
Citation: Muhammad, M.K.I.;

Shahid, S.; Hamed, M.M.; Harun, S.;

Ismail, T.; Wang, X. Development of a

Temperature-Based Model Using

Machine Learning Algorithms for the

Projection of Evapotranspiration of

Peninsular Malaysia. Water 2022, 14,

2858. https://doi.org/10.3390/

w14182858

Academic Editor: Yaoming Ma

Received: 10 August 2022

Accepted: 6 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Development of a Temperature-Based Model Using Machine
Learning Algorithms for the Projection of Evapotranspiration of
Peninsular Malaysia
Mohd Khairul Idlan Muhammad 1, Shamsuddin Shahid 1 , Mohammed Magdy Hamed 2 , Sobri Harun 1,
Tarmizi Ismail 1 and Xiaojun Wang 3,4,*

1 Department of Water & Environmental Engineering, School of Civil Engineering, Faculty of Engineering,
Universiti Teknologi Malaysia, Skudai 81310, Malaysia

2 Construction and Building Engineering Department, College of Engineering and Technology,
Arab Academy for Science, Technology and Maritime Transport (AASTMT), B 2401 Smart Village,
Giza 12577, Egypt

3 State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Nanjing Hydraulic
Research Institute, Nanjing 210029, China

4 Research Center for Climate Change, Ministry of Water Resources, Nanjing 210029, China
* Correspondence: xjwang@nhri.cn

Abstract: Reliable projections of evapotranspiration (ET) are important for agricultural and water
resources development, planning, and management. However, ET projections using well established
empirical models suffer from uncertainty due to their dependency on many climatic variables. This
study aimed to develop temperature-based empirical ET models using Gene Expression Programming
(GEP) for the reliable estimation and projection of ET in peninsular Malaysia within the context
of global warming. The efficiency of the GEP-generated equation was compared to the existing
methods. Finally, the GEP ET formulas were used to project ET from the downscaled and projected
temperature of nine global climate models (GCMs) for four Representative Concentration Pathways
(RCPs), namely, RCP 2.6, 4.5, 6.0, and 8.5, at ten locations of peninsular Malaysia. The results
revealed improved performance of GEP models in all standard statistics. Downscaled temperatures
revealed a rise in minimum and maximum temperatures in the range of 2.47–3.30 ◦C and 2.79–3.24 ◦C,
respectively, during 2010–2099. The ET projections in peninsular Malaysia showed changes from
−4.35 to 7.06% for RCP2.6, −1.99 to 16.76% for RCP4.5, −1.66 to 22.14% for RCP6.0 and −0.91 to
39.7% for RCP8.5 during 2010−2099. A higher rise in ET was projected over the northern peninsula
than in the other parts.

Keywords: evapotranspiration projections; machine learning; climate change; temperature; GEP

1. Introduction

Evapotranspiration (ET) is a vital component of the water cycle, which has a very
similar impact on water resources like rainfall [1–3]. It plays an important role, like rainfall,
in defining irrigation needs, runoff volume, and dam storage [4,5]. ET’s role in hydrology
has become apparent through an increasing water demand and limited water supplies due
to climate variability and changes [6,7]. Numerous studies evaluated the changes in ET and
their implications on the hydrological process, water demand, availability, and accessibility
due to climate variability and changes [8–11]. However, studies on ET projections in the
tropical region under climate change scenarios are limited. This emphasizes the need
to evaluate the climate change impacts on ET in the tropical region, where higher ET
under higher temperatures can have severe implications, including increasing water stress,
reducing crop yield, and prompting economic losses, particularly in agriculture-dependent
regions [2,12–15].
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Actual ET can be measured using direct experimental methods [16]. Among them,
lysimeter estimation is the most reliable [17,18]. The major limitations of lysimeter ET
measurement are the higher cost, time investment, and level of skills required. Moreover,
lysimeters only estimate ET in the vicinity of the measurement locations [19]. Several
remote sensing-based ET products have recently been available [20]. They provide higher
resolution ET estimates over a large area on a daily scale. The major drawback of these ET
products is the large amount of uncertainty. The available periods for these data are also
less [21–24].

Due to the limitations of experimental and remote sensing approaches, various empiri-
cal ET models have been developed based on meteorological observation data [1,25]. These
empirical formulas are location-specific since they were designed considering the region’s
climate and can only be applicable in that region [19,26]. This is due to the influence of local
weather conditions on the functioning of these models [16]. Therefore, a large inconsistency
in the model’s performance in similar climatic regions has been noticed. For example,
Nandagiri and Kovoor [27] showed the improved capacity of the temperature-based Har-
greaves model in ET estimation in the Indian arid region, while Wei et al. [28] found
Shuttleworth–Wallace as the best model for ET estimation in the arid region of China. The
Penman–Monteith (PM) approach is one of only a handful of universally acknowledged
empirical formulations [29]. The PM model requires a wide range of weather factors and
data covering a long period for better accuracy [1,25]. Obtaining long-term data for a
wide range of meteorological variables is a challenge all over the globe. However, the
major problem in PM-based ET projections is the unavailability of the projections of the
meteorological variables required for the PM method.

Global climate models (GCMs), conventionally employed for climate change simulations,
do not provide all the variables required for ET estimation using the PM method [30,31].
Most GCMs project only temperature and precipitation [32–34]. Therefore, ET projections
under climate change scenarios need empirical equations to estimate ET reliability using only
temperature data [16,25,35]. However, the existing temperature-based ET estimation methods
generally provide highly biased ET estimation, which has made them inefficient for ET projec-
tions in climate change scenarios [18,19]. For example, the Hargreaves model, widely used for
ET projections due to its simple structure and its only requirement being temperature data,
heavily depends on the difference between the daily maximum and minimum temperatures
or diurnal temperature range. As most GCMs projected a reduction of DTR, the Hargreaves
model also projects a decrease in ET in the future [36].

In recent years, machine learning (ML) has been used to overcome the challenge of ET
estimation using existing empirical models [8,35]. The ML models have shown their high
efficiency and applicability in ET estimation with limited available data in different climate
regions [37–40]. However, the major drawback of ML models is their black-box nature,
which limits their application in the field. It is important to have easily understood formulae
for practitioners and engineers in calculating ET in the field. Black box models also need
a high-performance computing device for running the ML model, which also limits its
field applicability. In recent years, grey-box models have been used to generate equations
using ML algorithms [41,42]. Such equations, representing ET processes, are derived from
experimental data using black box models [43]. Those can be used by engineers and
practitioners in the field for simple but reliable ET computation [19,44,45].

The present study aims to develop empirical models for reliable ET projection under
climate change scenarios using limited meteorological data. This study employed an
ML symbolic regression algorithm to develop an empirical equation for estimating ET
from temperature only for peninsular Malaysia. The model’s effectiveness was evaluable,
comparing its performance with the existing temperature-based method. Finally, the newly
developed model was used to project ET in peninsular Malaysia for different climate change
scenarios and future time horizons. The GCMs of Coupled Model Intercomparison Phase
5 (CMIP5) that have projections for all four Radiative Concentration Pathways (RCPs)
were used.
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The novelty of this study comes from the robustness of the empirical ET models
generated, particularly in reducing uncertainty in the estimation of ET and projections of
ET. Only daily maximum and minimum temperatures, either observed or GCM simulated,
can be used for simple but reliable estimation or projection of ET using the equations
developed in this study. This would omit the data requirement of multiple atmospheric
variables for reliable estimation and projection of ET. It would also help to overcome the
drawback of existing temperature-based methods in projecting ET as mentioned earlier.
The proposed methodology can be replicated in other regions to develop reliable ET models
in estimating and projecting ET from easily available meteorological variables. Being able
to reliably estimate ET, and assess changes in ET due to global warming, could be useful
for assessing climate implications and deciding adaptation actions to mitigate evolving
water challenges.

2. Study Area

The study area, Peninsular Malaysia, is also known as West Malaysia (former Malaya).
Peninsular Malaysia is situated in the tropics (1.20◦–6.40◦ N; 99.35◦–104.20◦ E) between
Thailand to its north and Singapore to the south. It occupies an area of nearly 130,600 km2

(50,424 square mile). The area’s topography comprises undulating lands with high moun-
tains in the central region. Forests cover a major part of the peninsula, particularly the
central region. The Melaka straits bind the peninsula in the West and the South China
sea in the east. Peninsular Malaysia consists of several islands with varying areas. The
Penang and Langkawi islands in the northwest are the most notable among the islands.
The position of peninsular Malaysia in Southeast Asia and its topography are presented in
Figure 1.
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Figure 1. (a) Location of peninsular Malaysia on the map of Southeast Asia; (b) Geographical position
of peninsular Malaysia. The topography and location of the meteorological stations are also provided.

Peninsular Malaysia has a hot and humid climate. The interactions of monsoonal
winds from the oceans with the mountainous lands determine its climate [35]. The average
temperature varies from 21.1 to 32.0 ◦C, and the yearly total rainfall is between 1800 and
3900 mm [46]. Patterns of the seasonal wind flow combined with the features of the local
topography define the precipitation distribution of the peninsula [16,17]. The region’s
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temperature is mostly uniform over the year, with low seasonal variability in minimum
and maximum temperatures.

The monthly average for the mean, maximum, and minimum temperatures for the
period 1975–2014 are shown in Figure 2a. The daily maximum temperature of the peninsula
varies from 31.0 to 33.0 ◦C. The mean temperature varies from 26.6 to 28.1 ◦C, and the
minimum temperature is between 23.3 and 24.4 ◦C. All temperatures are minimum in
January and maximum in either April or May. The daily ET in the area varies between 2.5
and 3.6 mm, as shown in Figure 2b. Pour et al. [18] reported a slower ET rate in the rainy
months due to increased cloud coverage, while a higher ET was reported in the dry months
with a clear sky over the peninsula. The ET rate is proportionally lower for highland areas
where the air temperature is substantially lower [19].
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3. Data

The in situ daily temperature and ET data from 10 meteorological stations were
obtained from the Malaysian Meteorological Department. The gauging points in the
peninsula are given in Figure 1b. The data were collected for the period spanning 1975–2014.
Several gaps were noticed in the temperature time series, which were filled using the cubic
spline interpolation algorithm. The daily temperature simulations from nine GCMs for
historical (1975–2005) and future (2010–2099) periods were employed for ET projections.
The method for selecting models followed the available simulations of four RCPs and a
model from each developing country in CMIP5. The data were obtained from the public
domain (http://cmip-pcmdi.llnl.gov/cmip5/ (accessed on 15 January 2022)) and described
in Table 1. The selected CMIP5 temperature simulations were interpolated at station
locations using a bilinear interpolation approach [47,48].

Table 1. List of CMIP5 GCMs employed in this research.

Model Developing Institute Model Name Resolution
(Lon × Lat)

Beijing Climate Center, China BCC-CSM1.1 2.8◦ × 2.8◦

National Center for Atmospheric Research, USA CCSM4 1.25◦ × 0.94◦

Met Office Hadley Centre, UK HadGEM2-ES 1.87◦ × 1.25◦

Atmosphere and Ocean Research Institute, The
University of Tokyo, Japan MIROC-ESM 2.8◦ × 2.8◦

http://cmip-pcmdi.llnl.gov/cmip5/
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Table 1. Cont.

Model Developing Institute Model Name Resolution
(Lon × Lat)

Bjerknes Centre for Climate Research,
Norwegian Meteorological Institute, Norway NorESM1-M 2.5◦ × 1.9◦

Geophysical Fluid Dynamics Laboratory, USA GFDL-CM3 2.5◦ × 2.0◦

Commonwealth Scientific and Industrial
Research Organization, Australia CSIRO-Mk3.6.0 1.86◦ × 1.87◦

Institut Pierre Simon Laplace, France IPSL-CM5A-MR 1.26◦ × 2.5◦

Meteorological Research Institute, Japan MRI-CGCM3 1.12◦ × 1.12◦

4. Methodology

The procedure that we followed to achieve the objectives is as follows. The methods
are described in the subsections.

1. Gene expression programming (GEP) was used to generate a temperature-based
empirical equation for the estimation of ET for peninsular Malaysia

2. The accuracy of the newly developed empirical model was assessed by comparing its
performance with the existing temperature-based empirical methods

3. GCMs were used to downscale and project temperatures at the study locations.
4. The newly developed GEP ET model was used to project the ET of Peninsular Malaysia

from the GCM projected temperature

4.1. Gene Expression Programming (GEP)

The ML-based symbolic regression method called GEP was employed in this study to
generate temperature-based ET equations. GEP was used as the literature suggests that it is
highly effective for generating empirical equations [49,50]. The concept of GEP originated
from evolutionary algorithms [51], a variant of genetic programming [52]. GEP comprises
two main components: the chromosomes and the expression trees expressing the genetic
variations encoded in chromosomes. Various genetic operators introduce genetic variations,
including mutation, transposition, and recombination. The set of rules in GEP are very
simple. The chromosomes of the initial population (program) are randomly generated and
presented using expression trees. In this study, ET equations are presented using expression
trees. Evolutionary operators are applied to the equations to evolve new expression trees
from the initial trees and, thus, new ET equations. The fitness of each equation is evaluated
using a statistical metric. The equations found to have better fitness or higher capacities for
estimating the observed ET are kept for the next iteration, while others are discarded. The
process is repeated until the expected ET equation is obtained with less error than in the ET
estimation. A typical process of GEP model development is shown in Figure 3.
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The procedure used to develop the GEP model using GEP is as follows:

1. Selection of fitness function or a set of fitness functions. The Nash–Sutcliff Efficiency
(NSE) was considered for the fitness function.

2. Selection of a set of terminals and a set of functions. The inputs were selected according
to their influence on ET.

3. Creation of chromosomes from the selected terminals and functions.
4. Setting the chromosomal architecture.
5. Selection of the linking function.
6. Selection of genetic operators.

The above-mentioned steps were repeated until the fittest program was achieved.
In this research, the GeneXproTools software package was used to perform symbolic
regression operations based on Gene Expression Programming (GEP) for modelling ET.

4.2. Temperature-Based ET Methods

This study employed six temperature-based empirical models to assess the skill of the
newly developed ET model using GEP. The models were selected based on their applicability
worldwide. Table 2 provides the details of the ET models. Further details of the models and
their performance in Peninsular Malaysia can be found in Muhammad et al. [16].
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Table 2. The temperature-based empirical ET formulations considered in this study.

No Model Input Parameter Equation

1 FAO
Blaney-Criddle [53] Tmean p(0.46Tmean + 8.13)

2 Linacre [54] Tmean
700(Tmean±0.006z)

100−L +15(Tmean−Td)
80−Tmean

3 Kharrufa [55] Tmean 0.34pTmean
1.30

4 Hargreaves and
Samani [56] Tmean, Tmin, Tmax, Ra

(
0.0023 Ra

2.45

)
TD0.5(Tmean + 17.8)

5 Trajkovic [57] Tmean, Tmin, Tmax, Ra (0.0023Ra)TD0.424(Tmean + 17.8)

6 Ravazzani [58] Tmean, Tmin, Tmax, Ra (0.817 + 0.00022z)(0.0023Ra)
(
TD0.5)(Tmean + 17.8)

TD is daily temperature range (◦C); Tmean is the average temperature (◦C); Ra is the extraterrestrial radiation
(MJ/m2/day).

4.3. Temperature Downscaling and Projections

In the present study, the model output statistics (MOS) approach [47] was used for the
downscaling of GCMs at each station location for the projections of ET. For this purpose, the
GCM simulations (historical and future) from four grid points surrounding a meteorological
station were interpolated to the station location using the bilinear interpolation method [48].
Interpolated GCM temperatures were compared with in situ temperatures for 1975–2005.
The quantile mapping technique was employed to correct bias in GCM simulations using
in situ temperatures as the reference. Finally, the bias correcting factors were employed to
correct bias in the projected temperatures for 2010–2099.

5. Results & Discussion
5.1. Development of Temperature-Based ET Equations Using GEP

GEP models were calibrated with approximately seventy percent of the data and vali-
dated with thirty percent of the data. The GEP algorithm was run for at least 10,000 iterations
for the purposes of calibrating and cross-validating the models. The GEP hyperparameters
were optimized during cross-validation. Finally, the optimized parameters were used for
ET prediction. The GEP models were developed separately for all the ten selection locations
of peninsular Malaysia. The obtained models for the Alor Setar station are given in Table 3.

Table 3. The GEP models developed at all the stations in Peninsular Malaysia.

Station Name Model

Alor Setar [(0.708527 + Tmax + (Tmax/−0.570404)) × ((Tmax + Tmin) × (0.708527/Tmax))] + [0.271 × Tmin−4.310577]
+ [Tmax−((39.983448 + Tmin)/(6.337066 + Tmin))]

Bayan Lepas [−2.659455/(Tmin + ((Tmin + Tmax) × (−2.659455/Tmax)))] − [9.144561] + [((Tmax + 2.659455) ×
Tmax)/(Tmin + 1.002563 + 2 × Tmax)]

Ipoh [−9.89798−Tmin] + [(2 × Tmax−Tmin + 2.245544)/8.36405] + [Tmin + 7.706391]

Kota Bharu ((Tmax/4.688568) − (4.688568/Tmin) − 4.688568) + (−1.946625/((Tmin×
−1.946625) + Tmax + 5.589417)) + (Tmax/(Tmin − ((Tmin + Tmax)/(Tminˆ2))))

Kuala Terenggannu (Tmax/5.405304) + ((2 × Tmax + 2 × Tmin)/((Tmaxˆ0.13211) + (Tmax × 5.950409)))+
((Tmin + Tmax)/(12.843872 − Tmax))

Kuantan (((Tmin × −1.63205) + (Tmin/−1.63205))/((Tmin × Tmax)/(Tmin − 1.63205))) +
(((−4.044677/(Tmin/Tmax)) + 1.682221 − Tmax)/−4.044677) − 4.384247

Melaka ((−8.459076 + Tmax)/Tmax) + ((Tmax − Tmin)/((2 × Tmax)/(0.269501 + Tmax))) +
(−8.391388/(Tmin − 18.419738))

Muadzam Shah
[((Tmin − Tmax)/(7.168945 − Tmax))/((7.168945/Tmax) − 7.411835)] + [((−6.097015/Tmin) − (4.724793 +

Tmin))/((Tmax × 4.724793) + (−6.097015/Tmax))] + [((Tmin − Tmax)/(−9.070129 −
Tmax))/(1.893555/Tmin)]

Senai [(−5.88443 − Tmin + Tmax)/(−3.50461 + 2Tmin)] + [−10.39233/(Tmin − 14.90024)] + [2Tmax
2/Tmin

2]

Subang [−4.079162/Tmin] + [(6.476776 − Tmin)/(Tmax/(Tmin − Tmax))] +
[−14.214936/(−12.751648 + Tmin)]
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5.2. Performance Evaluation of GEP ET Equations

The accuracy of GEP ET formulas in estimating in situ ET was evaluated at all locations.
Four statistical metrics, Nash–Sutcliffe Efficiency (NSE), mean absolute error (MAE), root-
mean-square error (RMSE), and modified coefficient agreement (md), were used for this
purpose. The results in Table 4 showed the high performance of the GEP estimated ET
model at different stations. The NSE value was more than 0.76 at all locations. The MAE and
RMSE values were less than 10.1 and 12.1, and md values were more than 0.7 at all stations.
This indicates the efficiency of the newly developed ET models for peninsular Malaysia.

Table 4. Performance of temperature-based ET model developed using GEP.

Station Name NSE MAE RMSE md

Alor Setar 0.98 4.7 7.9 1.0
Senai 0.94 5.4 7.6 0.9

Bayan Lepas 0.92 6.6 8.9 0.9
Ipoh 0.81 7.3 9.3 0.7

Muadzam Shah 0.79 6.9 8.9 0.8
Subang 0.76 6.1 7.6 0.7

Kuantan 0.99 3.3 4.8 1.0
Melaka 0.94 6.1 9.3 0.9

Kota Bharu 0.87 10.1 12.1 0.8
Kuala Terenggannu 0.95 5.8 10.3 0.9

The relative performance of the GEP ET model with the existing temperature-based
models was also evaluated. The scatter plot of the in situ and GEP simulated ET is
presented in Figure 4. Observed and model-simulated ET data for all locations were
merged to generate the scatter plots. The points along the diagonal line indicate the
improved performance of the model. The results showed that GEP ET estimated points
are more aligned with the diagonal line than the other model. This indicates the improved
accuracy of the newly developed equations over the existing ET methods. Therefore, the
newly developed models can be used for reliable projections of ET around peninsular
Malaysia using the GCM projected temperature.

The performance of the models was evaluated using different statistical metrics. The
obtained results from different locations are presented using box plots in Figure 5. The
results are presented to show the accuracy of the GEP model compared to the existing
empirical model and, thus, the capability of the GEP model to reduce uncertainty in
estimating ET in Peninsular Malaysia. The vertical red line in the plot indicates the optimum
value of the corresponding metric. Therefore, a box close to the ideal line indicates better
performance. The results showed the GEP box is much closer to the optimum line than the
other models. It indicates the higher performance of GEP compared to the other models.
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5.3. Projection of ET

The temperatures projected by all GCMs were integrated to generate ensemble projec-
tion. In this study, the multimodel ensemble (MME) projections were obtained by averaging
the projections of all GCMs. The MME mean temperature at each station was used to esti-
mate the projected mean change in temperature. The changes in Tmin and Tmax at the Alor
Setar station are given in Figure 6 as an example.
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The MME mean of the GCM projected temperatures showed a rise in maximum
temperature at all locations for all the RCPs. The increasing pattern was similar to that
obtained for two other periods, 2010–2039 and 2040–2069. The RCP2.6 projected an increase
by 0.00 to 0.41 ◦C, RCP4.5 by 0.84 to 1.27 ◦C, RCP6.0 by 1.28 to 1.71 ◦C, and RCP8.5 by 2.79
to 3.24 ◦C. A larger rise in minimum temperature was projected in the north and south of
the peninsula and at least in the central region of the peninsula. The RCP2.6 projected a
rise in minimum temperature by 0.15 to 0.43 ◦C, RCP4.5 by 0.54 to 1.38 ◦C, RCP6.0 by 0.92
to 1.77 ◦C, and RCP8.5 by 2.47 to 3.30 ◦C.

The changes in ET, compared to the historical period (1975–2005), at all studied
locations are given in Figure 7. The results show an increase in ET for all RCPs and future
time horizons for the stations located northwest of the peninsula. The highest increase was
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projected for Byan Lepas, located in the northwest, by 2.3–7.06% for RCP2.6, 4.88–16.76%
for RCP4.5, 6.16–22.14% for RCP6.0 and 10.39–39.74% for RCP8.5. Stations in other parts of
the peninsula showed a decrease in ET for RCP2.6 during 2010–2039. The decrease was
found to be higher at the stations located in the central part. For RCP4.5, ET was projected
to decrease for all the future periods only at Muadzam Shah station. It decreased at other
stations in the central region during 2010–2039 but increased for later periods. The increase
was found to be rapid for many stations. For example, it was projected to increase only
0.96% during 2010–2039, but 10.3% during 2070–2099 for RCP4.5. The ET was projected
to increase at all stations for all the periods for RCP6.0, except Muadzam Shah. The ET
was also projected to increase at all stations for all future periods for RCP8.5, except at
Muadzam Shah during 2010–2039. The increase in ET at different stations during 2040–2069
was in the range of 1.35–25.33%, while increases were in the range of 3.35–39.74% during
2070–2099.

Water 2022, 14, x  12 of 17 
 

 

(a) 

 

(b) 

 

(c) 

 

Figure 7. Projected changes (%) in the annual average of daily ET for three future periods: (a) 2010–
2039; (b) 2040–2069; and (c) 2070–2099 compared to the historical period (1975–2005) for four RCPs 
at different locations of peninsular Malaysia. 

The changes in ET for different RCPs for the whole future period (2010–2099) were 
plotted to assess the uncertainty in projections. The projected ET at Alor Setar station for 
different RCPs is shown as an example in Error! Reference source not found. Projections 

Figure 7. Cont.



Water 2022, 14, 2858 12 of 16

Water 2022, 14, x  12 of 17 
 

 

(a) 

 

(b) 

 

(c) 

 

Figure 7. Projected changes (%) in the annual average of daily ET for three future periods: (a) 2010–
2039; (b) 2040–2069; and (c) 2070–2099 compared to the historical period (1975–2005) for four RCPs 
at different locations of peninsular Malaysia. 

The changes in ET for different RCPs for the whole future period (2010–2099) were 
plotted to assess the uncertainty in projections. The projected ET at Alor Setar station for 
different RCPs is shown as an example in Error! Reference source not found. Projections 

Figure 7. Projected changes (%) in the annual average of daily ET for three future periods:
(a) 2010–2039; (b) 2040–2069; and (c) 2070–2099 compared to the historical period (1975–2005) for four
RCPs at different locations of peninsular Malaysia.

The changes in ET for different RCPs for the whole future period (2010–2099) were
plotted to assess the uncertainty in projections. The projected ET at Alor Setar station for
different RCPs is shown as an example in Figure 8. Projections by different GCMs represent
the uncertainty in projection. For the RCP2.6 and RCP4.5 scenarios, CSIRO-Mk3.6.0 pro-
jected a higher increase in ET, while IPSL-CM5A-MR and MIROC-ESM projected the least
increase in ET. For RCP6.0 and RCP8.5, GFDL-CM3 projected a higher increase in ET, while
BCC-CSM1.1 projected a relatively low increase in ET. The uncertainty in the projected
ET was higher for the last part of the projection than in the earlier part. The increase in
uncertainty was found to be gradual with time. For example, the uncertainty range in ET
projection for RCP6.0 was 3.41–3.58 mm during 2010–2039, 3.56–3.72 mm during 2040–2069,
and 3.7–3.88 mm during 2070–2099. The uncertainty in ET projection was also higher for
higher RCPs. Therefore, uncertainty in ET projection was found to be highest for RCP8.5
and lowest for RCP2.6. The uncertainty in ET projection for RCP2.6 during 2070–2099
was 3.36–3.67 mm, while it was 3.46–3.89 mm for RCP4.5, 3.70–3.88 mm for RCP6.0, and
4.01–4.31 mm for RCP8.5.
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6. Discussion

The present study developed empirical models using GEP for reliable ET estimation
and projection using only temperature data. The comparison of the newly developed
models showed higher performance in terms of multiple statistical indices compared to
the existing widely used temperature-based models. The performance of the GEP models
according to some indices showed considerable improvement. For example, the NRMSE
(%) of the GEP models was in the range of 7.8 to 19.9 at different locations compared to
198.1–354.1 for the Hargreaves model, which showed the best performance among the
five empirical models considered. This indicates a nearly twenty-fold improvement in
performance in NRMSE. Similar improvement was noticed in other indices. This indicates
the capability of GEP models in estimating ET in Peninsular Malaysia with higher accuracy
and less uncertainty.

RCPs are considered to be radiative forcing based on factors contributing to greenhouse
gas concentrations, including land use and land cover changes, population growth, and
economic evolution [59]. For example, RCP2.6 shows an increase in agricultural land with
no change in grassland over time. RCP4.5 shows decreased cropland while increasing
in vegetated land at the end of the century [60]. Therefore, the results presented in the
study for different RCPs should be interpreted based on global changes in land use that are
considered when designing RCPs [61].

This study developed and employed only the temperature-based model considering
the ready availability of temperature data. This is also due to their applicability in projecting
ET. All GCMs project temperature data for all RCPs. However, this is not the case for other
climate variables, like wind speed and solar radiation. Only a few GCMs project those
variables but not for all RCPs. Therefore, the equations developed in this study can be used
in ET projections for all GCMs and RCPs. This helped us to understand the complete range
of uncertainty in ET projections.

The projection of ET using GEP models revealed an overall increase in ET in Peninsular
Malaysia for all RCPs. The increases would be higher during 2070–2099 compared to the
other periods. The increase would also be higher for higher RCPs than the lower RCPs.
Therefore, the largest increase will be for RCP8.5 during 2070–2099, with an areal average
of nearly 21%. In contrast, it may slightly decrease in the early period for RCP2.6. However,
the average areal decrease is projected at only 1.2%, which is negligible. Uncertainty in
the projected ET shows an increase over time. The greater uncertainty was noticed for
higher RCPs. Therefore, it can be anticipated that the large projected increase in ET during
2070–2099 for RCP8.5 is more uncertain than the projected decrease in ET for RCP2.6 during
2010–2039.
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7. Conclusions

The present study used the symbolic regression method to develop new temperature-
based ET models with regard to Peninsular Malaysia for ET estimation and projections for
different RCPs. The results indicate that the GEP model developed with only temperature
data can estimate ET reliably, which establishes the efficacy of GEP models in estimating
daily ET in peninsular Malaysia. The study reports a rise in ET with an increase in
temperature in the study area. ET would increase all over the peninsula for all RCPs
and future periods, except in the central peninsula for the early (2010–2039) period for
mild RCPs. Climate change may affect irrigation, agriculture, and ecology across the
globe. The GEP-based method proposed in this study has the potential to be employed for
generating reliable ET empirical formulations, which can be used for reliable projections
of ET for assessing climate change impacts on different water sectors. The ET projections
in Peninsular Malaysia shown in this study could help support adaptation responses for
reducing climate change risk. The findings will be useful to different organizations working
on natural resource management. The results could also enhance knowledge of climate
change and its impact on ET. In the future, GCMs of recently released CMIP6 can be
employed in improving the predictions of new scenarios.
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