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Abstract: In order to study the energy characteristics and internal flow field of “S” shaped airfoil
bidirectional axial flow pumps, the SST k-ω turbulence model is used to calculate the bidirectional
axial flow pump, and the experimental verification is carried out. The results show that the error of
numerical calculation of forward and reverse operation is within 5%, and the numerical calculation
result is credible. The test results show that the bidirectional axial flow pump has a design flow rate
of Q = 368 L/s, head H = 3.767 m, and an efficiency of η = 80.37%. In reverse operation, the flow of
the bidirectional axial flow pump under design condition Q = 316 L/s, head H = 3.658 m, efficiency
η = 70.37%. The flow of forward operation is about 15% larger than that of reverse operation under
design working condition, the design head is about 3.70 m, and the efficiency of design working
condition is about 10% higher than that of reverse operation. The numerical calculation results
show that under the forward design condition (Q = 368 L/s), the hydraulic loss accounts for 6.22%,
and under the reverse design condition (Q = 316 L/s), the hydraulic loss accounts for 11.81%, with
a difference of about 6%. The uniformity of impeller inlet flow rate under the forward operation
is about 12% higher than that in the reverse operation. In forward and reverse operation, with the
increase of flow, the outlet streamline, the outlet total pressure distribution, the uniformity of impeller
inlet velocity, and the vortex in the impeller domain are improved, and the forward direction is better
than the reverse direction. The research results of this paper can provide a reference for the research
and optimal design of the bidirectional axial flow pump.

Keywords: “S” shaped airfoil; bidirectional axial flow pump; energy characteristics; internal flow field

1. Introduction

The water transfer project is a project to improve the people’s basic livelihood, playing
an increasingly important role in the irrigation of river, coastal, and plain areas. Flood
control and drainage standards are also constantly improving, increasing the demand for
pumping stations to achieve dual-use irrigation and drainage, and positive and negative
performance balance. At present, most of the pumping stations utilize the unidirectional
axial flow pump reversing motor operation or switch the river and pumping station
flow channel to achieve bidirectional operation. In the former, forward operation of the
maximum efficiency of the pump can reach about 85%, and reverse operation because of
the vane is a reverse arch state and poor inlet water flow pattern. The flow, head, and
efficiency of the pump are greatly weakened, with the maximum efficiency of only 65%
or less, showing deviation from national energy-saving and emission reduction targets.
Regarding the latter, although the pumping station can realize bidirectional operation
and the same performance of forward and reverse operation, the highest efficiency of
forward and reverse direction is only about 72%, and the flow channel and river channel
are switched. In turn, the civil construction cost is large, which increases the cost of
operation and management and maintenance. In response to these problems, the relevant
scholars, through the improvement of the axial flow pump and its impeller, support the
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use of a symmetrical form of wing design bidirectional axial flow pump, in the design
method to make innovation. In the development of a new bidirectional axial flow pump
impeller, the impeller alone, its forward and reverse performance is superior. At present,
the symmetrical wing type has a flat wing type, the center line of the wing type is a straight
line, another is “S” shaped airfoil, the center line of the airfoil is “S” shaped. The flat
airfoil type bidirectional axial flow pump forward operating efficiency is about 5% worse
than the conventional unidirectional axial flow pump forward operating, while reverse
operating efficiency is about 15% worse than the conventional unidirectional axial flow
pump forward operating, “S” shaped airfoil type bidirectional axial flow pump forward
operating efficiency is about 2% worse than the conventional unidirectional axial flow
pump forward operating, and reverse operating efficiency is about 10% worse than the
conventional unidirectional axial flow pump forward operating. Because of its excellent
forward and reverse performance, it has been paid attention to and applied. However, the
research on “S” shaped bidirectional axial flow pump is less, and its energy characteristics
and internal flow mechanism are not clear, which leads to the lack of theoretical guidance
for the design and operation of “S” shaped bidirectional axial flow pumps.

Relevant scholars proposed to use “S” shaped airfoil to design bidirectional axial
flow pump [1]. Some scholars have explored the internal flow field of the bidirectional
axial flow pump, including the pressure fluctuation characteristics in both forward and
reverse directions of the bidirectional axial flow pump [2], the generation mechanism of
the vortex in the impeller [3], and the internal flow characteristics of the “S” shaped airfoil
bidirectional axial flow pump under cavitation [4], and some scholars have optimized the
design of bidirectional axial flow pump or pump device, including reducing the chord
length and number of blades and appropriately increasing the axial spacing to enhance
the performance of bidirectional axial flow pump [5], investigating the effect of guide vane
position on the hydraulic performance and flow pattern of bidirectional vertical shaft cross-
flow pump [6], investigating the effect of lobe root clearance on the hydraulic performance
of bidirectional axial flow pump [7], and changing the ratio of radius of the centerline circle
of S-shaped bend of bidirectional pump to the optimized design of the shaft extension
cross-flow pump device of “S” shaped two-way axial flow pump [8]. The influence of
different placement positions of the vertical shaft on the performance of the vertical shaft
cross-flow pump of “S” shaped two-way axial flow pump was investigated [9]. Some
scholars have also studied the flyaway conditions of bidirectional horizontal axial flow
pumps operating in forward and reverse directions and concluded that the magnitude of
pulsation of axial force in forward operation is significantly larger than that in reverse [10].

The “S” shaped airfoil bidirectional axial flow pump has the advantages of simple
structure, convenient installation, easy operation, maintenance, and management, and it
has been widely used. In the process of application, relevant scholars have carried out
some optimization design work on it or its pump device, but the research on its energy
characteristics and internal flow mechanism is less involved, and related studies are also
not deep enough. This paper takes the “S” shaped airfoil bidirectional axial flow pump
as the research object to explore its energy characteristics and internal flow characteristics
during forward and reverse operation, in order to ensure the safe, stable, and efficient
operation of the bidirectional axial flow pumping station.

2. Numerical Computation Models, Grids and Computational Methods
2.1. Numerical Calculation Models

The “S” shaped bidirectional axial flow pump is designed by the “S” shaped airfoil,
and its geometric structure includes: inlet pipe, impeller, guide vane and outlet pipe, where
the number of impeller blades is 4, impeller diameter D is (300–0.2) mm, and the number
of guide vane blades is 5. The parameters of the “S” shaped bidirectional axial flow pump
are shown in Table 1, the “S” shaped 3D model is shown in Figure 1, and the “S” shaped
bidirectional axial flow pump impeller 3D model is shown in Figure 2. The forward and
reverse operation of the “S” shaped bidirectional axial flow pump is shown in Figure 3.
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Table 1. Parameters of design working conditions of “S” shaped airfoil bidirectional axial flow pump.

Parameters Forward Reverse

Blade angle 0◦ 0◦

Impeller diameter (300–0.2) mm (300–0.2) mm
Rotating speeds 1450 rpm 1450 rpm

Design flow 368 L/s 316 L/s
Design head 3.70 m 3.70 m

Design point ratio speed 1187 1124
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As shown in Figure 3, when the bidirectional axial flow pump is in forward operation,
the water enters from the side of the inlet pipe and passes through the impeller to lift the
energy. Then, the guide vane rectifies the flow, enters the outlet elbow, and then flows out
in an oblique 60◦ direction. In reverse operation, the water enters from the elbow side,
flows through the guide vane first, then passes through the impeller to raise energy, and
finally flows out of the horizontal straight pipe. In forward and reverse operation, the
impeller rotates in the opposite direction.

2.2. Meshing

The fluid inside the inlet and outlet pipes is extracted, the inlet and outlet pipes are
divided into unstructured meshes in ANSYS ICEM software, and the boundary layer is
locally encrypted considering the thickness of the boundary layer (the change rate of the
mesh from the boundary to the interior is 1.05). The impeller and guide vane body are
modeled and the structured mesh is divided using ANSYS Turbo Grid software, and the
boundary layer and local features of each computational domain are encrypted when the
mesh is divided. The impeller adopts “J” topology and guide vane adopts “O” topology.
The impeller and guide vane y+ (y+ is a dimensionless quantity of distance from the wall,
which is proportional to the height of the first grid layer of the wall. In the numerical
calculation using SST k-ω and RNG k-ε turbulence models, the rotational and shear flow y+
is taken as 30~100) values are all around 50, and the impeller top clearance adopts the “H”
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topology and arranges a 7-layer grid, with y+ values around 10 and grid masses greater
than 0.35. The overall grid of the computational model is shown in Figure 4, and the grid
irrelevance analysis is shown in Table 2.
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Table 2. Grid irrelevance analysis table (Forward running, Q = 400 L/s).

Serial Number N η (%) Serial Number N η (%)

1 1,607,288 76.4150 4 3,402,093 77.0300
2 2,143,050 76.4745 5 4,018,220 77.0360
3 2,678,813 77.0405 6 / /

As shown in Table 2, when the number of grids reaches 2,678,813, the number of grids
has basically no effect on the calculation results. Considering the computing power of the
computer, grid Serial Number scheme 3 is selected for the subsequent numerical calculation
work in this paper.

2.3. Control Equations, Boundary Conditions and Calculation Methods

In this paper, the SST k-ω turbulence model is used to numerically calculate the
bidirectional axial flow pump in CFX software. The rated speed of the impeller is set to be
−1450 r/min when the bidirectional axial flow pump operates in the forward direction,
and 1450 r/min when the impeller operates in the reverse direction. The inlet is set to be
the Mass Flow Inlet, the outlet is set to be the Average Static Pressure Outlet, the pressure
is set to be 0.2 atm, the Non Moving Wall surface of the solid is set to be the Static Wall
Surface, the Non Slip condition is applied, and the boundary condition of the standard
wall function is used in the Near Wall Area. The “Stage” interface method is adopted for
the dynamic and static interface. The finite volume method based on the finite element is
used for discretization of the governing equation, the diffusion term, and pressure gradient
are expressed by the finite element function, and the convection term is expressed by the
High Resolution Scheme. The convergence condition of each parameter of the flow field is
set to 10−6. In principle, the smaller the residual value, the better.

2.4. Analytical Formulae for Numerical Calculation Results

The numerical calculation head Hnet calculation formula is [11–13]:

Hnet = (

∫
S2

p2ut2dS
ρQg + H2 +

∫
S2

u2
2ut2dS

2Qg )−

(

∫
S1

p1ut1dS
ρQg + H1 +

∫
S1

u1
2ut1dS

2Qg )
(1)

The numerical calculation efficiency η calculation formula is [14,15]:

η =
ρgQHnet

Tω
× 100%, (2)
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where: P1 and P2 are the average static pressure (Pa) at the inlet and outlet of the axial flow
pump channel; ρ is the flow density (kg/m3); g is the acceleration of gravity (m/s2); s1 and
s2 are the cross section areas of inlet and outlet of axial flow pump (m2); u1 and u2 are the
flow velocity at each point of the inlet and outlet channel section of the axial flow pump
(m/s); ut1 and ut2 are the normal components of flow velocity at each point of the inlet and
outlet channel section of axial flow pump (m/s); Q is axial flow pump flow (m3/s); T is the
rotating torque of impeller (N·m); ω is the impeller rotation angle speed (rad/s).

3. Test Device and Test Method
3.1. Test Device

The test bench is a vertical closed cycle system, as shown in Figure 5.
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Figure 5. Plan of high precision hydraulic machinery test bench. 1. Water inlet tank; 2. Tested pump;
3. Pressure outlet tank; 4. Bifurcated water tank; 5~6. Flow in situ calibration device; 7. Working
condition regulating gate valve; 8. Pressure stabilizing rectifier cylinder; 9. Electromagnetic flowmeter;
10. Operation control gate valve; 11. Auxiliary pump unit.

In the test, the head is measured using the differential pressure transmitter
(accuracy± 0.015%), the flow is measured by electromagnetic flowmeter (accuracy ± 0.18%),
the speed and torque are measured by speed torque sensor (accuracy ± 0.24%), the NPSH
is measured by absolute pressure transmitter (accuracy ± 0.015%), and the comprehensive
uncertainty of the test bench is ±0.39%.

3.2. Test Method

The head H of the test pump is calculated by the following formula [16]:

H =

(
p2

ρg
− p1

ρg
+ z2 − z1

)
+

(
u2

2
2g
−

u2
1

2g

)
, (3)

The test shaft power N is calculated by the following formula [17]:

N =
π

30
n(M−M′), (4)

Test pump efficiency η calculated by the following formula [18]:

η =
ρgQH

N
× 100%, (5)

where H is the pump head (m), P1 and P2 are the static pressure (Pa) at the inlet and outlet
of the flow field, z1 and z2 are the height (m) of the inlet and outlet of the flow field, u1 and
u2 are the flow velocity (m/s) at the inlet and outlet of the flow field, ρ is the real-time
water density of the test (kg/m3), g is the local gravity acceleration (m/s2), N is the shaft
power (kw), M is the pump input torque (N·m), M′ is the pump mechanical loss torque
(N·m), n is the pump test speed (r/min), η is the pump model efficiency (%), and Q is the
pump flow (m3/s).
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4. Numerical Calculation Results and Experimental Verification
4.1. Experimental Verification of Numerical Calculation Energy Characteristics

The comparison between the forward and reverse numerical calculation and the
experimental energy characteristic curve of the “S” shaped airfoil bidirectional axial flow
pump is shown in Figure 6.
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By comparing and analyzing the test results in Figure 6, it can be concluded that the
Q = 368 L/s, H = 3.767 m, and efficiency of the bidirectional axial flow pump under the
design condition of forward operation η = 80.37%, whereas in reverse operation, the flow of
bidirectional axial flow pump under design condition Q = 316 L/s, H = 3.658 m, η = 70.37%.
The flow of forward operation is about 15% higher than that of reverse operation under
the design condition, but the difference in head is small, both of which are about 3.70 m in
the design head, and the efficiency of design condition is about 10% higher in the forward
direction than in the reverse direction. The main reason why the forward operation
performance is better than the reverse operation is that the flow velocity uniformity at the
inlet of the forward operation impeller is higher than that in the reverse operation, and
the forward water inflow condition is better. The reverse operation has poor water inflow
condition due to the front guide vane at the inlet of the impeller.

By comparing and analyzing Figure 6, we can observe that the prediction of forward
numerical calculation of bidirectional axial flow pump is more accurate, and the error
is basically within 3%, while the prediction accuracy of reverse numerical calculation
is slightly worse, and the error is basically within 5%, which means that the numerical
calculation accuracy is higher and the calculation results are credible. It can also be found
from the figure that the prediction accuracy of the forward numerical calculation of the
bidirectional axial flow pump is better than the reverse, which is mainly because the internal
flow characteristics of the bidirectional axial flow pump are complicated during reverse
operation, so the prediction accuracy is slightly worse.

4.2. Numerical Calculation and Energy Characteristic Analysis

According to the numerical calculation results, the energy characteristic curves of the
bidirectional axial flow pump impeller in the forward and reverse directions are organized
by Equations (1) and (2), as shown in Figure 7a,b, and the energy characteristics of the
bidirectional axial flow pump in the forward and reverse directions are organized as shown
in Figure 7c,d.
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It can be obtained from the numerical calculation that the design working flow rate of
the impeller in forward operation is Q = 368 L/s, head H = 4.575 m, efficiency η = 90.32%,
and the design working flow rate of the impeller in reverse operation is Q = 316 L/s, head
H = 5.055 m, efficiency η = 89.87%. The “S” shaped bidirectional airfoil is completely
symmetrical in both forward and reverse directions, and the impeller designed by it is also
completely symmetrical in both forward and reverse directions with the same performance,
so the difference between the optimal efficiency of the impeller in forward and reverse
directions is not large. However, the increase of the guide vane and elbow and other flow
guide structure not only makes the “S” shaped airfoil bidirectional axial flow pump optimal
operating point shift, and the flow-head to produce differences also larger, but the forward
operation of the head under the same flow is significantly greater than the reverse, mainly
because the impeller inlet water impulse angle is different, causing the forward operation
of the impeller inlet absolute liquid flow angle to be significantly greater than the reverse
operation of the impeller inlet absolute liquid flow angle.

Forward operation bidirectional axial flow pump design condition flow rate Q = 368 L/s,
head H = 4.049 m, efficiency η = 79.93%, and reverse operation bidirectional axial flow
pump design condition flow rate Q = 316 L/s, head H = 4.045 m, efficiency η = 71.91%. By
comparing the numerical calculation results, it can be seen that the forward and reverse
high flow conditions performance difference is large and forward design condition point
efficiency is 8% larger than the reverse. Under the same flow, forward head is equivalent to
the reverse vane angle increased by about 2◦ of head.

There are structural differences between the two directions of operation of the bidirec-
tional axial flow pump. The front of the impeller in forward operation is a straight tube,
the impeller outlet is a guide vane and elbow, the reverse operation of the impeller inlet is
elbow and guide vane, and the outlet is a straight tube. These structural characteristics of
the differences lead to hydraulic losses of the inlet and outlet pipes and guide vane. The
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flow velocity uniformity and the water impulse angle of the impeller inlet are all different,
so the difference between the forward and reverse performance is large.

In this paper, the hydraulic loss ratio is defined as the ratio of the sum of the total
hydraulic loss of the inlet pipe, outlet pipe, and guide vane in comparison with the head
of the bidirectional axial flow pump, and the hydraulic loss ratio is calculated by the
following equation:

Ch f =
hi + hg + ho

H
, (6)

where Chf is the hydraulic loss ratio, hi is the inlet pipe hydraulic loss (m); hg is the guide
vane body hydraulic loss (m); ho is the outlet pipe hydraulic loss (m); H is the pump
head (m).

The equation for the inlet flow velocity distribution uniformity of the impeller is [19]:

Vu =

1− 1
va

√√√√[ n

∑
i=1

(vai − νa)
2

]
/n

× 100%, (7)

where Vu is the uniformity of axial flow velocity distribution in the characteristic section
(%); vai is the axial velocity of each calculation unit (m/s); n is the number of calculation
units. va is the axial flow velocity at impeller inlet.

Forward and reverse operation bidirectional axial flow pump inlet and outlet pipes
and guide vane hydraulic loss are shown in Figure 8. The impeller inlet flow rate uniformity
is shown in Figure 9.
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Through Figures 8 and 9, it can be concluded that the, considering forward design
condition (Q = 368 L/s), the hydraulic loss percentage in the peak and valley region,
the value is close to the minimum 6.22%, and considering the reverse design condition
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(Q = 316 L/s), the hydraulic loss percentage is also in the peak and valley region. The value
is close to the minimum 11.81%, with a difference of about 6%, and this leads to the reverse
design condition efficiency being lower than the forward 6%. The efficiency of the forward
design working point is 8% larger than that of the reverse, and the other 2% difference is
mainly due to the fact that the inlet flow velocity uniformity of the impeller in the forward
operation is about 12% higher than that of the reverse, resulting in a difference of about
2% in the forward and reverse efficiency. The main reason for the different hydraulic loss
and flow velocity uniformity in forward and reverse operation is that in reverse operation,
the curved guide vane is front-loaded, which reduces the flow velocity uniformity of the
impeller inlet, resulting in an increase in the bad flow pattern of the impeller inlet and
outlet and an increase in the proportion of hydraulic loss.

4.3. Analysis of Internal Flow Fields for Numerical Calculations

The overall streamline of the bidirectional axial flow pump forward taking 0.9Qdf,
1.0Qdf, 1.1Qdf (Forward design working flow rate Qdf = 368 L/s) is shown in Figures 10a,
11a and 12a, and the overall streamline of the bidirectional axial flow pump reverse taking
0.9Qdr, 1.0Qdr, 1.1Qdr (Reverse design working flow rate of Qdr = 316 L/s) is shown in
Figures 10b, 11b and 12b. As shown in Figures 10–12, forward operation of the inlet pipe
for the straight pipe and reverse operation of the inlet pipe for the elbow, forward, and
reverse operation of the inlet water flow state are better and the streamline is uniform.
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In forward operation, considering the outlet elbow with the increase in flow, the
phenomenon of cross-winding of the streamline in the outlet elbow is gradually weakened,
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whereas in reverse operation, because the impeller releases water directly into the outlet
straight pipe, there is no guide leaf recovery ring volume, resulting in the water out of
the water flow rotating out, leading to increased hydraulic losses or an increase in the
circumferential velocity of the water flow, resulting in kinetic energy affecting the ability
to reduce the pressure energy, so the head in reverse operation is lower than the head of
forward operation. The impeller inlet is affected by the inlet elbow and guide vane under
reverse operation conditions, resulting in low flow velocity uniformity of the impeller inlet
and increasing the hydraulic loss of the inlet structure. Forward operation inlet water
state is slightly better than reverse operation. Outflow water state forward operation is
significantly greater than reverse operation, which leads to reverse operation total hydraulic
loss being significantly greater than forward operation. Forward and reverse operation
energy performance curves are compared to the same flow conditions. Forward operation
head and efficiency is significantly higher than reverse operation (shown in Figure 6).

The total pressure distribution clouds of the middle section of the fluid calculation
domain for both forward and reverse directions of the bidirectional axial flow pump taking
0.9Qd, 1.0Qd, 1.1Qd are shown in Figures 13–15.
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According to Figures 13–15, the total pressure distribution in the inlet pipe is relatively
uniform under forward and reverse operation. During forward operation, the total pressure
distribution in the outlet elbow becomes more and more uniform with the increase of flow.



Water 2022, 14, 2839 11 of 14

During reverse operation, due to the rotation of the impeller, there is no circulation recovery
structure such as guide vane at the impeller outlet, resulting in uneven total pressure
distribution in the center of the outlet, obvious stratification, low total pressure in the
middle area, and high total pressure at the side wall of the outlet pipe. With the increase of
flow rate, the distribution uniformity of total pressure of outlet water is improved. Forward
operation and reverse operation affect the size of the hydraulic loss of the inlet pipe and
the recovery of more and less water pressure energy from the outlet pipe. Considering
the head under the same flow condition, through the static pressure distribution cloud
diagram, it can be concluded that the forward running inlet pipe static pressure distribution
is more uniform than the reverse running, so the forward running inlet pipe hydraulic loss
is less than the reverse running. The hydrostatic pressure distortion area in the forward
running outlet bend is less than the reverse running, and the outlet pressure recovery is
more than the reverse running, as reflected in the energy performance curve (shown in
Figure 7c,d). At the same flow rate, the head of forward operation is higher than that of
reverse operation.

The axial flow velocity distribution clouds of the impeller inlet for both forward and
reverse directions of the bidirectional axial flow pump are taken as 0.9Qd, 1.0Qd, and 1.1Qd
as shown in Figures 16–18.

As can be obtained from Figures 16–18, the uniformity of the axial flow velocity of the
impeller inlet increases with the increase of the flow rate under both forward and reverse
operation. In forward operation, because the number of impeller blades is 4, the impeller
inlet axial velocity is obviously divided into 4 areas, and in reverse operation, the impeller
inlet is not only influenced by the number of impeller blades, but also by the number of
guide vanes, and the impeller inlet axial velocity is divided into 4 areas near the hub and
5 areas near the rim. Overall, the uniformity of axial velocity at the inlet of forward running
impeller is higher than that of the reverse running impeller. This conclusion can also be
explained by Figure 9.
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As shown in Figures 19–21, forward operation compared to reverse, impeller blade
forward, and reverse pressure difference is larger. So, in the blade of the suction surface
slightly longer leakage vortex is indicates, whereas in the corresponding reverse operating
conditions, the blade of slightly pointed leakage vortex is relatively slightly small. The area
of tip clearance vortex in reverse operation is slightly larger than that in forward operation.
Due to the front guide vane and elbow in reverse operation, the vortex area at the inlet side
of the blade is also significantly larger than that in forward operation. At the same time,
the reverse operation also causes an annular vortex belt near the rim between the guide
vane and the impeller. In both forward and reverse operation, the vortex area decreases
with the increase of flow. This also reflects the higher energy performance of the forward
operating impeller compared to the reverse (shown in Figure 7a,b).

5. Conclusions

This paper reveals the forward and reverse energy and internal flow characteristics of
the bidirectional axial flow pump through numerical calculations and experimental tests
on the bidirectional axial flow pump, and the following conclusions are obtained:

(1) The comparative analysis of the numerical calculation results and tests of the energy
characteristics of the bidirectional axial flow pump shows that the predictions of
the forward and reverse numerical calculations are relatively accurate, and the error
is basically within 5%. Compared with the forward prediction, the accuracy of the
reverse numerical calculation is slightly worse, and the numerical calculation results
are credible.

(2) The test results show that the bidirectional axial flow pump design working condition
flow rate Q = 368 L/s, head H = 3.767 m, and efficiency η = 80.37% in forward operation
and bidirectional axial flow pump design working condition flow rate Q = 316 L/s,
head H = 3.658 m, efficiency η = 70.37% in reverse operation. The forward operation
is about 15% larger than the reverse operation design working condition flow rate, the
design head is about 3.70 m, and the design working efficiency is about 10% higher in
the forward direction than in the reverse direction.

(3) The numerical calculation results show that under the forward design condition
(Q = 368 L/s), the proportion of hydraulic loss is 6.22%, and under the reverse design
condition (Q = 316 L/s), the proportion of hydraulic loss is 11.81%, with a difference
of about 6%. The uniformity of impeller inlet flow velocity is about 12% higher than
that under the reverse operation. The main reason for the difference in hydraulic loss
and flow velocity uniformity between forward and reverse operation is that during
reverse operation, curved guide vanes are placed in front, which reduces the flow
velocity uniformity at the inlet of the impeller, resulting in an increase in the bad
flow pattern of the inlet water of the impeller, and because the outlet water has no
circulation recovery structure such as guide vanes, the ability of converting kinetic
energy into pressure energy of the outlet water is weakened, and the proportion of
hydraulic loss is increased.

(4) In the forward operation, the inlet water is straight pipe, and in the reverse operation,
the inlet water is elbow. Under the forward and reverse operation, the inlet water flow
pattern is relatively good. In the forward and reverse operation, with the increase of
flow, the outlet water streamline, the total pressure distribution of outlet water, the
uniformity of impeller inlet flow velocity, and the vortex in the impeller domain are
improved. The internal flow fields, such as outlet streamline, total outlet pressure
distribution, impeller inlet velocity uniformity, and impeller domain vortex, under
forward operation are better than those under reverse operation, so the performance
of forward operation is better than that of reverse operation.
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