optimization algorithm,
based on the classification matrix, is constructed as follows. Figure 3 shows the modeling
process of the spatial-accessibility optimization algorithm. In the output matrix S2

opt,
the storage method for each row of elements follows the descending order of the spatial-
accessibility intensity.
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Figure 3. The modeling process of the scenic water spot accessibility optimization matrix S2
opt.

Input: n number of elements S(2, i2), matrix S2.
Output: Matrix S2

opt.
Step 1: Confirm the starting point A, spatial coordinates (l, B) of the scenic water

spots S(2, i2). Initialize the matrix S2
opt as an empty matrix, S2

opt = 0;
Step 2: Set up the spatial-accessibility optimization model for the classification C(1).

Calculate the accessibility factors of S2(1, 1) ∼ S(2, i2).
Sub-step 1: Extract the first row C(1) element S(2, i2) in the S2, and note the element as

S2(1, y) ∼ S(2, i2);
Sub-step 2: Take the first element S2(1, 1) ∼ S(2, i2) of C(1), search d(A − S(2,i2))

through the spatial coordinates (l, B) of the S(2, i2). Then calculate the factor λ(1,1). Search
the d(S(2,i2) − S(2,¬i2)) between S(2, i2) and other elements S(2,¬ i2) in S2, i2 ∼ (0, n].
Calculate the factor λ(2, 1). Based on the factors λ(1, 1) and λ(2, 1), calculate the factor
λ(3, 1) of S(2, i2).

Step 3: Calculate the accessibility factors of S2(1, 2) ∼ S(2, i2) and make comparison.
Sub-step 1: Take the second element S2(1, 2) ∼ S(2, i2) of C(1), search d(A− S(2,i2))

through the spatial coordinates (l, B) of S(2, i2). Calculate the factor λ(1, 2). Search the
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d(S(2,i2)− S(2,¬i2)) between S(2, i2) and other elements S(2,¬ i2) in S2, i2 ∼ (0, n]. Calculate
the factor λ(2,2). Based on the factors λ(1,2) and λ(2,2), calculate the factor λ(3,2) of S(2, i2).

Sub-step 2: Compare λ(3,1) with λ(3,2):

(1) If λ(3,1) > λ(3,2), the spatial accessibility of S2(1, 1) ∼ S(2, i2) is stronger than that of
S2(1, 2) ∼ S(2, i2), store S2(1, 1) ∼ S(2, i2) scenic water spot in the element S2

opt(1, 1)
of the first row C(1) in S2

opt; store S2(1, 2) ∼ S(2, i2) scenic water spot in the element
S2

opt(1, 2) of the first row C(1) in S2
opt.

(2) If λ(3, 1) < λ(3, 2), the spatial accessibility of S2(1, 2) ∼ S(2, i2) is stronger than
that of S2(1, 1) ∼ S(2, i2), store S2(1, 2) ∼ S(2, i2) scenic water spot in the element
S2

opt(1, 1) of the first row C(1) in S2
opt; store S2(1, 1) ∼ S(2, i2) scenic water spot in

the element S2
opt(1, 2) of the first row C(1) in S2

opt.

Step 4: Traverse the column element of y ∼ (3, t(u)], and calculate the accessibility
factors λ(3,y) of S2(1, y) ∼ S(2, i2) and make comparison.

(1) Search the maximum value in λ(3,y), y ∈ (0, t(u)]; store the related scenic water spot
into S2

opt(1, 1);
(2) Search the second maximum value in λ(3,y), y ∈ (0, t(u)]; store the related scenic

water spot into S2
opt(1, 2);

(3) Continue searching λ(3,y) in the descending order, and store them into S2
opt(1, y).

When y = t(u), the searching ends.
(4) The searching process of the first row in S2

opt is completed; turn to Step 5.

Step 5: In line with the method from the Step 2 to Step 4, the spatial-accessibility
optimization model of C(u) is constructed, traversing u ∼ (1, p]. When u = p, the searching
ends, and the matrix S2

opt is constructed.

2.3. Low-Carbon Decision-Making Algorithm for Water-Spot Tourists, Based on the k-NN
Spatial-Accessibility Optimization Matrix

The purpose of the scenic water spot accessibility optimization matrix S2
opt is to rank

the scenic water spots that satisfy the tourists’ interests in order of accessibility intensity,
and to recommend the scenic water spots that satisfy the tourists’ interests and have the
best spatial accessibility for tourists. From the perspective of spatial decision-making, after
tourists choose starting point A and select the scenic water spot classifications C(u), the
system recommends v number of scenic water spots with the best spatial accessibility in
the matrix S2

opt classification C(u), and the tour route composed of these points has the
best spatial accessibility. From the starting point A, and v number of scenic water spots
distributed in the geographical space, the tourists start from A and visit the v number
of water scenic spots S(2, i2) in a certain time. The main factors to be considered are
transportation mode, traveling-distance cost, traveling-time cost and traveling-fee cost.
These factors have an especially great impact on tourist spatial decision-making when
the scenic water spots are distributed within the administrative area of a tourist city, and
cover a large area [36–39]. Consequently, making proper tourist spatial decisions, based
on scenic water spots, and providing optimal routes for tourists, are important ways to
maximize tourists’ satisfaction. Therefore, when setting up the spatial decision-making
algorithm for water-spot tourists, the following constraints should be considered: (1) the
spatial distribution of the starting point A and v number of scenic water spots; (2) the
transportation mode. When the research area is relatively broad—such as the whole city’s
administrative area—the modes of self-driving and taking the public bus are usually used;
(3) the cost of road-traveling distance between points (unit: km), including national road,
provincial road and township road; (4) the traveling-time cost of road movement between
points (unit: h); (5) the fee-cost of traveling between points (unit: yuan), such as the fee
for the car gasoline, or the fee for taking the public bus. In accordance with the above
qualitative analysis of spatial decision-making for water-spot tourists, the research point is
transformed into planning the tour route with the lowest cost consumption between the
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nodes with a certain spatial distribution—which is affected by constraints (1)~(4)—and
providing feasible spatial decision-making schemes for water-spot tourists. As to the
description of the research point transformation, a third set of definitions are proposed, and
a spatial decision algorithm for water-spot tourism is constructed, below. In the definition,
and x stand for the different scenic water spots S(2, i2).

Definition 10. Tourist spatial decision influence factor ε(i, j)(r) and the normalization factor
τ(i, j)(r). In the process of visiting the v number of scenic water spots S(2, i2) from the starting
point A, a certain traveling-cost expense will be produced, due to the influence of transportation
mode, road conditions, traveling distance, traveling time and traveling-fee cost. The factor that
affects the expenses of the tour is defined as the tourism spatial decision influence factor ε(i, j)(r);
i represents the interval number between x and y; j represents the number to distinguish the
factors; r represents the transportation mode; r = 1 is self-driving and r = 2 is taking the public
bus. The definitions of the factors are proposed, respectively: (1) j = 1 represents the traveling-
distance cost (unit: km) generated by moving from one scenic water spot to another; (2) j = 2
represents the traveling-time cost (unit: h) produced by moving from one scenic water spot to
another; (3) j = 3 represents the traveling-fee cost (unit: yuan) of moving from one scenic water
spot to another. When the tourists choose different transportation modes, the influence factors
are different. Each influence factor is in different orders of magnitude. In order to ensure that
it has the same impact on the cost of spatial decision-making, a normalization factor τ(i, j)(r) is
introduced. When ε(i, j)(r) ∈ (0, 1], τ(i, j)(r) = 1; when ε(i, j)(r) ∈ (1, 10], τ(i, j)(r) = 0.1; when
ε(i, j)(r) ∈ (10,+∞), τ(i, j)(r) = 0.01.

Definition 11. Spatial decision-making section cost function ∆ f(i)(x, y) and spatial decision-
making cost function f (x, y). In the process of moving from one scenic water spot x to another
scenic water spot y, the tourists travel along the roads in the city administrative area, resulting
in distance costs, time costs and fee costs. The traveling-cost function between x and y—which is
formed by the iteration procedure of the factors ε(i, j)(r) and τ(i, j)(r)— is defined as the spatial
decision-making section-cost function ∆ f(i)(x, y), as shown in Formula (5). The whole process, of
the tourists’ visiting the v number of scenic water spots from the starting point, includes v number
of road sections. The total cost function of the tour routes generated by the accumulation of all
sections’ functions ∆ f(i)(x, y) is defined as the spatial decision-making cost function f (x, y), as
shown in Formula (6).

∆ f(i) =
3

∑
j=1

ε(i, j)(r)τ(i, j)(r) (5)

f (x, y) =
v

∑
i=1

3

∑
j=1

ε(i, j)(r)τ(i, j)(r) (6)

Definition 12. Tourist spatial decision-making 2− opt dynamic vector F. The process of visiting
v number of scenic water spots S(2, i2), from the starting point A, will form an integrated route.
When the traveling sequence changes, the route will change too. In geographic space, the scenic
water spots have spatial attributes. Map the scenic water spots on to a one-dimensional number
axis, and form vector F, to randomly store scenic water spots. The vector has the function of
2− opt dynamic operation. This vector is defined as the tourist spatial decision-making 2− opt
dynamic vector. Figure 4 shows the mapping process to form the vector F. The vector F meets the
following conditions:
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(1) The F dimension is 1× (v + 1), the row rank is rank(F)ro = 1, and the column rank is
rank(F)co = v + 1;

(2) The first element of F(1) stores the starting point A, and it is not involved in the
2− opt algorithm;

(3) From the second element to the No. v + 1 element, they are used to store the v number
of scenic water spots S(2, i2);

(4) Arbitrary two elements ∀F(i) and ∀F(j) in the vectors F(2) ∼ F(v+1) can operate 2− opt
dynamic algorithm, i, j ∈ (1, v + 1].

Vector F represents the tour sequence in the tourism spatial decision-making. When
the scenic water spots are stored in the different elements F(i) in F, they will form different
tour routes, relating to different tourist spatial decision-making results. In the vector F,
the traveling cost between arbitrary elements ∀F(i) and ∀F(j) relates to the spatial decision-
making section-cost function ∆ f(i)(x, y). One vector F, formed by one arbitrary 2− opt
dynamic algorithm, relates to one spatial decision-making cost function f (x, y).

Definition 13. Optimal peak value storage vector M. When the 2− opt dynamic algorithm is
operated on the vector F, it forms a new tour route. Each tour route relates to one spatial decision-
making function f (x, y). Traverse all 2− opt dynamic operations for the vector F, and generate
all the feasible tour routes. Store the optimal tour routes with the cost function f (x, y) into 1× a
dimension vector M; this vector is defined as the optimal peak-value storage vector. The vector is
generated by the combination of the 2− opt dynamic algorithm and the hill-climbing algorithm.
The vector M meets the following conditions:

(1) The dimension is 1 × a, the row rank is rank(M)ro = 1, and the column rank is
rank(M)co = a;

(2) In the process of the algorithm, the function f (x, y) values are dynamically stored,
and the finally stored values are the optimal a number of f (x, y).

According to the above definitions and analysis, the decision-making algorithm for
water-spot tourists, based on the spatial-accessibility optimization matrix, is constructed
as follows. Figure 5 shows the spatial decision-making algorithm process for water-spot
tourists, combined with the 2− opt dynamic algorithm and the hill-climbing algorithm.
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Input: Matrix S2
opt. Tourists choose classifications C(u), the number v of the scenic

water spots to be visited, the transportation modes r.
Output: Vector M.
Step 1: Based on S2

opt, C(u) and v, the system recommends the optimal scenic water
spots in each C(u) and accumulates to the number v; Initialize F = 0, M = 0;

Step 2: Confirm the starting point A, store it in the No.1 element F(1) of F. Randomly
store the recommended v number scenic water spots S(2, i2) in the No.2 to No. v + 1
elements F(2) ∼ F(v+1), get the initialized vector F0.

Step 3: Based on the randomly chosen transportation mode r in each road section,
calculate the tourist spatial decision influence factor ε(i, j)(r) and the normalization factor
τ(i, j)(r) for each section of scenic water spot ∀S(2, i2) and ∀S(2,¬ i2). Then calculate each
section’s function value ∆ f (x, y).

Step 4: Calculate f (x, y), initialize the full ranked vector M.
Sub-step 1: Calculate the f (x, y) of the initialized vector F0; store the function value

into No.1 element M(1) of M;
Sub-step 2: Perform the first 2− opt dynamic algorithm on F0 and get a new vector

F1; calculate the function value f (x, y) of the vector F1; store the function value into No.2
element M(2) of M;

Sub-step 3: Perform the second 2− opt dynamic algorithm on F0 and get a new vector
F2, judge:

(1) If F1 6= F2 ∧ F1 6= F0, calculate the f (x, y) of the vector F2, store the function value
into No.3 element M(3) of M;

(2) If F1 = F2 ∨ F1 = F0, perform 2− opt dynamic algorithm again.

Sub-step 4: In line with the method in sub-step 1~3, perform 2− opt dynamic algorithm
for a number of times on F0, and each time it creates a different vector F, store a number of
f (x, y) into vector M and make the vector full-ranked. Create the peak-value graph for the
vector M.

Step 5: Continue the 2− opt dynamic algorithm; do hill-climbing algorithm to search
the optimal M.

Sub-step 1: Perform the No. a + 1 time of 2− opt dynamic algorithm on F0 and get a new
vector Fa+1; create the peak-function value f (x, y) graph for Fa+1; do hill-climbing algorithm:
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(1) If fFa+1(x, y) < ∀M(i) ∼ fFi (x, y), delete the maximum peak value max f (x, y)cu in
current M, store fFa+1(x, y) into vector M;

(2) If fFa+1(x, y) > ∀M(i) ∼ fFi (x, y), turn to Sub-step 2 and continue searching.

Sub-step 2: Perform the No. a + 2 time of 2− opt dynamic algorithm on F0 and get a new
vector Fa+2; create the peak-function value f (x, y) graph for Fa+2, do hill-climbing algorithm:

(1) If fFa+2(x, y) < ∀M(i) ∼ fFi (x, y), delete the maximum peak value max f (x, y)cu in
current M, store fFa+2(x, y) into vector M;

(2) If fFa+2(x, y) > ∀M(i) ∼ fFi (x, y), turn to Sub-step 3 and continue searching.

Sub-step 3: Perform the No. k time of 2− opt dynamic algorithm on F0, and get a new
vector Fk; traverse k ∼ (a + 2, A(v, v)]; create the peak-function value f (x, y) graph for Fk;
do hill-climbing algorithm:

(1) If fFk(x, y) < ∀M(i) ∼ fFi (x, y), delete the maximum peak value max f (x, y)cu in
current M, store fFk(x, y) into vector M;

(2) If fFk(x, y) > ∀M(i) ∼ fFi (x, y), continue searching until k = A(v, v), the searching ends.

Step 6: Output the vector M. The a number of elements in M are the a number of
minimum peak values in all of the A(v, v) number of peak values after the overall 2− opt
dynamic algorithm performances on F.

As to the recommended vector M with the minimum function f (x, y) peak values,
the minimum value in M relates to the tour route with the lowest costs, and the second-
minimum value in M relates to the tour route with the second-optimal costs. Based on the
tourist’s schedule, the system recommends spatial decision-making schemes for the tourist.

3. Experiment, Results and Discussions

In order to verify that the proposed algorithm could effectively and reasonably provide
spatial decision-making for water-spot tourists, an experiment was performed; then, the
experimental results were analyzed and concluded. The basic process of the experiment
was as follows. The research range was determined as the administrative area of Leshan
city and the scenic water spots within the area; then, the decision-making influence factors
and section-cost function values between the scenic water spots were calculated. The
experiment compiled the previously visited scenic water spots and their classifications by
the sample tourists, and classified the scenic water spots within the research range. After
determining the starting point of the tour, the experiment analyzed the spatial accessibility
of the scenic water spots, output the accessibility optimization matrix, and determined
the scenic water spots to be visited with the optimal spatial accessibility, in accordance
with the tourists’ needs in the scenic water spot classifications. Based on the choice of
transportation modes by the tourists, the proposed algorithm was used to output the route
with the minimum traveling costs, and then the experiment provided the tourists with the
optimal spatial decision-making schemes.

3.1. Data Collection and Analysis of the Scenic Water-Spot Classification Results

(1) The results of the experimental data collection.

The experiment selected the tourist city of Leshan, and the scenic water spots within
the administrative area as the research range and objects; the number was n = 10. The
scenic water spots that the tourists had previously visited were compiled, and the number
was m = 20. The feature-attributes k(i) of the scenic water spots were obtained from the
tourism data website, and the feature-attribute vector for each scenic spot was established.
The feature-attributes included k(1): scenic water spot star rating (1–5 stars); k(2): evaluation
index (0~1.0); k(3): ticket price (unit: yuan); k(4): proper visiting-time duration (unit: h); k(5):
sightseeing; k(6): humanity and history; k(7): leisure and health care; k(8): park and garden
tour. The values k(5)~k(8) depended on whether the attribute existed in the scenic spot. If it
existed, the value was 1; otherwise, it was 0. The feature-attribute distance for each scenic
water spot in the research range was calculated, and their classifications were confirmed.



Water 2022, 14, 2920 14 of 24

The spatial-distribution data, of the scenic water spots in Leshan City and the main roads
connecting the scenic water spots, were compiled, and it was supposed that the starting
point of the sample tourist was Leshan high-speed railway station. Taking the starting
point as the center, the data, on the road distances from the starting point to each scenic
spot and the road distances between scenic spots, were collected. Meanwhile, under the
conditions of travel by self-driving or by public bus, the driving mileage, traveling time and
fee cost in each scenic-spot section, were compiled, and the spatial decision-making section
cost function ∆ f(i)(x, y) was calculated. Table 1 shows the classifications of the tourist’s
previously visited scenic water spots, and the weighted values of the feature-attributes
for each scenic water spot. Figure 6 shows the distribution of the scenic water spots and
the main roads connecting the scenic water spots in Leshan City. Figure 6a shows the
distribution of the scenic water spots. Different colors on the map annotation for the names
of the scenic water spots in the figure represent different classifications: the orange color
represents humanity scenic water spots; the blue color represents lakes and valleys; and the
pink color represents mountains and rivers. Figure 6b shows the spatial road distribution
around the scenic water spots.

Table 1. The classifications of the tourists’ previously visited scenic water spots, and the weighted
values of the feature attributes for each scenic water spot.

Previously Visited Water Scenic k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

Humanity scenic water
spot

The Summer Palace 0.50 0.94 0.30 0.30 1.00 1.00 0.00 1.00
Suzhou Gardens 0.50 0.92 0.80 0.20 0.00 1.00 0.00 1.00

Guangzhou Chimelong 0.50 0.96 2.50 0.80 0.00 0.00 0.00 1.00
Yu Garden, Shanghai 0.40 0.94 0.40 0.20 0.00 1.00 0.00 1.00

Tang Paradise 0.50 0.88 0.00 0.20 1.00 1.00 0.00 1.00
Baotu Spring 0.50 0.9 0.40 0.20 1.00 1.00 0.00 1.00

Lakes and valleys

Qiandao Lake 0.50 0.88 1.20 0.50 1.00 0.00 1.00 0.00
Qinglong Lake–Sansheng Flower Town 0.40 0.78 0.00 0.40 1.00 0.00 1.00 0.00

Xinyang Nanwan Lake 0.40 0.82 0.60 0.20 1.00 0.00 1.00 0.00
West Lake 0.50 0.94 0.00 0.20 1.00 1.00 1.00 0.00

Qinghai Lake 0.50 0.92 0.00 0.20 1.00 0.00 1.00 0.00

Mountains and rivers

Zhengzhou Yellow River Tourist Area 0.40 0.84 0.60 0.30 1.00 1.00 1.00 1.00
Juzhou Park–Xiangjiang River scenery 0.50 0.90 0.00 0.20 1.00 0.00 1.00 0.00
Tengwangge–Ganjiang River scenery 0.50 0.90 0.50 0.20 1.00 1.00 0.00 0.00

Longmen Grottoes–Yihe River scenery 0.50 0.92 0.90 0.20 1.00 1.00 0.00 1.00
Huangguoshu Waterfall 0.50 0.9 1.80 0.30 1.00 0.00 1.00 0.00

Xiaolangdi of the Yellow River 0.40 0.86 0.40 0.20 1.00 1.00 0.00 1.00
Du Fu thatched cottage–Huanhua Creek 0.40 0.92 0.50 0.20 1.00 1.00 0.00 1.00

(2) The results of the scenic water-spot classification

Table 2 shows the classification results of the scenic water spots, and the weighted
values of the feature attributes for each scenic water spot.
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Figure 6. The distribution of the scenic water spots, and the main roads connecting scenic water
spots in Leshan City: (a) shows the distribution of the scenic water spots. Different colors on the map
annotation for the names of scenic water spots in the figure represent different classifications; the
orange color represents humanity scenic water spots; the blue color represents lakes and valleys; and
the pink color represents mountains and rivers; (b) shows the spatial distribution of the roads around
the scenic water spots.

Table 2. The classification results of the scenic water spots in the research range, and the weighted
values of the feature attributes for each scenic water spot.

Classification Name Scenic Water Spot in the Research
Range k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

Humanity water scenic
spot

Leshan Giant Buddha—Three-River View 0.50 0.90 0.80 0.30 1.00 1.00 1.00 1.00
Zhuyeqing Ecological Tea Garden 0.30 0.86 0.20 0.20 0.00 0.00 1.00 1.00

Lakes and valleys
Ping Qiang Small Three Gorges 0.10 0.88 0.00 0.30 1.00 0.00 1.00 0.00

Dadu River–Jinkouhe Gorge 0.40 0.88 0.00 0.30 1.00 0.00 1.00 0.00
Heizhu Ravine 0.40 0.88 0.48 0.30 1.00 0.00 1.00 0.00

Mountains and rivers

Tianfu Sightseeing Tea Garden 0.40 0.88 0.30 0.20 1.00 0.00 1.00 1.00
Dongfeng Weir–Thousand Buddha Rock 0.40 0.88 0.50 0.20 1.00 1.00 1.00 1.00

Emei Mountain–E Xiu Lake 0.50 0.92 1.60 0.30 1.00 1.00 1.00 0.00
JiaYang Alsophila Spinulosa Lake 0.40 0.80 1.00 0.20 1.00 1.00 1.00 0.00

Muchuan Bamboo Sea 0.30 0.90 0.39 0.20 1.00 0.00 1.00 0.00

3.2. Calculation Results and Analysis of Scenic Water Spot Spatial Accessibility

(1) The calculation results of the scenic water spot spatial accessibility.

According to the spatial distribution of the starting point and the scenic water spots,
and the road distances between the starting point and the scenic water spots, the road
distances among the scenic water spots were used to calculate the starting-distance accessi-
bility factor λ(1), the average traveling-distance accessibility factor λ(2) and the weighted
average accessibility factor λ(3), shown in Table 3. Through the factor calculation results,
the spatial accessibility for each scenic water spot was obtained. Based on the Table 1
results, the scenic water-spot accessibility optimization matrix was output, as shown in
Table 4. Based on the Table 3 data, the fluctuating curve graph of the starting-distance
accessibility factor λ(1) was output, as shown in Figure 7a. The fluctuating curve graph of
the average traveling-distance accessibility factor λ(2) was output, as shown in Figure 7b.
The fluctuating curve graph of the weighted average accessibility factor λ(3) was output, as
shown in Figure 7c.
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Table 3. The calculated starting-distance accessibility factor λ(1), the average traveling-distance
accessibility factor λ(2) and the weighted average accessibility factor λ(3). Scenic water spots in the
table: a. Dongfeng Weir–Thousand Buddha Rock; b. Leshan Giant Buddha–Three-River View; c.
JiaYang Alsophila Spinulosa Lake; d. Dadu River–Jinkouhe Gorge; e. Muchuan Bamboo Sea; f.
Heizhu Ravine; g. Emei Mountain–E Xiu Lake; h. Tianfu Sightseeing Tea Garden; i. Zhuyeqing
Ecological Tea Garden; j. Ping Qiang Small Three Gorges.

Scenic Water Spot a b c d e

λ(1) 0.0333 0.0769 0.0131 0.0086 0.0099

λ(2) 0.0165 0.0161 0.0109 0.0091 0.0084

λ(3) 0.0249 0.0465 0.0120 0.0089 0.0091

Scenic Water Spot f g h i j

λ(1) 0.0070 0.0319 0.0366 0.0398 0.0415

λ(2) 0.0076 0.0172 0.0149 0.0173 0.0147

λ(3) 0.0073 0.0246 0.0258 0.0286 0.0281

Table 4. Scenic water-spot accessibility optimization matrix. Scenic water spots in the table: a.
Dongfeng Weir–Thousand Buddha Rock; b. Leshan Giant Buddha–Three-River View; c. JiaYang
Alsophila Spinulosa Lake; d. Dadu River–Jinkouhe Gorge; e. Muchuan Bamboo Sea; f. Heizhu
Ravine; g. Emei Mountain–E Xiu Lake; h. Tianfu Sightseeing Tea Garden; i. Zhuyeqing Ecological
Tea Garden; j. Ping Qiang Small Three Gorges.

Classification Name Classification Results Weighted Average
Accessibility Factor

Sequence of Spatial
Accessibility Intensity

Humanity scenic water spot b 0.0465 1
i 0.0286 2

Lakes and valleys
j 0.0281 1
d 0.0089 2
f 0.0073 3

Mountains and rivers

h 0.0258 1
a 0.0249 2
g 0.0246 3
c 0.0120 4
e 0.0091 5
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Figure 7. The fluctuating curve graph of the accessibility factors for the scenic water spots: (a) the
fluctuating curve graph of the starting-distance accessibility factor λ(1); (b) the fluctuating curve
graph of the average traveling-distance accessibility factor λ(2); (c) the fluctuating curve graph of
the weighted average accessibility factor λ(3). Scenic water spots in the table: a. Dongfeng Weir–
Thousand Buddha Rock; b. Leshan Giant Buddha–Three-River View; c. JiaYang Alsophila Spinulosa
Lake; d. Dadu River–Jinkouhe Gorge; e. Muchuan Bamboo Sea; f. Heizhu Ravine; g. Emei Mountain–
E Xiu Lake; h. Tianfu Sightseeing Tea Garden; i. Zhuyeqing Ecological Tea Garden; j. Ping Qiang
Small Three Gorges.

(2) The discussions of the classification of the scenic water-spot spatial accessibility.

As regards the curves in Table 3 and Figure 7, different scenic water spots in the re-
search range had different starting-distance accessibility factors, average traveling-distance
accessibility factors and weighted average accessibility factors. (1) The scenic water spot
with the maximum starting-distance accessibility factor was Leshan Giant Buddha–Three-
River View, and the scenic water spot with the minimum starting-distance accessibility
factor was Heizhugou Ravine, which indicated that the accessibility of Leshan Giant
Buddha–Three-River View to the starting point was the strongest, and that the accessibility
of Heizhugou Ravine to the starting point was the weakest. The higher the value of the
starting-distance accessibility factor, the stronger was the accessibility of the scenic spot
to the tourist’s starting point, and the easier it was for the tourist to get there. (2) The
scenic water spot with the maximum average traveling-distance accessibility factor was
Zhuyeqing Ecological Tea Garden, and the scenic water spot with the minimum aver-
age traveling-distance accessibility factor was Heizhugou Ravine, which indicated that
Zhuyeqing Ecological Tea Garden had the strongest average accessibility among all the
scenic spots. The accessibility from this scenic spot to the other ones was the strongest.
Heizhugou Ravine had the weakest average accessibility among all the scenic spots, and
the accessibility from this scenic spot to the other ones was the weakest. The higher the
value of the average traveling-distance accessibility factor, the stronger was the average
accessibility of the scenic spots to one another, and vice versa. (3) The scenic water spot with
the maximum weighted average accessibility factor was Leshan Giant Buddha–Three-River
View, and the scenic water spot with the minimum weighted average accessibility factor
was Heizhugou Ravine, indicating that the comprehensive accessibility of Leshan Giant
Buddha–Three-River View was the strongest, and that the comprehensive accessibility
of Heizhugou Ravine was the weakest. The higher the value of the weighted average
accessibility factor, the greater was the probability of being selected by the recommendation
system, and then recommended to tourists in the same classification, and vice versa. Based
on the data in Table 3, the starting-distance accessibility factors, the average traveling-
distance accessibility factor and the weighted average accessibility factor of scenic water
spots in Figure 7 all showed a fluctuating trend.

Analysis of the data in Table 4. In accordance with the results of the weighted average
accessibility factor, the scenic water spots in the same classification were sequenced. As
regards a given scenic water spot, the higher the value of the weighted average accessibility
factor, the higher its ranking sequence was, and the greater was the probability of its
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being recommended to tourists. The scenic water spot ranked in the first element was
preferentially recommended to tourists, then the second element, and so on.

3.3. The Comparison Analysis of the Water-Spot Tourist Spatial Decision-Making Results

(1) The results of the water-spot tourist spatial decision-making.

Based on the accessibility optimization matrix of scenic water spots in Table 4, the
tourists chose the most-interested scenic water-spot classification according to needs and
traveling schedule, and the system gave priority to recommending the scenic water spots
with the highest accessibility-intensity for the tourists. The recommended results were
Leshan Giant Buddha–Three-River View, Zhuyeqing Ecological Tea Garden, Pingqiang
Small Three Gorges and Tianfu Sightseeing Tea Garden. According to the recommended
results of the scenic water spots and the traveling-distance factor, time factor and cost
factor between the scenic water spots under the condition of two transportation modes, the
spatial decision-making section cost-function values between the scenic water spots were
calculated, as shown in Table 4. The traveling-distance factor and time factor were compiled
in an electronic map, the cost factor was calculated on the basis of a 7-liter self-driving
car and the current average price of Leshan gasoline. The public transportation cost was
calculated on the basis of the actual cost of taking tourist buses or city buses: namely,
the fee for the bus ticket. Using the water-spot tourist spatial decision-making algorithm
constructed in this study, the optimal route and two sub-optimal routes with the lowest
cost, under the condition of two transportation modes, were output, and the total cost of
the route was compared, as shown in Table 5: i = 1 represents ‘self-driving’ and i = 2
represents ‘public bus’; OR 1 represents the optimal route; OR 2 and OR 3 represent two
sub-optimal routes; 1 represents the starting point—Leshan high-speed railway station; 2
represents the Leshan Giant Buddha–Three-River View scenic water spot; 3 represents the
Zhuyeqing Ecological Tea Garden scenic water spot; 4 represents the Pingqiang Small Three
Gorges scenic water spot; 5 represents the Tianfu Guanguang Tea Garden scenic water spot.
The value in the ‘section cost function value’ column represents the cost between the scenic
spots in the route, and the value in the ‘total cost’ column represents the total cost of the
route. In the ‘cost difference’ column, the first value represents the total cost difference
between OR 2 and OR 1, and the second value represents the total cost difference between
OR 3 and OR 1. Figure 8 shows the spatial decision-making results of the optimal route
and sub-optimal routes under the condition of two transportation modes; Figure 8a shows
the extracted research range of the recommended scenic water spots; Figure 8b represents
the optimal route for self-driving travel; Figure 8c,d represent the sub-optimal routes for
self-driving travel; Figure 8e represents the optimal route for public bus travel; Figure 8f,g
represent the sub-optimal routes for public bus travel. Thus, the system not only provided
the tourists with spatial decision-making data, but also provided the tourists with visual
results of the spatial decision-making schemes.

Table 5. Optimal route and sub-optimal routes, section cost function value, total cost result compari-
son and the cost different comparison under the two transportation modes.

Transportation
Mode Tour Route Section Cost Function Value Total Cost Cost

Difference

i = 1
OR 1: 12453 0.6907 1.4863 1.1408 1.3983 4.7161
OR 2: 12543 0.6907 1.5062 1.1408 1.5416 4.8794 0.1633
OR 3: 12354 0.6907 1.7500 1.3983 1.1408 4.9799 0.2638

Transportation
mode Tour Route Section cost function value Total cost Cost

difference

i = 2
OR 1: 15324 1.9970 3.6020 3.3420 2.9390 11.8800
OR 2: 13524 1.5630 3.6020 3.8040 2.9390 11.9080 0.0280
OR 3: 14235 2.4030 2.9390 3.3420 3.6020 12.2860 0.4060
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(2) The discussions of the water-spot tourist spatial decision-making.

Comparison and analysis of the output routes: (1) when the tourists chose self-driving,
the total cost of OR 1: 12453 was the lowest—that is: Leshan high-speed railway station—
Leshan Giant Buddha–Three-River View—Pingqiang Small Three Gorges—Tianfu Sight-
seeing Tea Garden—Zhuyeqing Ecological Tea Garden. The total cost of the route was
4.7161, which was lower than other routes. In addition, OR 2: 12543 was the sub-optimal
route—that is: Leshan high-speed railway station—Leshan Giant Buddha–Three-River
View—Tianfu Sightseeing Tea Garden—Pingqiang Small Three Gorges—Zhuyeqing Eco-
logical Tea Garden. The total cost of the route was 4.8794, which cost less for the tourists
than any other routes, except for OR 1. Next, the route OR 3: 12354—namely: Leshan high-
speed railway station—Leshan Giant Buddha–Three-River View—Zhuyeqing Ecological
Tea Garden—Tianfu Sightseeing Tea Garden—Pingqiang Small Three Gorges. The total
cost of the route was 4.9799, which cost less for the tourists than any other routes, except
for OR 1 and OR 2. The cost function value of route OR 2 was 0.1633 higher than that of
route OR 1, and the cost function value of route OR 3 was 0.2638 higher than that of route
OR 1, indicating that among the three optimal routes, OR 1 had the lowest cost, followed
by OR 2 and OR 3. When the tourists chose the decision-making route with the lowest cost
to visit, it effectively reduced the energy consumption and the vehicle exhaust emissions
to the environment. (2) When the tourists chose to travel by public bus, the total cost of
OR 1: 15324 was the lowest—that is: Leshan high-speed railway station—Tianfu Sightsee-
ing Tea Garden—Zhuyeqing Ecological Tea Garden—Leshan Giant Buddha–Three-River
View—Pingqiang Small Three Gorges. The total cost of the route was 11.8800, which was
lower than that of other routes. In addition, OR 2: 13524 was the sub-optimal route—that is:
Leshan high-speed railway station—Zhuyeqing Ecological Tea Garden—Tianfu Sightseeing
Tea Garden—Leshan Giant Buddha–Three River View—Pingqiang Small Three Gorges.
The total cost of the route was 11.9080, which cost less for the tourists than any other routes,
except for OR 1. Next, the route OR 3: 14235—that is: Leshan high-speed railway station—
Pingqiang Small Three Gorges—Leshan Giant Buddha–Three River View—Zhuyeqing
Ecological Tea Garden—Tianfu Sightseeing Tea Garden”. The total cost of the route was
12.2860, which cost less for the tourists than any other routes, except for OR 1 and OR
2. The cost function value of route OR 2 was 0.0280 higher than that of route OR 1, and
route OR 3 was 0.4060 higher than that of route OR 1, indicating that among the three
optimal routes, OR 1 had the lowest cost, followed by OR 2 and OR 3. When a tourist chose
the decision-making route with the lowest cost to visit, it effectively reduced the energy
consumption and the vehicle exhaust emissions to the environment.

According to the output optimal tour routes, the system provided the tourists with
different spatial decision-making schemes. (1) When a tourist chose to travel by self-
driving, the system proposed two-day and three-day traveling decision-making schemes
on the route with the lowest cost OR 1: 12453. 1© The first scheme was a two-day tour.
The tourist arrived at Leshan high-speed railway station in the morning on the first day,
drove to Leshan Giant Buddha and enjoyed the view of Giant Buddha and Three-Rivers.
The sightseeing time was 2–3 h. In the afternoon, the tourist drove to Pingqiang Small
Three Gorges, took a cruise to enjoy the beautiful scenery of Minjiang River, and obtained
accommodation in Pingqiang Small Three Gorges at night. The next morning, the tourist
drove to Tianfu Sightseeing Tea Garden, visited the tea mountain and enjoyed the lake
scenery. In the afternoon, the tourist drove to the Zhuyeqing Ecological Tea Garden, visited
the tea garden and tasted the Zhuyeqing green tea. The trip ended in the evening. 2© The
second scheme was a three-day tour. The tourist arrived at Leshan high-speed railway
station on the first day, took the public bus to Tianfu Sightseeing Tea Garden, visited the
tea mountain and enjoyed the lake scenery. In the afternoon, the tourist took a bus to
Zhuyeqing Ecological Tea Garden, visited the tea garden, tasted Zhuyeqing green tea,
returned to Leshan in the evening and obtained accommodation. The next day, the tourist
took a public bus to Leshan Giant Buddha, enjoyed the view of the Giant Buddha and
Three-Rivers, participated in a night tour of Three-River View in the evening, enjoyed the
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Giant Buddha and Leshan night scenery, and obtained accommodation in Leshan. On the
third day, the tourist took a bus to Pingqiang Small Three Gorges, took a cruise to enjoy the
beautiful scenery of Minjiang River, and returned to Leshan in the evening. 

2 

 
(a) 

 
Figure 8 Figure 8. Spatial decision-making results for the optimal route and sub-optimal routes under the two

different transportation modes. (a) shows the extracted research range of the recommended scenic
water spots; (b) represents the optimal route for self-driving travel; (c,d) represent the sub-optimal
routes for self-driving travel; (e) represents the optimal route for public bus travel; (f,g) represent the
sub-optimal routes for public bus travel.
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3.4. Results and Discussions

The main achievements and contributions of the study were as follows. Firstly, unlike
traditional tourism decision-making methods, in this study, tourists’ interests and tenden-
cies were obtained by the attributes knowledge-mined from the scenic water spots that
the tourists had previously visited, on the basis of which, the scenic water spots in the
tourism destination city were classified. By this method, the recommended scenic water
spots could best match the tourists’ interests. Secondly, the existing studies on the recom-
mendation system lacked the spatial attributes of the recommended objects. This study
proposed a method to set up a scenic water-spot spatial accessibility model, and conducted
research on the scenic water-spot spatial accessibility, which was used as an important and
necessary condition for recommending scenic spots, planning tour routes and performing
tourist decision-makings. Thirdly, the study on spatial accessibility was used for tour route
planning and tourist spatial decision-making, which conformed to the spatial attributes
of tourism activities and the actual conditions of traveling; it could provide theoretical
and technical support for the development of a tourism recommendation system, a tour
route planning system and a tourist spatial decision-making system. Fourthly, the methods
constructed in the study could provide references for further research on tourist spatial
accessibility, a tourist recommendation algorithm and a tour route planning algorithm, etc.
The aims of the study also included travel-cost savings and reducing energy consumption.
Thus, in regard to low-carbon tourism and green traveling, this study provides a new
research method.

4. Conclusions

This study proposes a low-carbon decision-making algorithm for water-spot tourists,
based on the k-NN spatial-accessibility optimization model. An optimization model based
on k-NN accessibility was constructed, to confirm the scenic water-spot interest classifi-
cations and tourists’ interest-tendencies. Then, the scenic water spot spatial-accessibility
optimization model was constructed, and the study of scenic water-spot spatial accessi-
bility was used in the tourist spatial decision-making, based on the tour route planning
algorithm. In the experiment, the results of tourist spatial decision-making, under differ-
ent transportation modes, were obtained and concluded. By comparing the optimal tour
route with the sub-optimal tour routes, it can be concluded that the optimal tour route
had stronger spatial accessibility and lower cost consumption. When tourists chose the
optimal tour route for sightseeing, it effectively saved traveling costs, and produced the
lowest energy consumption and vehicle exhaust emissions, thus realizing low-carbon and
environmentally friendly travel.

The spatial decision-making method for water-spot tourists, constructed in this study,
was based on tourists’ preferences for previously visited scenic water spots, and the
spatial research range was the administrative area of a tourist city, including its urban
districts and outskirts counties. In future research, we will conduct further studies on the
following two aspects. Firstly, we will design a more detailed interest-mining algorithm for
scenic water spots, propose indexes with more complete classifications, diverse types and
comprehensive coverage of tourists’ interest-tendencies, and design quantitative methods
for each indicator. Through the in-depth mining of tourists’ interest-tendencies, tourists’
requirements for scenic water spots will be accurately confirmed. Secondly, we will further
expand the research range, take the provincial administrative area as the research object,
study the spatial distribution and spatial accessibility of scenic water spots in a broader
scope, integrate more cross-region transportation modes, and provide tourists with a wider
range of traveling decisions.
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Abbreviations

Abbreviation Definition
S(1, i1) Element of scenic water-spot classification training set
S1

(1) Scenic water-spot initial training set
C(u) Scenic water-spot classification
S1

(2) Scenic water-spot classification training set
S(2, i2) The to-be-classified scenic water-spot element
S2 Scenic water-spot classification matrix.
k(i) Scenic water-spot feature attribute
k Feature-attribute vector
δ(k(i)) Feature-attribute normalization parameter
d(S(1,i1),S(2,i2)) k-NN element feature distance
λ(1) Starting-distance accessibility factor
λ(2) Average traveling-distance accessibility factor
λ(3) The weighted average accessibility factor
S2

opt Scenic water spot accessibility optimization matrix
ε(i, j)(r) Tourism spatial decision influence factor
τ(i, j)(r) Normalization factor
∆ f(i)(x, y) Spatial decision-making section cost function
f (x, y) Spatial decision-making cost function
F Tourism spatial decision-making 2− opt dynamic vector
M Optimal peak-value storage vector

References
1. Hu, J.L.; Ai, Y.; Zheng, W.J.; Tian, M.Y. A Research on the Accessibility of Traditional Villages in Guilin Based on Space Syntax. J.

Xi’an Univ. Archit. Technol. 2022, 41, 38–46.
2. Ou’yang, J.; Chen, S.J.; Wang, D. Layout of China Tourism Airports Based on the Spatial Accessibility of Important Scenic Spots.

China Trans. Outlook 2021, 43, 21–26.
3. Wang, C.; Li, X.D.; Kong, L.Z.; Li, Z.S.; Wang, S.M. Study on Tourism Competitiveness and Spatial Development Strategy of

Cities along Lan-Xin High-speed Railway. J. Northwest Norm. Univ. 2021, 57, 33–39.
4. Gong, Y.X.; Ji, X.; Zhang, Y. Study on the Optimization of Tourism Transportation System of Urban and Rural Settlements in

Water Network Area—A Case Study of Jinhu County. J. Nanjing Norm. Univ. 2020, 43, 45–52.
5. Sun, G.X. Symmetry Analysis in Analyzing Cognitive and Emotional Attitudes for Tourism Consumers by Applying Artificial

Intelligence Python Technology. Symmetry 2020, 12, 606. [CrossRef]
6. Gu, Z.H.; Zhang, Y.; Chen, Y.; Chang, X.M. Analysis of Attraction Features of Tourism Destinations in a Mega-City Based on

Check-in Data Mining—A Case Study of Shenzhen, China. ISPRS Int. J. Geo-Inf. 2016, 5, 210. [CrossRef]

http://doi.org/10.3390/sym12040606
http://doi.org/10.3390/ijgi5110210


Water 2022, 14, 2920 23 of 24

7. Wang, L.; Li, S.; Liu, Q.H. Study on Spatial Distribution Feature and Accessibility of A-level Scenic Spots in Ganzi Prefecture.
Anhui Agric. Sci. Bull. 2021, 27, 183–185.

8. Xu, S.Y.; Xie, J.A.; Liu, M.J.; Cheng, M.Y. Spatial Characteristics and Correlation Analysis of Road Time Accessibility to Tourist
Attractions in Qinghai Province. Highway 2022, 6, 222–228.

9. Yang, Y.B.; Deng, Q. Study on the Spatial Distribution Pattern and Highway Accessibility of Red Villages in Hunan Province.
Resour. Environ. Yangtze Basin 2022, 31, 793–804.

10. Dong, X.; Qiao, Q.; Zhai, L.; Sun, L.; Zhen, Y. Evaluating the Accessibility of Plaza Park Using the Gravity Model. J. Geo-Inf. Sci.
2019, 21, 1518–1526.

11. Li, X.Y.; Wang, X.F.; Zhuo, R.R.; Wan, L.X. Spatial Accessibility of Leisure Agriculture in Suburbs of Wuhan based on spatial
syntax and network analysis. J. Ctrl. China Norm. Univ. 2020, 54, 882–891.

12. Wang, L.; Cao, X.S.; Hu, L.L. Research on the Impact of Tourist Attractions Accessibility on Tourist Flow in Different Travel Times:
A Case Study of Xi’an City. Human Geogr. 2021, 3, 157–165.

13. Luo, H.F. Analysis and Optimization of Traffic Accessibility of Scenic Spots in Lushan Scenic Spot. Master’s Thesis, Jiangxi
Science and Technology Normal University, Nanchang, China, 2021.

14. Yang, G.M.; Yang, Y.R.; Gong, G.F.; Gui, Q.Q. The Spatial Network Structure of Tourism Efficiency and Its Influencing Factors in
China: A Social Network Analysis. Sustainability 2022, 14, 9921. [CrossRef]

15. Włodarczyk, B.; Cudny, W. Individual Low-Cost Travel as a Route to Tourism Sustainability. Sustainability 2022, 14, 10514.
[CrossRef]

16. Bagunaid, W.; Chilamkurti, N.; Veeraraghavan, P. AISAR: Artificial Intelligence-Based Student Assessment and Recommendation
System for E-Learning in Big Data. Sustainability 2022, 14, 10551. [CrossRef]

17. Wang, H.M.; Wei, X.J.; Ao, W.X. Assessing Park Accessibility Based on a Dynamic Huff Two-Step Floating Catchment Area
Method and Map Service API. ISPRS Int. J. Geo-Inf. 2022, 11, 394. [CrossRef]

18. Horak, J.; Kukuliac, P.; Maresova, P.; Orlikova, L.; Kolodziej, O. Spatial Pattern of the Walkability Index, Walk Score and Walk
Score Modification for Elderly. ISPRS Int. J. Geo-Inf. 2022, 11, 279. [CrossRef]

19. Raza, A.; Zhong, M.; Safdar, M. Evaluating Locational Preference of Urban Activities with the Time-Dependent Accessibility
Using Integrated Spatial Economic Models. Int. J. Environ. Res. Public Health 2022, 19, 8317. [CrossRef]

20. Xu, H.; Zhao, J. Planning Urban Internal Transport Based on Cell Phone Data. Appl. Sci. 2022, 12, 8433. [CrossRef]
21. Mehrian, M.R.; Miandoab, A.M.; Abedini, A.; Aram, F. The Impact of Inefficient Urban Growth on Spatial Inequality of Urban

Green Resources (Case Study: Urmia City). Resources 2022, 11, 62. [CrossRef]
22. Bajwoluk, T.; Langer, P. Impact of the “Krakow East-Bochnia” Road Transport Corridor on the Form of the Functio-Spatial

Structure and Its Economic Activity. Sustainability 2022, 14, 8281. [CrossRef]
23. Liu, J.; Zhou, G.; Linderholm, H.W.; Song, Y.; Liu, D.-L.; Shen, Y.; Liu, Y.; Du, J. Optimal Strategy on Radiation Estimation

for Calculating Universal Thermal Climate Index in Tourism Cities of China. Int. J. Environ. Res. Public Health 2022, 19, 8111.
[CrossRef] [PubMed]

24. Grübel, J.; Thrash, T.; Aguilar, L.; Gath-Morad, M.; Chatain, J.; Sumner, R.W.; Hölscher, C.; Schinazi, V.R. The Hitchhiker’s Guide
to Fused Twins: A Review of Access to Digital Twins In Situ in Smart Cities. Remote Sens. 2022, 14, 3095. [CrossRef]

25. Chang, X.L.; Huang, X.Y.; Jiang, X.C.; Xiao, R. Impacts of Transportation Networks on the Landscape Patterns—A Case Study of
Shanghai. Remote Sens. 2022, 14, 4060. [CrossRef]

26. Guo, Q.H.; He, Z.C.; Li, D.W.; Spyra, M. Analysis of Spatial Patterns and Socioeconomic Activities of Urbanized Rural Areas in
Fujian Province, China. Land 2022, 11, 969. [CrossRef]

27. Tsushima, H.; Matsuura, T.; Ikeguchi, T. Searching Strategies with Low Computational Costs for Multiple-Vehicle Bike Sharing
System Routing Problem. Appl. Sci. 2022, 12, 2675. [CrossRef]

28. Santos, B.; Passos, S.; Gonçalves, J.; Matias, I. Spatial Multi-Criteria Analysis for Road Segment Cycling Suitability Assessment.
Sustainability 2022, 14, 9928. [CrossRef]

29. Zheng, X.; Luo, Y.; Sun, L.; Yu, Q.; Zhang, J.; Chen, S. A Novel Multi-Objective and Multi-Constraint Route Recommendation
Method Based on Crowd Sensing. Appl. Sci. 2021, 11, 10497. [CrossRef]

30. Sajid, M.; Singh, J.; Haidri, R.A.; Prasad, M.; Varadarajan, V.; Kotecha, K.; Garg, D. A Novel Algorithm for Capacitated Vehicle
Routing Problem for Smart Cities. Symmetry 2021, 13, 1923. [CrossRef]

31. Ma, X.F.; Tan, J.X.; Zhang, J.K. Spatial-Temporal Correlation between the Tourist Hotel Industry and Town Spatial Morphology:
The Case of Phoenix Ancient Town, China. Sustainability 2022, 14, 10577. [CrossRef]

32. Damos, M.A.; Zhu, J.; Li, W.; Hassan, A.; Khalifa, E. A Novel Urban Tourism Path Planning Approach Based on a Multiobjective
Genetic Algorithm. ISPRS Int. J. Geo-Inf. 2021, 10, 530. [CrossRef]

33. Khamsing, N.; Chindaprasert, K.; Pitakaso, R.; Sirirak, W.; Theeraviriya, C. Modified ALNS Algorithm for a Processing Application
of Family Tourist Route Planning: A Case Study of Buriram in Thailand. Computation 2021, 9, 23. [CrossRef]

34. Ruan, L.; Kou, X.; Ge, J.; Long, Y.; Zhang, L. A Method of Directional Signs Location Selection and Content Generation in Scenic
Areas. ISPRS Int. J. Geo-Inf. 2020, 9, 574. [CrossRef]

35. Chen, J. Title Research on the Optimization of Tourist Traffic Routes in Beijing, Tianjin and Hebei Province Starting form Beijing
and Tianjin. Tianjin Soc. Inst. 2019, 2, 71–81.

http://doi.org/10.3390/su14169921
http://doi.org/10.3390/su141710514
http://doi.org/10.3390/su141710551
http://doi.org/10.3390/ijgi11070394
http://doi.org/10.3390/ijgi11050279
http://doi.org/10.3390/ijerph19148317
http://doi.org/10.3390/app12178433
http://doi.org/10.3390/resources11070062
http://doi.org/10.3390/su14148281
http://doi.org/10.3390/ijerph19138111
http://www.ncbi.nlm.nih.gov/pubmed/35805778
http://doi.org/10.3390/rs14133095
http://doi.org/10.3390/rs14164060
http://doi.org/10.3390/land11070969
http://doi.org/10.3390/app12052675
http://doi.org/10.3390/su14169928
http://doi.org/10.3390/app112110497
http://doi.org/10.3390/sym13101923
http://doi.org/10.3390/su141710577
http://doi.org/10.3390/ijgi10080530
http://doi.org/10.3390/computation9020023
http://doi.org/10.3390/ijgi9100574


Water 2022, 14, 2920 24 of 24

36. Sun, Y.; Liu, S.; Li, L. Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and
Carbon Neutrality. Energies 2022, 15, 3064. [CrossRef]

37. Zhang, S.L. Evaluation of Accessibility of the Tourism Node and Study on Optimization of Tour-Routes in Hebei Province.
Master’s Thesis, Hebei Normal University, Shijiazhuang, China, May 2015.

38. Chen, J.X. Optimization of Tourism Routes in Northern Anhui Based on Dijkstra. J. Luoyang Inst. Sci. Technol. 2014, 24, 55–57.
39. Bao, J.; Lu, L.; Ji, Z.H. Tourism transportation optimization and tour route designing of north Anhui province based on the

Kruskal algorithm of graph-theory. Human Geogr. 2010, 25, 144–148.

http://doi.org/10.3390/en15093064

	Introduction 
	Methodology 
	Scenic Water Spot Classification Model Based on k-NN Mining 
	Scenic Water Spot Spatial-Accessibility Optimization Model Based on Classification Matrix 
	Low-Carbon Decision-Making Algorithm for Water-Spot Tourists, Based on the k-NN Spatial-Accessibility Optimization Matrix 

	Experiment, Results and Discussions 
	Data Collection and Analysis of the Scenic Water-Spot Classification Results 
	Calculation Results and Analysis of Scenic Water Spot Spatial Accessibility 
	The Comparison Analysis of the Water-Spot Tourist Spatial Decision-Making Results 
	Results and Discussions 

	Conclusions 
	References

