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Abstract: Flood forecasting is among the most important precaution measures to prevent devastating
disasters affecting human life, properties, and the overall environment. It is closely involved with
precipitation and streamflow data forecasting tasks. In this work, we introduced a multi-step
discharge prediction framework based on deep learning models. A simple feature representation
technique using a correlation of backward lags was enhanced with a time of concentration (TC)
concept. Recurrent neural networks and their variants, coupled with the TC-related features, provided
superior performance with over 0.9 Nash–Sutcliffe model efficiency coefficient and substantially high
correlation values for multiple forecasted points. These results were consistent among both the Upper
Nan and the Loei river basins in Thailand, which were used as case studies in this work.

Keywords: discharge prediction; flood forecasting; time of concentration; deep learning; recurrent
neural networks

1. Introduction

The global population continues to grow every year, leading to an intense requirement
for a well-managed water system. Inefficient land-use management coupled with external
factors such as climate change could be one of the root causes of flood events. Floods
are among the most damaging natural disasters, which could negatively affect a wide
range of people and the entire nation including Thailand [1]. Flood control is critical
in terms of lessening devastating effects on human life, livelihood as well as properties.
More importantly, flood forecasting and an early warning system are required to prevent
or minimize risks in flood-prone areas [2,3]. These systems rely mainly on precipitation
and streamflow data to predict the water level data, especially abrupt rises leading to
flooding events.

With advanced technologies, Artificial Intelligence (AI), Machine Learning (ML), and
Deep Learning (DL) have been applied to various domains to analyze and extract insights
from historical data. These data-driven methodologies have also gained popularity in
hydrology applications. Chang et al. [4] explored the state-of-the-art ML research focusing
on flood forecasts with diverse case studies. In earlier days, various ML models were
popular and effective in providing accurate flood forecasting results. However, these ML
methods mostly require significant effort in manually generating insightful features. To
address this, Artificial Neural Networks (ANNs) mimicking neurons in a human brain were
developed at an early age of DL. They were built on more complicated interconnections
among nodes from multiple layers of the networks. Several models and their variations
have been applied to the flood forecasting tasks, as highlighted in [5–10]. In addition, river
flow forecasting using artificial intelligence is among the fundamental components of water
resources management [11]. For example, common ML models such as Support Vector
Regression (SVR), Random Forest (RF), ANNs, and Extreme Learning Machine (ELM) were
employed to estimate monthly and daily river streamflow, see [12,13]. Rezaie-Balf et al. [14]
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proposed a hybrid decomposition-based AI for daily streamflow prediction which was
superior to individual models.

Later on, the focus of model development shifted to deep learning methods, especially
with rich data. Recurrent Neural Networks (RNNs) and their variations have gained
popularity over the past years to tackle sequence input like time series data or textual
data within natural language processing applications. With specifically-designed network
architectures, RNNs can extract features from the original sequence input. They are also
widely used in hydrology to predict water levels in advance for flood control [15,16]. There-
after, more advanced model architectures based on RNNs were developed. Specifically,
Gated Recurrent Units (GRUs) and Long Short-Term Memory Networks (LSTMs) handled
short-term memory with gate mechanisms within the networks to control the flow of
information. Among these models, LSTMs and their variants were the most popular meth-
ods in hydrology due to their capability of long-term dependency learning. For instance,
LSTM models were utilized for flood forecasting as introduced in previous studies [17–21].
Furthermore, Apaydin et al. [22] proposed a thorough comparative analysis of RNNs for
reservoir inflow forecasting.

The classical method for flood hydrograph analysis typically requires time parameters
of catchment response such as the time of concentration (TC), lag time (TL), and Time to
peak (TP). These parameters are normally used to indicate the catchment characteristics,
direct runoff as well as effective rainfall distribution [23]. The Tc concept is commonly
employed to define the required time of runoff contributing to the peak discharge from the
catchment boundary to the outlet [24]. Many empirical equations have been proposed to
estimate TC [23,25–29]. Each equation represented selected study areas that were related to
the geomorphology and climatology of the catchment. Both overland flow and channel flow
were considered in the stepwise multiple regression analysis [25,30,31]. The Tc parameter
was widely applied for various flood analyses such as flood quantity prediction [32],
flood routing in channels [33], and flood design of a drainage system [31]. Gericke and
Smithers [24] reviewed methods to evaluate the catchment response time for a flood peak
estimation in South Africa. Specifically, TC was so frequently used that it became the
required time parameter in the flood hydrograph estimation. The NRCS velocity method,
developed by the Natural Resources Conservation Service (NRCS), is commonly used to
estimate Tc for both overland flow and/or channel flow [24,34,35]. With channel flow,
the NRCS velocity method divides the flow path into segments of uniform hydraulic
characteristics. Travel time calculations of water discharge are conducted for each segment
which is further summarized as the final TC value.

In this study, we proposed a discharge estimation model for flood forecasting and
early warning system. Specifically, our multi-step forecasting model predicted every point
of discharge value for the next 12 h. This forecasting horizon was specifically selected
based on the flood warning guideline of the Royal Irrigation Department (RID) for both
study areas. Thorough processing steps, consisting of data collection, data preparation,
model development, and model evaluation, were carefully conducted. Highly correlated
lags were experiments in the data preparation step. In addition, the Tc concept, commonly
used for flood hydrograph prediction, was further incorporated to derive more insightful
information for the model. In the model development process, standard RNNs, GRUs, and
LSTMs models were investigated to ensure the networks’ performance. Several evaluation
metrics were considered against various models with diverse hyperparameters.

Model experiments with data applications and the TC concept distinguish our work
from others. Our main contribution is incorporating the TC concept to capture time lags
in the feature generation step. We considered the hydrology knowledge to understand
specific catchment characteristics via the Tc concept. Experiments on several models with
diverse settings were conducted. To the best of our knowledge, no previous study has
directly used the TC concept to predict discharge values using deep learning models. Also,
there was no prior work that trained deep learning models using river discharge data
in Thailand.
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We summarize the primary materials and methods as discussed in Section 2. An
overall framework, an experimental analysis, and evaluation metrics used to test the
models were elaborated. Results of all experiments and discussions were provided in
Section 3. A conclusion is finally stated in the last section.

2. Materials and Methods

In this work, we proposed a novel framework to forecast river discharge data which
relied mainly on feature representations and prediction models. We thoroughly experi-
mented on two study areas, including the Upper Nan and the Loei river basins in Thailand.
Data preparation and background information of implemented models were also discussed.
Common evaluation metrics to measure models’ performances were described.

2.1. Study Area

Two study areas in the Upper Nan River basin and the Loei river basin in Thailand are
shown in Figure 1. The Upper Nan River basin was in Northern Thailand, with a drainage
area of 8706 km2 (4560 km2 of the study area). Annual rainfall and annual runoffs are
1308 mm and 5940 mcm, respectively. Hourly water level data were collected from four
stream gauges. Most of the topography of this study area is the mountains and terraced
mountains. The major river, named Nan River, originates at a mountain in the north of
Nan province and flows through a main economic source in a southern community area.
On the other hand, the Loei river basin covers 3956 km2 of the watershed area (3093 km2 of
the study area) with 1346 mm of annual rainfall and 1380 mcm of annual runoff. Hourly
water level data were collected from six stream gauges. Loei is a sub-basin of the Mekong
River basin located in the northeastern region of Thailand. It originates from Phu Luang
Mountain and gradually descends to the northern part. The major river, Nam Loei river,
flows through the Muang District to meet the Mekong River. Both study areas are affected
by the southwest monsoon and tropical depression from the South China Sea during the
wet season (May–October).
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2.2. Methodology

Water level data were collected from multiple telemetry stations in the Upper Nan and
the Loei river basins, which were our two case studies in this work. An exploratory data
analysis was performed as an initial step of the data preparation process. Missing values
and extreme anomalies resulting from malfunctioned sensors or unexpected events were
properly pre-processed as explained in the data collection and data preparation section
below. Feature representations were carefully prepared using time-lag correlation and the
Tc concept. Next, multiple data modeling techniques were implemented and compared
with well-defined evaluation metrics. A flow chart of the entire process is summarized in
Figure 2.
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2.2.1. Data Collection and Data Preparation

An hourly water level was converted to an hourly discharge by using an annual
rating curve. Then, this hourly discharge data at multiple stations corresponding to the
Upper Nan and the Loei river basins were explored. A typical outlier detection technique
was employed to eliminate extreme anomalies. Specifically, data points that deviated
significantly from most of the normal patterns were removed. The remaining incomplete
data consisting of missing values and removed outliers were imputed using an interpolation
function. An overview of discharge data after the preprocessing step of stations in the
Upper Nan and the Loei river basins is illustrated in Figures 3 and 4, respectively.

After the preprocessing step, we split the whole dataset for both study areas into
2 main parts for training, and testing purposes. The entire range of our data was from 1996
to 2020 for the Upper Nan and from 2006 to 2020 for the Loei river basins. Approximately
80 percent of the whole data were used for training while the rest were treated as testing
datasets. Furthermore, the training data was partially partitioned into a validation part
during the training process to reduce the overfitting circumstances. We intentionally split
the data linearly as discharge data was a time series where dependency over time should
still be preserved. According to our manual observation, we carefully selected the splitting
point to guarantee consistency of seasonal fluctuations and distributions within the data
among training and testing parts. This will enhance the possibility that our proposed model
should provide a similar accuracy level when applied to any out-of-sample data.
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Two diverse methods were utilized in order to select appropriate feature represen-
tations. First, we relied on a time-lag correlation approach denoted as Case 1. Several
look-back periods (lags) based on all upstream stations were experimented with in order to
identify highly correlated features with respect to our target variable. For the Upper Nan
river basin, discharge data from station N.1 at present was used as our response variable
while backward lags from N.1 and upstream stations N.49, N.64, and N.65 were treated as
predictors. Similarly, discharge measured at station KH.58A was counted as our response
variable while multiple lags from KH.58A and its upstream stations including KH.77A,
KH.28A, KH.105, KH.78, and KH.61 were utilized as potential predictors for the Loei river
basin. Experiments on diverse lags and choices of predictors were also conducted to achieve
the most desirable performance. According to the pairwise Pearson correlation, highly
correlated lags were retrieved. Then, all look-back periods starting from one-step backward
until the retrieved lag were used as features. For the Upper Nan River basin, discharge
data starting from lag-0, lag-6, lag-16, and lag-20 were selected for stations N.1, N.64, N.65,
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and N.49, respectively. Similarly, we selected lag-0, lag-7, lag-11, lag-13, lag-28, and lag-30
for KH.58A, KH.105, KH.28A, KH.78, KH.61, and KH.77A stations corresponding to the
Loei river basin.

Second, we incorporated the TC concept to select proper time lags for feature genera-
tions denoted as Case 2. The NRCS velocity method was employed to calculate the TC of
the catchment for both study areas. Particularly, TC as a travel time of channel flow was
calculated using the following equations [31]:

TC = 0.0167
(

nL0,CH

R0.667
√

S0,CH

)
TC =

N
∑

i=0
TC(i)

where TC is channel flow time of concentration (min), TC(i) is channel flow time of con-
centration of segment i (min), n is Manning’s roughness parameter, L0,CH is the length
of the channel flow path (m), R is hydraulic radius which equals to flow depth (m), and
S0,CH is average channel slope (m·m−1). In order to calculate the Tc of each study area, we
divided the longest channel into segments representing their bed slope. Then, the Tc of
the segment was calculated using the NRCS velocity method. Channel profile and bed
slope were computed from digital elevation data (STRM) with a resolution of 30 × 30 m.
Channel sections of stream gauge and water level were provided by the Royal Irrigation
Department (RID). For the Upper Nan river basin, the Nan river is the longest channel from
station N.1 to the catchment boundary (205 km), which was divided into three segments
with 0.0593, 0.00596, and 0.00128 of bed slope from upstream. According to the Loei river
basin, the longest channel (the Loei river) from station KH.58A to the catchment boundary
is 157 km. The channel was divided into three segments with 0.0506, 0059, and 0.00056 of
bed slope. In particular, the TC of the Upper Nan and the Loei river basins were 15 h and
24 h. All backward lags up to Tc for all stations were used as input features.

2.2.2. Model Development

In this work, we specifically focused on deep learning models with diverse choices of
network architectures. Typical stacked Recurrent Neural Networks (RNNs) [36], commonly
used with temporal sequences like discharge, were employed as our baseline. They consist
of a stack of input, hidden and output units to capture relationships within the sequence.
We also experimented with subclasses of RNNs to solve short-term memory issues. In
particular, we explored Gated Recurrent Units (GRUs) [37] and Long Short-Term Memory
networks (LSTMs) [36] to capture long-term dependencies between sequence data. Both
GRUs and LSTMs, special types of RNNs, could remember and retrieve information that
occurred over long periods of time. In addition to typical RNNs, GRUs comprise the update
and reset gate, while LSTMs consist of the input, forget and output gate. These gates are
used to control the flow of information through the sequence of data. Among these two
similar networks, GRUs have fewer operations with less complicated mechanisms; hence,
it takes less computational time to train. With specific structures of GRUs and LSTMs, they
were commonly used for time series prediction. We relied on 2 layers of stacked GRUs and
stacked LSTMs with 32 nodes. The MSE loss function with 0.001 learning rate and 32 batch
size were utilized. As we proposed the multi-step forecasting model, there were 12 output
nodes in our network structure to represent a prediction vector.

2.2.3. Evaluation Metrics

Common evaluation metrics were used in this work. A statistical measure R [38,39]
was employed to represent a proportion of variance within the target variable which can
be explained by predictor(s). It typically measures a linear relationship between target and
independent variables based on a regression model. Root Mean Square Error (RMSE) was
used to measure a standard deviation of residuals computed from differences between the
true values and the model predictions. In addition, we computed the Nash–Sutcliffe model
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efficiency coefficient (NSE) to determine hydrological model efficiency [40]. It represents
the proportion of the residual variance versus the observed data variance.

3. Results and Discussions

Two different feature representation techniques with multiple deep learning models
were extensively evaluated. These candidates were compared to obtain the most desirable
results. Specifically, the correlation-based approach (Case 1) and the Tc concept (Case 2)
were considered as the feature generation step. According to the deep learning mod-
els, RNNs were initially used as the baseline prior to enhancing with GRUs and LSTMs.
Common evaluation metrics consisting of R, RMSE, and NSE were employed as the per-
formance criteria. These metrics were computed for each forecasted time point from all
12-step predictions from the multi-step model.

Thorough experiments were conducted with diverse choices of feature representations
and network architectures. Three deep learning network architectures consisting of RNNs,
GRUs, and LSTMs were compared in this work. These models were carefully fine-tuned
to achieve desirable performance. A comparison between observed values and predicted
values based on diverse models is provided in Figures 5 and 6 for the Upper Nan and
the Loei river basins, respectively. According to these results, all model combinations
overestimated the true discharge data. This phenomenon is preferable for precautionary
measures with respect to the flood warning system. However, too extreme errors could
lead to a false positive warning, which should also be avoided. Among feature represen-
tation techniques, utilizing the TC concept yielded fewer overestimated errors than the
correlation-based features, as observed in more frequent red spikes in Figures 5 and 6.
These observations persisted for both the wet season with peaks of discharge values and
the dry season, especially in the latter case. To clearly compare two feature representations,
Figure 7 illustrates a comparison of R, RMSE, and NSE based on the correlation-based
approach (Case 1) and the TC concept method (Case 2). Results for all 12-step predictions
for the Upper Nan (left) and Loei (right) river basins are reported.
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According to these results, observed errors regardless of feature representation meth-
ods or utilized models were relatively small at the first prediction point. Then, they
gradually increased with longer prediction periods and reached the most inferior perfor-
mance at the 12th farthest point. Using the TC concept in Case 2 generally performed better
than the correlation-based approach. These trends were consistent for both the Upper Nan
and the Loei river basins as observed in Figures 5 and 6. Incorporating the TC concept based
on the time parameter of catchment response was able to identify the accurate required
time for the mass of the water to travel from the catchment boundary to the destination
station where we aimed to predict. With the use of the NRCS velocity method, the travel
time of channel flow from the boundary was considered in Case 2, which exhibited high
performance in discharge predictions.
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To further evaluate and compare diverse models, we constructed scatter plots between
true discharge data and the predicted ones based on the test set. We also considered
multiple prediction steps to identify appropriate use cases in real-world applications.
Figure 8 depicts scatter plots for the TC feature representation, i.e., Case 2 from RNNs,
GRUs, and LSTMs evaluated at 3-h, 6-h, 9-h, and 12-h prediction points for the Upper Nan
basin. Similar plots for the Loei basin were constructed, as shown in Figure 9.
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Even though RNNs were inferior compared to their two variants based on NSE and
RMSE reported in Figure 7, there is no obvious conclusion for R according to Figures 8 and 9.
All model networks provided similar results, having high R values with slight variations.
The errors were limited at small values and grew substantially for larger discharge data.
For the Upper Nan River basin, GRUs yielded slightly better performance with a smaller
number of points deviated from the diagonal line, as shown in Figure 8. In terms of
deviation directions, all models generally overestimated the true discharge values with
small variants at high discharge values of GRUs and LSTMs. Similarly, GRUs and LSTMs
provided preferable performance with relatively small RMSE and high NSE. LSTMs are
relatively larger and more complicated, which typically work better with large datasets
compared to GRUs. With smaller data, LSTMs potentially overfit the training data and fail
to generalize with out-of-sample data in the test set. According to our experiment, results
among these models were relatively so similar that no obvious conclusion could be made.
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Compared with previous studies, we incorporated the TC concept which relied on
hydrology domain knowledge, to improve the model performance. Two studied areas
of the Upper Nan and the Loei river basins in Thailand were used. This study provided
a potential framework for discharge prediction as a universal precautionary measure.
Additional steps were required when applying to different datasets. The same networks
of RNNs, GRUs, and LSTMS were employed, but computing feature representations and
fine-tuning the models were performed separately. Due to the limitation of discharge data
availability, the annual rating curve was used to derive the relationship between water level
and discharge in this work. Errors were observed from experimented models, especially
with longer prediction periods, which should be improved further.

Our future work includes applying additional techniques with more complicated
networks to enhance the accuracy of the model. Also, experimenting with the proposed
pipeline on additional datasets could confirm observations obtained from our analysis.
Rainfall is also an important feature for flood forecasting; however, hourly rainfall data
in our study area contains significant missing values. Including rainfall data as input,
variables could be further explored in our future work when the data becomes available.

4. Conclusions

In this study, deep learning models were employed to perform a multi-step prediction
of the river discharge data. Two study areas of the Upper Nan and the Loei river basins in
Thailand were included as our case studies. The correlation-based method was initially
used as a feature representation baseline. We further enhanced the feature representations
with the Tc concept relying on the hydrograph knowledge. Typical RNNs coupled with
more advanced networks like GRUs and LSTMs were experimented with. These models



Water 2022, 14, 2898 13 of 14

provided similar results with slight variations whereas complicated models, GRUs, and
LSTMs provided superior performance for both study areas. Incorporating the TC concept
provided more desirable performance regardless of the implemented networks. Further
experiments on additional datasets could confirm the results and observations of the
analysis. With the current data limitation issue, some insightful input parameters, which
potentially enhance the model performance, were excluded.
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