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Lakes, together with rivers and subterranean aquifers, are indispensable natural
resources for humans and other organisms. Globally, there are more than 100 million
lakes [1], holding 87% of Earth’s liquid surface freshwater [2] and covering an area of
4.2 × 106 km2, including water bodies smaller than 1 km2 [3]. Lakes not only play a crucial
role in water supply, food production, and climate regulation [4] but also function as a
cornerstone for socio-economic development.

During the last century, anthropogenic climate changes, especially seasonal climate
alternations, intensified widespread use of agricultural chemicals (e.g., fertilizers and pesti-
cides), and rapidly increasing urbanization, have dramatically changed regional watershed
and hydrological patterns, exerting excessive pressure on lacustrine ecosystems [5]. As
both air and water temperatures are key controlling factors of lake thermal regimes [6] and
ecosystem metabolism [7], rising air temperatures and persistent nutrient input have direct
effects on the physical and ecological properties of lakes [8], often resulting in nuisance
algal blooms worldwide.

Harmful algal blooms affect ecosystem productivity and public health globally [9],
and the costs are high. For example, primarily as a result of harm to drinking water
supplies, aquatic food production, and diminished tourism, economic losses of more
than a billion dollars occur annually in the United States alone [10]. During the last few
years, the equivalent of tens of billions of US dollars have been allocated by the Chinese
government to mitigate eutrophication of lakes. In Yunnan Province in southwestern China,
conservation and pollution control of the so-called Nine Large Lakes (>30 km2) alone has
cost more than RMB 1.16 billion (~USD 180 million) during the last decade, but the situation
is still serious.

For many years, scientists have spared no effort to understand algal blooms and have
struggled to find effective measures to mitigate their harmful effects. Two of the main
foci of the United Nations’ Sustainable Development Goals are a commitment to water
resources (Goal #6) and the impacts of climate change (Goal #13). These concerns are also
essential components of the United Nations Framework Convention on Climate Change
(UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC).

People have long realized that satellites might play an important role in the scientific
study and operational management of hydrology and water systems [11]. Space-based
remote sensing was expected to revolutionize the monitoring of algal blooms and the
water quality of large lakes [12], but it has proven difficult to draw statistically accurate
pictures from such data [13]. Before the development of advanced technical equipment and
practical theories, we must first focus on understanding lacustrine eutrophication and algal
blooming [14]. In situ monitoring and sustained analyses of various samples are crucial,
not only with respect to adequately understanding lacustrine systems themselves, but also
to provide valuable background and crosschecks to ensure reliable application of advanced
technologies in the future.
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Lakes themselves and their drainages involve many important systems and dynamic
processes (Figure 1). Humans directly change both global and regional climate dynamics,
catchment hydrological and transportation patterns and processes, lake eco-dynamics
and deposition–evolution processes. Most importantly, serious disturbance of all these
processes results in the shutoff of three critical interactions: depositional processes and
geochemical and bio-geochemical interactions, which can lead to the deterioration or
collapse of lakes’ self-clarification ability and self-restoring capacity, effectively leaving
them “dead.”
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Strengthening anthropogenic environmental changes driving biodiversity loss de-
creases ecosystem stability [15]. Maintaining healthy biodiversity is crucial to stabilize
ecosystem productivity [16–19], as greater biodiversity generally provides greater resistance
to the extreme climate events [20].

Ongoing climate change is expected to accelerate hydrological cycles and thereby
increase available renewable freshwater resources. However, changes in seasonal patterns
and the increasing probability of extreme events may offset this effect [21]. This will
inevitably induce fundamental variations in lake systems and their functions. In this
expectation, we face the brutal reality that much more time and effort than expected are
needed to restore polluted lakes to their health condition. In particular, (1) we must pay
special attention and alert that the potential harmful effects and unrealized consequences
of highly eutrophicated lake waters, e.g., novel hypertoxic viruses and new toxic chemical
and organic compounds are overwhelming; (2) we should pay attention to the large long-
distance trans-regional water drainage claimed to mitigate lake water pollution, as this
process might result in abrupt changes in the established watershed ecosystems.

Lakes support a global heritage of biodiversity and supply key ecosystem resources.
Securing a sustainable future for lakes ultimately lies in the scientific management of these
treasured natural resources, and concerted efforts at the local governance through national
and international levels. It is necessary to work from individual to regional clusters of lakes
because the lake status varies depending upon the location, depth, area, agricultural and
industrial intensity, and trophic status. “One alone is good,” but only through close and
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coherent collaboration can we successfully address global challenges, pursuing common
goals to maintain and protect lake health synergistically.
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