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Abstract: Surface water in streams and rivers is a valuable resource and pollution events, if not
tackled in time, may have dramatic impacts on aquatic ecosystems. As such, in order to prepare
pollution prevention plans and measures or to set-up timely remedial options, especially in the early
stages of pollution incidents, simulation tools are of great help for authorities, with specific reference
to environmental protection agencies and river basin authorities. In this paper, we present the
development and testing of the ORGANICS plugin embedded in QGIS. The plugin is a first attempt
to embed surface water solute transport modelling into GIS for the simulation of the concentration
of a dissolved substance (for example an organic compound) in surface water bodies including
advection dispersion and degradation. This tool is based on the analytical solution of the popular
advection/dispersion equation describing the transport of contaminants in surface water. By pro-
viding as input data the concentration measured at the entry point of a watercourse (inlet boundary
condition) and the average speed of the surface water, the model simulates the concentration of a
substance at a certain distance from the entry point, along the profile of the watercourse. The tool is
first tested on a synthetic case. Then data on the concentration of the pharmaceutical carbamazepine
monitored at the inlet and outlet of a vegetated channel, in a single day, are used to validate the tool
in a real environment. The ORGANICS plugin aims at popularizing the use of simple modelling tools
within a GIS framework, and it provides GIS experts with the ability to perform approximate, but
fast, simulations of the evolution of pollutants concentration in surface water bodies.

Keywords: water pollution; solute transport modelling; Geographic Information System (GIS);
pollution prevention plans; pharmaceuticals; carbamazepine; longitudinal dispersion coefficient;
decay rate coefficient

1. Introduction

Surface water in streams and rivers is a valuable resource, and pollution events, if not
tackled in time, may have dramatic impacts on aquatic ecosystems [1–4]. As such, in order
to prepare pollution prevention plans or to set up timely remedial options, especially in
the early moment of pollution incidents, simulation tools are of great help for authorities,
with specific reference to environmental protection agencies and river basin authorities.
Modelling of solute transport in surface water is then a valuable and common option [5–9],
especially by means of analytical solutions simplifying system description and reducing
complexity [10–12], providing fast, even approximate, answers, particularly in cases of
insufficient data availability for the implementation of more complex numerical models.

In order to advance the use of modelling tools and to support the digitalization of the
technical sector these tools must be user-friendly, and built around free and open-source
codes. An open code may guarantee the reproducibility and the reliability of the analyses
performed [13,14] and their early deployment and impact [15,16].
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Geographic Information Systems (GISs) are worldwide mainstreaming tools and
methodologies for storing, managing/analyzing and visualizing large temporal, spatial and
non-spatial datasets (for both geometric and alphanumerical data). Hence, they are widely
applied to support environmental modelling [17,18]. The possibility of including modelling
tools in Geographic Information Systems (i.e., via plugins), and the existing community
of users and developers in constant growth, is potentially the most relevant strength of
such tools [18–20]. For thirty years GIS and water modelling codes/applications have
been successfully integrated. Vieux [21] presented an application of the GIS, ARC/INFO
and the finite element solution to the kinematic wave equations to process the spatially
variable terrain in a small watershed using a Triangular Irregular Network for the solution
of overland flow. Oliveira et al. [22] presented ArcGIS-SWAT, a geodata model and GIS
interface for the Soil and Water Assessment Tool (SWAT; [23]). Becker and Jiang [24]
developed a computationally efficient method for predicting contaminant mass flux to
a specified boundary, carrying out the method in a GIS and taking full advantage of
widely available digital hydrologic data. Akbar et al. [25] showed a GIS-based modelling
system called ArcPRZM-3 for the spatial modelling of pesticide leaching potential from
soil towards groundwater. Rossetto et al. [26] integrated a suite of groundwater modelling
tools in the gvSIG GIS application [27]. Oliveira and Martins [28] developed an application
for the preliminary characterisation of the river boundary condition for a MODFLOW [29]
finite difference groundwater flow numerical model. Bittner et al. [30] developed the
LuKARS GIS-based model for simulating the hydrological effects of land use changes on
karst systems.

Among GIS desktop applications, QGIS [31] is probably the most popular free geospa-
tial software. Rosas-Chavoya et al. [20] conducted a bibliometric analysis on the acceptance
of this application on documents published in Scopus from 2005 to 2020, considering
931 manuscripts. They observed a favorable trend in the acceptance of QGIS across the
world and the development of large collaborative networks.

Several plugins have been developed for QGIS within the hydrological or aquatic
domain. In particular, Nielsen et al. [32] developed the Water Ecosystems Tool, a workflow
implemented (as a plugin) in QGIS, for the application and evaluation of aquatic ecosystem
models. Ellsäßer et al. [33] developed the QWaterModel as an easy-to-use tool to make
evapotranspiration predictions available to broader audiences. The QWaterModel is a
QGIS plugin compatible with all versions of QGIS3. Dile et al. [34] developed an open-
source user interface for the SWAT [23], QSWAT, using various functionalities of the
QGIS application. Rossetto et al. [18] presented the FREEWAT plugin for managing the
groundwater resource, including tools for the management of hydrochemical data [35] and
nitrate leaching assessment [36].

In this paper, we present the development and testing of the ORGANICS plugin
as a first attempt to embed surface water solute transport modelling into GIS. This tool
allows users to simulate the concentration of a dissolved substance (for example an organic
compound) in surface water bodies by applying an analytical solution of the advection
dispersion equation, which includes also a first-order degradation term. By providing as
input the stepwise time-variant concentration measured at the entry point of a watercourse,
along with the related average water velocity, the concentration of a substance at a certain
distance from the entry point along the profile of the watercourse, is simulated. A sketch of
the presented problem is shown in Figure 1.

After presenting the theoretical and modelling approach, we show an example applica-
tion of the plugin (to be used as a tutorial), and then a real case study application to simulate
carbamazepine concentration in a vegetated channel collecting poorly treated wastewater.
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Figure 1. Schematic draw of contaminant movement along a surface water reach.

2. Materials and Methods

The model used in the ORGANICS plugin is based on the analytical solution of the
popular advection/diffusion/decay equation, in one-dimensional form, taken from [10,37]:
where:

∂C
∂t

+
∂vxC

∂x
= E

∂2C
∂x2 − kC (1)

C: is the solute concentration expressed as mass per unit volume of water [M/L3],
vx: longitudinal fluid flow velocity is the input velocity [L/T].
x: is the longitudinal coordinate [L],
t: is time [T],
E: is the longitudinal dispersion coefficient accounting for the combined effects of

ionic or molecular diffusion and hydrodynamic dispersion [L2/T].
k: is a first-order decay rate [T−1].
Using a constant concentration boundary condition at x0 = 0 [L] (the inlet point of

a surface water body reach) at the initial time (t0 = 0) [T], for each x > 0 and t > 0 the
Equation (1) may be reduced to the following analytical solution (2) [10,37].

C(x, t) =
C0

2

{
exp

[
Ux
2E

(1− Γ)

]
erfc

(
x−UtΓ

2
√

Et

)
+ exp

[
Ux
2E

(1 + Γ)

]
erfc

(
x + UtΓ

2
√

Et

)}
(2)

Γ =

√
1 + 4

kE
U2 (3)

and U is the velocity module [L/T].
This approach entails the following assumptions:
(a) the flow is one-dimensional and oriented according to the main direction of the

flow in the surface water body;
(b) the concentration at the inlet remains constant for the specified simulated time

interval (first kind boundary condition);
(c) chemical interactions between different dissolved substances are not considered, nor

are reactive geochemical processes simulated with other components (i.e., riverbed matrix);
(d) the morphology of the bed of the surface water body does not affect the solution;
(e) no sorption processes or production terms are considered;
(f) at t0 = 0 [T] the initial condition is C(x,0) = 0 [M/L3] along all the simulated domains.
The developed code uses Equation (2) to calculate the concentration value along the

line input provided by the user to represent the selected surface water body. This input
can be given as a linear vector layer (for instance the common ESRI. shp file). The code
calculates the solution (concentration value) at nodes at homogeneous lengths from the
inlet point as specified by the user, and at selected homogeneous time-steps also defined by
the user.
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2.1. Software Development

The plugin was developed in Python3 [38] language, using the Qt5 [39] graphics
libraries and the QGIS [40] Application Program Interface. The solute transport code is
embedded in the QGIS desktop application. This means a full integration at programming
language level, with models using GIS data format included as full component of the host
GIS application [41,42].

The plugin can be used as an add-on to the QGIS desktop application, version 3.4 or
higher, once it has been installed on a PC. During the development phase, some specific
Python libraries were used, but each of them is already included in the official QGIS
desktop distribution. This choice allows the user to use the plugin without requiring
further software updates.

2.2. Data Needs

In order to use the plugin, the user has to prepare a set of input files. These are:

• a *.csv file specifying the water average longitudinal velocity (U) and concentration values
at the inlet of the watercourse (constant concentration boundary condition), and the time
these data refer to. The file must comply with the template format defined for the plugin.
In particular, the file must contain data relating to (at least) one dataset, specifying:

- starting date and time, in YYYY-MM-DD HH: MM: SS format;
- average flow velocity in the surface water body, in m · s−1. This value will be

used at all the node of the surface water body;
- the concentration of the source at the inlet point.

When considering time-varying boundary condition (that is the concentration input
changing with time), the user must specify for each different time all the above information
on consecutive lines of the. csv file.

• an ESRI linear Shapefile representing the surface water body. The file may consist
of one or more segments. The line must be digitized towards the flow direction.
When more segments are used, the topology must be respected (all the lines must be
connected).

An example of the required files to run a first test are provided in the template_files
folder of the plugin itself as Supplementary material.

2.3. Model Implementation and Run

Once data are prepared in the form of the required files, the first operation consists in
loading the Shapefile geographic layer of the line into the QGIS view.

By clicking on ORGANICS in the Plugin menu, the main window opens. This is
divided in four sections: (1) Run; (2) Plot Results; (3) Help; (4) About. By entering the Run
section, the user input the following data (Figure 2):

(a) the *.csv file. Upon the file selection, the drop-down menus will automatically
update. Through these menus the user must select the name of the fields in the *.csv file
corresponding to the required information;

(b) the linear shapefile representing the watercourse. At this step the user must specify the
length of the homogeneous reaches at whose ends the concentration values will be calculated;

(c) the value of the first-order decay rate coefficient (s−1);
(d) the value of the coefficient of longitudinal dispersion (m2/s);
(e) the length of the timestep (in minutes) at which the solution will be calculated over

a time interval (in minutes from the start of the simulation) at each point of the reach;
(f) the name of the output file (*.shapefile) and the directory where the file will be saved.

Should this field be left blank, the output will be saved as a temporary layer (memory layer)
in QGIS.

Although time data are input both in seconds and in minutes, all the calculations are
internally run in seconds, while results are provided in minutes or within hours.
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Figure 2. The ORGANICS plugin main window.

Once the simulation is run, the code will: (i) divide the line in several nodes, according
to the length specified by the user, and (ii) calculate the solution at each node at the end
of a reach, at each time step as specified by the user. The result consists in a *.shapefile
point layer in which the simulated concentration values at different times are saved at
each point. This layer can be used to visualize the results using the tools in QGIS. For
example, it can be themed with color scales depending on the level of the selected solute
concentration. Animations to visualize the evolution of the concentration in the various
points may be produced by applying the TimeManager plugin (plugin, downloadable from
the QGIS PluginManager).

A *.csv file of the output will also be saved in the previously defined destination folder.
This file can be used by the user to conduct further analyses externally to the plugin and/or
from QGIS (i.e., using spreadsheet).

Graphs of the solutions may be drawn opening the Plot Results section, where a
number of options for producing solution plots or further customizing the draw and to
save it in image format (i.e., as *.png file) are provided (Figure 3).

The user must choose the output layer to process. Graph drawing can be performed
at any time, even after the execution of the model, by selecting the output file from the
drop-down menu. However, in order for the desired layer to appear in the ORGANICS
menu, the layer must be loaded in the QGIS layer panel. Once the layer is selected, the
drop-down menus below will automatically update.

The following options for creating the graphs are available:

• Select a position (distance in m from the entry point): this option will create a graph
displaying the concentration trend in a point defined by the user at a certain distance
from the starting point, as a function of time (Figure 4);

• Use the selected position on the layer: this option allows to view the same result as above,
but in this case the position is provided by selecting, using the classic selection tools
on the map, one or more points of the output layer (Figure 5);

• Select a time: this graph will display the concentration values, at a given simulated
time, as a function of the distance from the inlet (Figure 6). The times available for
selection correspond to the discretization obtained with the time step chosen in input
by the user.
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3. Results and Discussion
3.1. Model Validation

We successfully validated the model implemented within the tool by simulating the
same case described by the analytical solution shown in [10]. The simulation results
(Figure 7) are obtained using the following parameters:

U = 1.0 m/s
k = 0 s−1 (no decay is simulated)
E = 5.0 m2/s
where:
C(0,0) = C0, and
C(x,0) = 0 at x > 0
The solution (concentration value) is provided at 100, and 1000 m from the source.
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Figure 7. Computed simplified analytical solution implemented in Organics in time at x = 100 m and
x = 1000 m.

3.2. Example Problem

In this section, three tests are presented in order to show the behavior of the calculated
solution in different scenarios. The cases tested are:

(a) C0 mass injection, constant over time;
(b) time-limited pulse C0 mass injection;
(c) C0 mass input, variable over time (multi-pulse input condition).
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Concerning the cases with time-limited or time-varying input (cases b and c, respec-
tively), we implemented a solution using the principle of superimposition of the individual
analytical solutions at each stress period, as reported in [10,43,44]. The parameter values
used in the example problem are presented in Table 1. The .csv file and the .shp file are
provided in the Supplementary Material.

Table 1. Parameters values used in the example problem.

Parameter Value Units

Total length of the reach 1200 m
Simulation length 50 m

Time step 10 min
Velocity (U) 0.1 m/s

First order decay rate (k) 0.00005 s−1

Longitudinal dispersion (E) 5.0 m2/s
Initial time 28 May 2018 00:00 dd/mm/yyyy hh:mm

3.2.1. C0 Mass Injection, Constant over Time

In this test, we simulated the release of a mass with concentration C0 = 100 ng/L
constant over time. The solution is presented at the end of the simulation time, which is the
time needed for the mass to reach the outlet.

Figure 8 displays the solution at the beginning of the reach (x = 0 m), at x = 500 m, and
approximately at the end of the reach (x = 1100 m). In the middle of the reach (x = 500 m)
the solution tends to an asymptotic value, which is less than 100 ng/L due to the effect of
the simulated decay process.
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3.2.2. Time-Limited Pulse C0 Mass Injection

In this test we simulated a time-limited pulse C0 = 100 ng/L mass injection for a 2 h
duration. This time-limited pulse case, at constant concentration, can be implemented by
defining in the *csv file an initial period (of known duration, with concentration C0; first
line in the *csv file) followed by a second period with zero concentration (second line in
the *csv file). In this test, the second input is then two hours long with concentration set at
C2h = 0 ng/L. The solution is then displayed in Figure 9 at an infinite time (that is, the time
needed for the dissolved substance to reach the outlet of the water course considered). The
solution is presented at x = 500 m (Figure 9). At this distance, mass arrival is recorded after
30 min from the beginning of the simulation.
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3.2.3. C0 Mass Input, Variable over Time (Multi-Pulse Boundary Condition)

In this test, we simulated C0 mass input, variable over time (multi-pulse input condi-
tion) according to data presented in Table 2. The global solution works as the superposition
of the several pulses, each one having a constant condition for a specified time interval.
Superposing each “pulse-solution” makes the model able to consider time-dependent
boundary conditions. Results are shown at x = 400 m, x = 800 m, and x = 1200 m from the
inlet point for time step length of:

- 20 min (Figure 10);
- 10 min (Figure 11);
- 5 min (Figure 12);

from the beginning of the simulation, in order to present the impact of the different
time discretization on the solution (Figures 10–12).
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Table 2. Data used in the test presented in Section 3.2.3.

Date and Time C0 (ng/L)

28 May 2018 0:00 0

28 May 2018 0:20 100

28 May 2018 2:00 50

28 May 2018 2:30 25

28 May 2018 3:30 75

28 May 2018 4:00 0

3.3. Case Study Application

The ORGANICS plugin was then applied to compute the concentration of the pharma-
ceutical compound carbamazepine at a reach of a vegetated channel receiving poorly treated
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wastewater, in low-flow conditions, in the Pisa municipality (Tuscany, Italy, Figure 13).
Carbamazepine (CBZ) is an anticonvulsant or anti-epileptic drug commonly found in
poorly treated wastewater and consequently in surface- and ground-water [45,46]. Re-
moval efficiency in secondary wastewater treatment is typically less than 10% for CBZ [47].
Composite samples (2 volumes of 0.5 L every 30 min representative for one hour) were
collected approximatively every two hours during an experiment run on 28 May 2018 at
the inlet (point PSMw = 0 m) and the outlet (point PSMz = 420 m) of the channel reach
(Figure 13) in low-flow conditions. Analytical determinations were performed following
the method described in [48]. Mean longitudinal flow velocities were measured by means
of an acoustic digital current meter (OTT Messtechnik GmbH, Kempten; Germany). Data
for CBZ and mean longitudinal flow velocities are presented in Table 3.
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Table 3. Carbamazepine concentrations at the inlet (PSMw) and outlet (PSMz) points of the vegetated
channel on 28 May 2018, and simulated results.

Time Inlet (PSMw)
(ng/L)

Outlet
(PSMz)(ng/L)

Flow Velocity
(m/s)

Simulated Value
(PSMz_sim) (ng/L)

07:20 123 - 0.025 -

09:50 181 - 0.026 -

11:00 - 105 - 112

12:20 162 - 0.026 -

13:10 - 112 - 116

14:20 162 - 0.021 -

15:40 - 115 - 119

16:50 150 - 0.029 -

18:00 - 125 - 122

A multi-pulse boundary condition was prepared by exploiting data from the five
monitoring points. Figure 14 shows the simulated carbamazepine concentration at the
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outlet point, PSMz, 420 m from the inlet point. The Simulated value (PSMz_sim) column in
Table 3 presents the simulated value against the measured ones (Outlet (PSMz) column). In
Figure 13 CBZ simulated concentrations are themed with color scales depending on the
concentration value.
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The first-order decay rate and the longitudinal dispersion coefficients are relevant
parameters in our analyses, and, more in general, in surface water quality modelling [49,50].
No experimental data were available for these parameters. As such, the model was cal-
ibrated to get the best fit (R2 = 0.95) between simulated and measured concentrations
with values of the longitudinal dispersion coefficient of 35 m2/s and decay rate equal to
3 · 10−5 s−1. Good fit (R2 > 0,9) was also obtained varying these two parameters within
the range of 30 and 35 m2/s for longitudinal dispersivity and between 2.5 · 10−5 and
3 · 10−5 s−1 for the decay rate coefficient. The values of the longitudinal dispersion coeffi-
cient are coherent with values found in [49,50] for similar open channels. The calibrated
values of the decay rate are slightly higher than calculated values from half-life time data
for CBZ reported in [51].

4. Conclusions

The developed open-source and free plugin allows simulating transport of dissolved
substances in water courses following advection/dispersion, and degradation processes.
The present formulation combining a simple analytical solution of the advection dispersion
equation and GIS tools guarantees intuitive spatial data management. Authorities may
also benefit from the ease of use of such tools in order to set in place pollution prevention
measures. This solution, because few parameters are needed, could hence be applied to
data-scarce environments. Furthermore, using this tool values for longitudinal dispersivity
and first-order decay rate coefficients may be derived. In our case study application, we es-
timated the longitudinal dispersion coefficient and the decay rate coefficient to be 35 m2/s
and 3 · 10−5 s−1 for the pharmaceutical compound carbamazepine. Another potential ap-
plication could be in the feasibility stage of the design of water-related green infrastructures
for the improvement of water quality [46,52]. On the other hand, the increasing number of
integrated geographical databases (including surface water bodies characteristics) along
with the increasing availability of sensors gathering and distributing quasi real-time moni-
toring data (such as surface water heads) may allow for the combined use of monitoring
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and modelling to set up early warning systems to track pollution events [53–55]. To this
aim, further research and pilot experimental sites are needed.

The open and free characteristics of the developed code guarantee reproducibility of
the run analyses, and also use of the tool, one of the most important aspects of science,
making free software an ideal framework for scientific work. In this context, the use of free
software is consolidating in our societies in a gradual, but constant way [56]. Integration in
the FREEWAT plugin [18] and inclusion within the list of the official plugin of QGIS will
guarantee the dissemination and potentially the application of this research product.

In the present formulation, the ORGANICS tool does not allow users to simulate the
transport of substances under conditions where flow may increase/decrease downstream
not only by tributaries, but also by continuous groundwater drainage from the surrounding
domain. Nor does it allow for the spatial or time variability of the degradation rate. The
latter could be beneficial to differentiate, for example, the relative importance in time of
biodegradation from photodegradation processes [50,57,58]. Future development may
include integration of more complex analytical solutions, comprising also source terms.

The ORGANICS plugin is a first attempt to popularize the use of simple modelling
tools. For more complex solutions and the inclusion of time-varying source/sink terms, a
wide range of numerical tools exist [7,10]. We wish therefore to stress that the main element
of this tool resides in its simplicity. Finally, the ORGANICS plugin provides GIS experts
the ability to perform approximate, but fast simulations of the evolution of pollutants
concentration in surface water bodies at selected targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14182850/s1. The Supplementary Material folder contains: folder
organics: contains the plugin to be installed in QGIS v3.xx; folder example_problems: contains the files
used to run the Example problem described in Section 3.2 of the paper.
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