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Abstract: In the interaction between waves and structures, the maximum wave run-up height on the
surface of the structure and the wave field distribution around the cylinder are important factors to
be considered in the design of marine structures. In this paper, the open source software OpenFOAM
is used to simulate the wave run-up phenomenon of a truncated cylinder under regular waves by
solving the Reynolds-averaged Navier–Stokes equation. The established numerical model is verified
with the experimental data, and the good consistency demonstrates the accuracy in simulating the
interaction between waves and fixed truncated cylinders. The numerical results show that the draft
of the cylinder under regular waves has little effect on its maximum wave run-up height, but has a
significant effect on the horizontal wave force. At the same wave steepness, the radial dimensionless
run-up height increases with the increase of scattering parameters ka, where k is the wave number
and a is the cylinder radius. The radial run-up height decreases gradually along the radial direction
in the upstream, and increases gradually along the radial direction in the downstream.

Keywords: fixed truncated cylinder; wave run-up; wave load; CFD model

1. Introduction

Wave run-up and wave load of offshore structures are important factors that need
to be considered in the design of offshore structures. For example, regarding offshore
oil platforms and wind turbines, it is necessary to accurately evaluate the wave run-up
amplification height around the structure caused by incident waves, so as to avoid the
impact of waves on deck or wind turbine appendages, and thus prevent structural failure.
Past works have revealed that amplification of incident waves (regular or irregular) may
cause the water body to slap the structure, generating large horizontal forces, uplift forces,
and overturning moments [1–3]. Especially for the platform supported by the column, the
wave run-up effect along the wave facing surface of the column will greatly increase the
risk of strong nonlinear slamming or even green water. In order to avoid potential damage,
a variety of load conditions should be considered in the design of the structure. For the
floating structure, both horizontal and vertical wave forces should be paid attention. For
the fixed cylinder, the horizontal wave force is much larger than the vertical wave force,
which shows an order of magnitude difference [4,5]. Therefore, only the horizontal wave
force of the fixed cylinder structure is studied in this paper.

Interaction between waves and simple structures can be solved by analytical or semi-
analytical solutions. Based on the linear diffraction theory, McCamy and Fuchs [6] in-
vestigated the wave field around the vertical monopile, but the linear diffraction theory
is only highly effective for little wave steepness. Kim and Hue [7], Kriebel [8], and Mar-
tin et al. [9] extended the theory of linear diffraction to second order, increasing the accuracy
of the model. Model tests and numerical simulations are needed to analyze the interaction
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between waves and complex structures, such as high order problems. Hallermeier [10]
assumed that the water particle was forced to rise above the wave crest about u2/2g along
the surface of the cylinder (wherein u is the maximum horizontal velocity of the water
quality point at the wave crest, and g is the acceleration of gravity), and the kinetic en-
ergy was converted into potential energy. Based on this, a semi-empirical formula for the
velocity stagnation head was proposed to estimate the maximum wave run-up height of
the cylinder. This formula was then corrected by a series of wave run-up tests for a fixed
vertical cylinder [11]. Bonakdar et al. [12] used relative water depth, relative wave height,
and slenderness ratio as the control parameters of relative wave run-up ratio, integrated
multiple sets of experimental data, and used an M5 model tree and nonlinear regressive
technique to fit the single pile run-up formula under wide range wave conditions (shallow
water, medium water depth, and deep water). Limited by experimental conditions, the
numerical model of the wave–structure interaction based on potential flow theory has
been widely used in ocean engineering. Through frequency domain and time domain
analysis, the time series of wave surface elevation and wave force of wave–structure in-
teraction can be quickly obtained. Liu et al. [13] used the three-dimensional high order
boundary element method to simulate the interaction between second order wave flow and
a three-dimensional floating body. Wang and Wu [14] investigated the second order wave
diffraction of wave and cylindrical array by the finite element method in the time domain.
Ohl et al. [15] analyzed the diffraction problem of regular wave and cylindrical array, and
compared the experimental, theoretical, and numerical simulation results. Abbasnia and
Ghiasi [16] established the two-dimensional fully nonlinear numerical wave flume based on
the NURBS (non-uniform rational B-spline) high-order finite element method to simulate
the interaction between regular waves and multiple horizontal fixed cylinders. Bai et al. [17]
investigated the nonlinear properties of the near-trapping phenomenon caused by regular
waves interacting with cylindrical arrays using a fully nonlinear time domain model.

An important factor to be considered in the simulation of wave–structure interaction
is the viscous effect. Potential flow theory ignores the existence of a fluid viscous effect,
but the viscous effect cannot be ignored in some cases. For example, the potential flow
solver overpredicts the local free surface height in the near collapse problem of multiple
cylinders [18]. For the potential flow solver, the simulation of the highly nonlinear wave-
structure interaction and the large deformation motion of the free surface have always
been a great challenge, but the computational fluid dynamics (CFD) solver can well solve
the above problems and obtain more accurate predictions. Xiang et al. [19] investigated
the assessment of extreme wave impact on coastal decks with different geometries via
the arbitrary Lagrangian–Eulerian method, and the results revealed that the ratio of the
wavelength-to-deck width governs the loads on a deck, and the loads do not change after a
certain value of this ratio is exceeded. Istrati et al. [20] presented a simplified methodology
for the tsunami design of skewed bridges, and the performance criteria for bridges in
tsunami-prone areas via the finite element method. Westphalen et al. [21] simulated
interaction between a regular wave and a fixed horizontal cylinder via particle-based
methods, and the numerical results showed good agreement with physical experiments.
Hasanpour et al. [22] investigated the impact of Tsunami-Borne large debris flow on coastal
structures via coupled particle-mesh methods (SPH-FEM). In recent years, the CFD software
package OpenFOAM has become more and more popular in ocean engineering due to
its open source and optional expansion, although the solving may require considerable
computational resources [23]. Lara et al. [24] used OpenFOAM software and IHFOAM
to simulate the interaction of a single pile, multi-pile, and a wave. The wave run-up
height and force of the multi-pile and single pile were compared, and the difference
in hydrodynamic force of the incident wave and the nonlinear interaction between the
wave and structure were pointed out. Sun et al. [18] investigated the nonlinear interaction
between regular waves and a single truncated cylinder by using the second-order frequency
domain solver and CFD software OpenFOAM. The free surface elevation around the
cylinder and wave force were compared with the experimental data. The accuracy and



Water 2022, 14, 2830 3 of 23

computational efficiency of the potential flow solver and the CFD solver were evaluated
and compared. It is pointed out that the potential flow solver has the problem of inaccurate
prediction of wave height at large wave steepness. Mohseni et al. [25] established a three-
dimensional numerical wave flume based on OpenFOAM, and investigated the importance
of Type-1 and Type-2 scattering waves in nonlinear amplification of wave height around a
vertical fixed cylinder under different wave steepness and wave fields. Cao and Wan [26]
established the viscous numerical wave flume based on OpenFOAM to simulate the wave
run-up of a fixed vertical cylinder under solitary waves.

In view of the above research, this paper establishes a refined numerical wave flume
based on OpenFOAM to simulate the interaction between regular waves and a fixed
truncated cylinder, and investigates the variation of the maximum run-up height of a fixed
truncated cylinder under regular waves and its difference with the estimation formula,
the distribution of thee wave field around the cylinder, and the variation of horizontal
wave force. The organization of this paper is as follows. The literature review is shown in
Section 1. Numerical theory, CFD model establishment, and model validation are presented
in Section 2. Section 3 presents the analysis and discussion of simulation results. The main
conclusions are presented in Section 4. The future works are presented in Section 5.

2. Numerical Model and Its Validation
2.1. Governing Equation

In this paper, the open source software OpenFOAM is used to establish a numerical
wave flume to simulate the interaction between waves and structures. The numerical model
uses the Reynolds-averaged Navier–Stokes (RANS) equation to represent the motion of the
fluid, including the mass conservation equation and the momentum conservation equation,
as follows:

∂ui
∂xi

= 0 (1)

∂ρui
∂t

+
∂ρujui

∂xj
− ∂

∂xj

[
µe f f

∂ui
∂xj

]
= −∂p∗

∂xi
+ Fb,i + fσ,i (2)

where ρ is the density of the mixed fluid; ui(i = x, y, z) is the fluid velocity component
in cartesian coordinates; t is the time; p∗ is the excess hydrostatic pressure obtained by
subtracting static pressure from total pressure; µe f f is the effective dynamic viscosity; Fb
is the volume force (including the gravity); and fσ is the surface tension term. In order to
close the RANS equation and avoid wave height attenuation, the stable SST turbulence
equation [26] of multiphase flow modified by Larsen et al. [27,28] was used.

The volume of fluid (VOF) method is used to solve the free surface motion, and the
volume fraction constant α is defined to identify the fluid volume of each element in the
computational domain. The volume fraction α can be solved by the following convection
equation:

∂α

∂t
+

∂uiα

∂xi
+

∂uc,iα(1− α)

∂xi
= 0 (3)

where the last item on the left is the artificial compression term that limits the numerical
diffusion, uc,i = min[cα|ui|, max(|ui|)], cα is 1 in this paper.

The density of fluid ρ in the computational unit is calculated based on weighted
volume fraction α. The effective dynamic viscosity µe f f is based on the weighted volume
fraction α and the additional turbulent dynamic viscosity ρvt:

ρ = αρwater + (1− α)ρair (4)

µe f f = αµwater + (1− α)µair + ρνt (5)

In this paper, the wave2Foam toolbox is used for wave simulation. The velocity inlet
wave generation method is used to generate waves at the inlet, and the relaxation zone is
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set at both ends of the flume to eliminate waves at the inlet and outlet boundaries, so as to
eliminate the secondary reflection waves at the end of the flume and the structure [29].

2.2. Model Validation
2.2.1. Mesh Convergence Validation

As shown in Figure 1, a CFD model for simulating the interaction between the wave
and the fixed cylinder is established. The length of the flume changes with the change of
wave conditions. The overall length remains 4.5 times of the wavelength, the flume width
W is 2 m (D/W = 0.16 < 0.167, avoiding the influence of side walls on the measurement
results [30]) and the water depth d is 1.7 m. The cylinder radius a is 0.16 m, the cylinder
height h is 1.28 m and the cylinder draft b is 0.64m (b = 2D, D is the diameter of the
cylinder). The centroid of the cylinder is set at the static water surface, and the particle
coordinates are (x, y, z) = (0, 0, 0). The cylinder is located in the center of two sidewalls,
which is 2.5 times the wavelength from the entrance boundary.
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Figure 1. Schematic of numerical wave flume.

The left side of the numerical model calculation domain is the inlet, the right side is
the outlet, the left and right walls are the slip walls, the top is the pressure outlet boundary
condition, and the bottom is the fixed wall. The cylinder wall is set as the fixed wall
for the fixed cylinder. The wall functions k and ω are used to control the wall region,
and the dimensionless wall distance y+ should be kept between 1 and 300; in this paper
it is 40. On the wall, the velocity is set as the Dirichlet boundary condition (0 m/s in
three directions), and the pressure and volume fraction are set as the Neumann boundary
condition. The atmosphere conditions at the top of the computational domain are mixed
Dirichlet–Newman boundary conditions for velocity, pressure, and volume fraction. The
Wave2Foam toolbox is used to set boundary conditions in the inlet and outlet. Firstly, the
grid convergence of the empty wave flume is verified to reduce the calculation amount
under the premise of ensuring sufficient accuracy. The length of the wave flume is 20.5 m.
In order to eliminate the secondary reflection at the end of the flume and the structure,
the relaxation regions at the front and rear ends are set to 1 times of the wavelength
(4.5 m) and 1.5 times of the wavelength (7 m), respectively. The typical wave condition
(T = 1.7 s, H = 0.071 m, d = 1.7 m) is simulated under four different mesh schemes given
in Table 1, where the time step is T/1000.

The grid division of the numerical wave flume is shown in Figure 2. In the horizontal
direction, the stable wave propagation region is evenly divided into ∆x, and the growth
rate is gradually sparse in the relaxation region at 1 : 1.2. In the vertical direction, in order
to accurately capture the free surface, the grid elements in the range of double wave height
above and below the free surface are evenly divided into ∆z, and the grids far from the free
surface are gradually sparse at the growth rate of 1 : 1.15.
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Table 1. Mesh refinement schemes (4 examples).

Mesh Type 1 2 3 4

H/∆y 5 10 15 20
λ/∆x 40 80 120 160

∆y (m) 0.0142 0.0071 0.0047 0.0036
∆x (m) 0.1108 0.0554 0.0369 0.0277
∆x/∆y 7.8 7.8 7.8 7.8
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Figure 2. Mesh refinement.

The simulation results are compared with the theoretical results. The time series of
wave surface elevation is shown in Figure 3, and the wave height comparison is shown
in Table 2. The results show that the wave height simulated by the second grid division
scheme can achieve high accuracy. Figure 4 shows the comparison between the simulated
instantaneous wave surface and the theoretical wave surface under Scheme 2. It can be seen
that the simulated wave surface is basically consistent with the theoretical wave surface,
and the wave absorption effect of the wave relaxation zone at the end of the flume is good.
The grid division of the subsequent numerical simulation in this paper will be based on
Scheme 2.

Table 2. Mesh refinement schemes.

Mesh Type 1 2 3 4

height(m) 0.0690 0.0706 0.0706 0.0708
relative error −2.86% −0.89% −0.61% −0.28%
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2.2.2. Validation of the Established Model

Based on the appropriate meshing scheme determined in Section 2.2.1, the interaction
between wave and fixed cylinder is simulated in this section, and the results are compared
with the experimental results to verify the accuracy of the CFD model to simulate the wave
run-up phenomenon. As shown in Figure 5, the wave run-up of a fixed vertical cylinder
was experimentally investigated by Vos et al. [11], which was conducted in a wave flume at
Aalborg University, Denmark. In order to be consistent with the experiment, the dimension
of the established numerical flume in Section 2.2.1 is modified, while the others are kept
the same. Meanwhile, aiming to reduce the computation time, the length of the numerical
flume (L = 10 m = 4.5λ) is also reduced compared with that of the experimental flume
(L = 30 m). The size of the numerical wave flume is: 10 m× 1.5 m× 0.8 m, and the water
depth is 0.5m. The diameter and height of the cylinder are 0.12 m and 0.8 m, respectively,
located at the center of the two sidewalls, and the cylinder is fixed at the bottom of water.
The wave conditions used in the simulation is the fifth-order Stokes wave with wave height
H = 0.12 m, period T = 1.05 s, and wave steepness kA = 0.07 (k = 2π/λ is the wave
number, A = (H/2) is the wave amplitude). Euler discretization is used for the time
term, center discretization is used for the pressure gradient and dissipation terms, and the
maximum Courant number is set to 1. Figure 6 shows the arrangement of numerical wave
height measuring points, and nine measuring points are set on the surface of the cylinder
to monitor the time series of wave run-up around the cylinder.
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Figure 7 shows the comparison of wave run-up between the simulation and experiment
at three measuring points at 0◦, 45◦, and 180◦ around the cylinder. The ordinate represents
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the wave surface elevation relative to the mean water level (z = 0 m), and the abscissa is
time. The results show that the numerical simulation results are in good agreement with
the experimental data. The maximum error of wave height is 15.2%, and the wave run-up
height is consistent with the overall trend. The simulation results can also observe the
quadratic peak phenomenon as the experimental results, which proves the accuracy of the
model and lays the foundation for subsequent simulation. Numerical results sometimes
overestimate the peak value of wave run-up. Devolder et al. [28] pointed out that this may
be related to the reflection difference between numerical and experimental results, as well
as the measurement technique of wave run-up height.
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2.3. Model Setup

Based on the numerical model validated in Section 2, the interaction between thee
wave and thee fixed truncated cylinder is numerically simulated to analyze the spatial
distribution of wave run-up of truncated cylinders. Wave height measuring points are
arranged in circumferential and radial directions, respectively, and the arrangement of cir-
cumferential measuring points is consistent with Figure 6. Distribution of radial measuring
points are shown in Figure 8b. Sixteen numerical wave height measuring points are set up
to monitor the variation and spatial distribution of waves along different radial directions
of the cylinder. The distance r and angle α between radial measuring points are shown in
Table 3. All incident waves propagate along the positive direction x (i.e., the position of 0◦

measuring point).
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Table 3. Positions of wave probes.

Name of Wave Probes α(0◦) r

A1–A4 0 a,1.2a,1.6a,2a
B1–B4 45 a,1.2a,1.6a,2a
C1–C4 90 a,1.2a,1.6a,2a
D1–D4 135 a,1.2a,1.6a,2a

The numerical model is meshed by hexahedral structured grids, as shown in Figure 9.
The boundary layer is divided at the boundary of the cylinder, and the surrounding is
refined to meet the accuracy requirements of the simulation wave surface and force. The
different mesh sizes have been used to verify the mesh convergence for wave–cylinder
interaction, and the results presented in this paper are the verified results.
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Figure 9. General mesh for NWT and heaving cylinder: (a) top view; (b) side view.

A series of regular wave conditions (Stokes second-order wave) are set as the incident
wave, and three wave steepness values were also set (kA = 0.05, 0.1, 0.15, where k is the
wave number and A is the wave amplitude). Wave periods and wave heights at each wave
steepness are different. The wavelength range includes short-wave to long-wave. The wave
numbers and scattering parameters remain the same under the same wave period. The
incident wave height range is 0.042~0.398 m. The incident wave period range is 1.3~2.5 s.
The specific wave conditions are shown in Table 4, which is from the scaled value of the
Class 2–6 sea conditions in the Chinese sea area, and also refer to the setting of experimental
conditions in Qiao et al. [31].

Table 4. Incident wave conditions.

Number Period T(s) kA = 0.05H(m) kA = 0.1H(m) kA = 0.15H(m) ka

F1 1.3 0.042 0.084 0.126 0.3815
F2 1.4 0.049 0.098 0.146 0.3295
F3 1.5 0.056 0.112 0.167 0.2879
F4 1.6 0.063 0.126 0.189 0.2543
F5 1.7 0.073 0.146 0.218 0.2197
F6 1.8 0.078 0.156 0.235 0.2044
F7 1.9 0.087 0.174 0.258 0.1857
F8 2.0 0.094 0.188 0.282 0.1701
F9 2.1 0.102 0.204 0.305 0.1570
F10 2.3 0.118 0.236 0.353 0.1361
F11 2.5 0.133 0.266 0.398 0.1204
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3. Results Analysis
3.1. Analysis of Maximum Wave Run-Up Height
3.1.1. Maximum Run-Up Height Change

Wave run-up height along a cylinder is the maximum vertical distance of wave run-
up upward along the cylinder surface during the interaction between the wave and the
cylinder. As shown in Figure 10, R f is the maximum height of the wave surface time series
at each wave height measuring point (the average value of the five stable periods). R∗f is
the maximum wave run-up height (the maximum run-up height of nine circumferential
measuring points). The maximum run-up height mentioned in this section is that the
maximum run-up height of the fixed case appears at the position of the 0◦ measuring point,
so the maximum run-up height of the fixed case is the maximum wave height of the 0◦

measuring point.
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As mentioned in the introduction, in recent years, according to theoretical and experi-
mental studies, some scholars have proposed several estimation formulas for the maximum
wave run-up height of a fixed vertical cylinder under regular waves [6–12]. In this paper,
the empirical formulas proposed by Vos et al. [11] and Bonakdar et al. [12] are selected
for analysis. The reason for this selection is that the velocity value of the water particle
in the formula proposed by Vos et al. [11] is calculated by the Stokes second-order wave,
which is consistent with the incident wave working condition used in this paper. The em-
pirical formula proposed by Bonakdar et al. [12] covers all water depths and is a relatively
comprehensive formula at present.

Vos et al. [11] modified the velocity head formula proposed by Hallermeier et al. [10]
through experimental data, and obtained the calculation formula of the maximum run-up
height of the upright cylinder (the cylinder touches the bottom) under regular waves:

R f = ηmax + m
u2

2g
(6)

ηmax =
H
2
+ k

H
2

H
8

cosh(kd)
sinh3(kd)

(2 + cosh(2kd)) (7)

utop =
H
2

gk
w

cosh(k(ηmax + d))
cosh(kd)

+
3
4

k
H2

4
w

cosh(2k(ηmax + d))
sinh4(kd)

(8)

where ηmax is the maximum peak height, which is calculated by Stokes second-order wave
theory formula (consistent with the simulated condition); utop is the maximum horizontal
velocity at the peak water particle; H is wave height; k is wave number; ω is incident
wave frequency; d is water depth; and m is adjustment coefficient, being 1, as suggested by
Vos et al. [11].
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Bonakdar et al. [10] took the relative wave height H/d, relative water depth d/λ,
and slenderness ratio D/λ as the control parameters of the maximum run-up height, and
obtained the formula for predicting the maximum wave run-up height of a fixed vertical
cylinder under regular waves:

R f

H
= 0.863(1 + 0.15M)

(
H
d

)0.117( d
λ

)−0.206(D
λ

)0.108 H
d
≤ 0.41 (9a)

R f

H
= (1 + 0.17M)

(
0.777

(
d
λ

)−0.206(D
λ

)0.108

+ 0.138
(

H
d
− 0.41

)0.316( d
λ

)−2.6(D
λ

)1.16
)

H
d

> 0.41 (9b)

where M is related to the expected or acceptable risk level. The specific value is described
in Bonakdar et al. [12], and it is taken as 0 in this paper.

Figures 11 and 12 show the comparison between the two estimation formulae and
the maximum wave run-up height obtained by numerical simulation. The abscissa is
the maximum run-up height predicted by the estimation formula, and the ordinate is the
maximum run-up height obtained by numerical simulation. The difference between the
maximum run-up height predicted by the estimation formula and the simulation results is
assessed using statistical indicators such as bias, consistency index (Ia), squared correlation
coefficient (R2), and dispersion index (SI), which are calculated as follows:

Bias = y− x (10)

Ia = 1−

N
∑

i=1
(xi − yi)

2

∑ (|xi − x|+ |yi − y|)2 (11)

R2 =

(
N
∑

i=1
(xi − x)(yi − y)

)2

N
∑

i=1
(xi − x)2 N

∑
i=1

(yi − y)2
(12)

SI =

√
1/N∑(yi − xi)

2

x
(13)

where xi and yi are the predicted and simulated values of the estimation formula, respec-
tively; N is the number of data; x and y are the average values of predicted and simulated
values, respectively. Table 5 shows the statistical index results between the predicted values
of the two estimation formulas and the simulation results.
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Table 5. Statistical indicators for differences between predicted and simulated values.

Estimation
Formula Bias(m) Ia R2 SI(%) Estimation

Formula

Vos 0.0188 0.9474 0.9771 30.13 Vos
Bonakdar 0.0031 0.9941 0.979 9.76 Bonakdar

It can be seen from Figure 11 that the numerical simulation results are consistent
with the prediction results of the estimation formula proposed by Vos et al. [11] when
the wave steepness is small (kA = 0.05). However, with the increase of wave steepness,
the numerical simulation results gradually deviate and become larger than the estimation
formula results, and with the increase of wave steepness, the deviation between the two
also become larger. The deviation and dispersion indexes of the two groups of data are
0.0188 and 30.13%, respectively. It can be seen from the deviation that the estimation
formula underestimates the wave run-up height, especially when the wave run-up height
is large. The reason for this phenomenon is that the maximum horizontal velocity of the
peak water particle used in the formula to calculate the maximum peak height is calculated
according to the corresponding wave theory in advance. In practice, due to the interaction
between waves and cylinders, the velocity on the surface of the cylinder is different from
the theoretical formula.

It can be seen from Figure 12 that the numerical simulation results are in good agree-
ment with the estimation formula proposed by Bonakdar at al. [12]. The dispersion between
the predicted value and the simulated value can be ignored, and the data points are basi-
cally concentrated on the 45◦ correlation line, indicating a good correlation. The consistency
index 0.9941 and dispersion index 9.76% also show that the formula can accurately predict
the wave run-up of a fixed truncated cylinder under regular waves. The reason is that
the relative wave height, relative water depth, and slenderness ratio used as the control
parameters of the maximum run-up height are of physical significance. They can represent
the characteristics of incident waves, such as nonlinearity (H/λ), dispersion (d/λ), and
diffraction region (D/λ). Figure 11 proves the accuracy of the numerical model and the
numerical results; on the other hand, it also shows that, for the truncated cylinder with the
draft reaching half of its height, its maximum wave run-up height is consistent with that of
the fully bottom fixed cylinder. The draft has little effect on the maximum wave run-up
height of the cylinder, and its maximum run-up height can also be predicted by the fixed
vertical cylinder estimation formula. At the same time, for the estimation of the maximum
run-up height of the vertical cylinder under the action of nonlinear waves, the formula
proposed by Bonakdar et al. [12] is more accurate and close to the reality than the formula
proposed by Vos et al. [11].
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3.1.2. Wave Surface Time Series Curve and Fourier Analysis

This paper mainly selects four different wave periods under three wave steepnesses
as representative working conditions to analyze the wave surface changes of each wave
height measuring point, and analyze the time series curve of the wave surface by Fourier
transform. The four wave periods are 1.4 s, 1.73 s, 2.1 s, and 2.5 s, respectively. The selected
measuring points were 0◦, 157.5◦, 180◦, and 225◦.

Figure 13 shows the time series curves of the wave surface and the corresponding
Fourier transform results of the four wave height measuring points in the condition T = 2.5 s.
In order to facilitate comparative observation, the phase of the time series curve results is
adjusted. It can be observed that, with the increase of wave steepness, the time series curves
of the wave surface present obvious nonlinear characteristics, and multiple peaks appear.
By analyzing the wave surface time series curves at different measuring points under the
same wave steepness, it can be found that the nonlinear characteristics of the wave surface
time series curves at the 180◦ measuring point are weak, while the nonlinear characteristics
of the wave surface time series curves at the 0◦, 157.5◦, and 225◦ measuring points are
strong. There are obvious multiple peaks at the wave peak and trough, which reflects the
strong nonlinear characteristics. The wave heights at the 157.5◦ and 225◦ measuring points
are smaller than those at other measuring points. From the wave composition analysis, the
second-order wave influence at the 0◦ measuring point is greater than that at the 157.5◦

and 225◦ measuring points. The reason for this phenomenon can be explained as follows:
when the regular wave peak is close to the front of the cylinder, the water body in front
of the cylinder is blocked by the cylinder, and part of the water body exchanges kinetic
energy and potential energy, resulting in the rise of the water body, and the maximum
wave run-up height also appears in this area; the 0 ◦ measuring point will have strong
nonlinear characteristics, while the other part of the water body continues to propagate
forward around the two sides of the cylinder and meets behind the cylinder; one part will
return upstream and interact with the incident wave (the velocity of the return part of
the water body is not as fast as that of the unhindered part), and there will be a strong
nonlinear phenomenon in the shoulder of the cylinder, as shown in Figure 14.

In order to analyze the influence of high-order wave components, the spectrum
analysis results of time series curves of the wave surface are quantitatively conducted.
The wave amplitude (second-order, third-order, etc.) corresponding to each order wave
frequency is compared with the wave amplitude corresponding to the first-order wave
frequency, and this ratio is defined as the corresponding wave influence coefficient of each
order (second-order, third-order, etc.).

ζn =
An

A1
(14)

where ζn is the wave influence coefficient; n is the wave frequency order number; An is the
nth order wave amplitude (second-order n = 2, third-order n = 3, etc.) corresponding to
each order wave frequency; and A1 is the wave amplitude corresponding to the first-order
wave frequency.
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Figure 13. Time series of wave surface elevation and frequency spectrum at different wave steepness
parameters (T = 2.5 s): (a) 0◦ time series of wave surface elevation; (b) 0◦ frequency spectrum;
(c) 157.5◦ time series of wave surface elevation; (d) 157.5◦ frequency spectrum; (e) 180◦ time series of
wave surface elevation; (f) 180◦ frequency spectrum; (g) 225◦ time series of wave surface elevation;
(h) 225◦ frequency spectrum.
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Figure 14. The process of wave field change around a cylinder during a wave period(plane): (a) t0;
(b) t0 + T/4; (c) t0 + 2T/4; (d) t0 + 3T/4.

The results are shown in Table 5. In all spectrums, the maximum wave frequency
can reach the sixth order, but after the third order wave frequency, the corresponding
wave influence coefficient of each order wave frequency is small, which is between 0.005
and 0.027, and the proportion of the first order wave amplitude is small. The second and
third order coefficients are mainly affected. At the same time, in order to facilitate data
collation, only the second and third order wave influence coefficients are shown in Table 6.
It can be seen that when the wave steepness is small, the spectrum analysis of the time
series curves of the wave surface at each measuring point has only a second-order value.
With the increase of wave steepness, the wave frequency order of each measuring point
increases, and the wave influence coefficient of each order increases. The second-order
wave influence coefficient under the short-wave condition is larger than that under other
conditions, which may be due to the strong scattering effect of the cylinder on the short-
wave, and the interaction between the incident wave and the cylinder scattering wave leads
to a more complex wave field. At the same wave steepness, the second-order influence
coefficient of the 0◦ measuring point is the largest, and the wave run-up height is also
the largest.

Figure 14 shows the variation of the wave diffraction field around the cylinder in
a period (wave incident vertically to the left side of the Figure) during the wave run-up
process. It can be seen that the simulation results are consistent with the experimental
results of Swan and Sheikh [32] (Type-1 and Type-2).
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Table 6. High-order (2nd order, 3rd order) wave influence coefficient.

Wave
Probes

0◦ 157.5◦ 180◦ 225◦

Second
Order

Third
Order

Second
Order

Third
Order

Second
Order

Third
Order

Second
Order

Third
Order

T = 1.4 s
kA = 0.05 0.107 — 0.048 — 0.071 — 0.028 —
kA = 0.1 0.310 — 0.118 — 0.189 — 0.077 —

kA = 0.15 0.320 — 0.142 — 0.265 — 0.210 —

T = 1.73 s
kA = 0.05 — — — — — — — —
kA = 0.1 0.144 0.027 0.052 — 0.077 — 0.029 0.047

kA = 0.15 0.211 0.029 0.075 0.014 0.112 0.02 0.072 0.089

T = 2.1 s
kA = 0.05 — — — — — — — —
kA = 0.1 0.178 0.06 0.097 — 0.105 0.031 0.07 0.075

kA = 0.15 0.252 0.112 0.111 — 0.12 0.035 0.124 0.121

T = 2.5 s
kA = 0.05 0.104 — 0.074 — 0.08 — 0.053 —
kA = 0.1 0.176 0.074 0.116 — 0.127 — 0.057 0.058
ka = 0.15 0.264 0.121 0.153 0.048 0.169 0.046 0.052 0.063

3.2. Spatial Distribution of Wave Run-Up
3.2.1. Circumferential Run-Up Height Distribution

For the representative working conditions selected in the previous section, the dimen-
sionless maximum run-up height R f /A of each wave surface of the nine circumferential
wave measuring points (R f is the mean value of the maximum wave surface height in
five periods after the wave surface time series curve of each measuring point is stable)
is calculated, and the dimensionless maximum run-up height distribution results (the
maximum run-up appreciation of each measuring point) around the cylinder under each
working condition are obtained. Figure 15 shows the distribution of dimensionless maxi-
mum run-up height with different wave steepness under the same scattering parameter
(the scattering parameters are the same under the same period). It can be seen that the wave
run-up height of the fixed truncated cylinder under regular waves is W-shaped distribution
and is symmetrical about the xoz plane. The maximum wave run-up height appears at
0◦, and the maximum run-up height can reach 1.57 times the wave amplitude, where the
conversion of wave kinetic energy to potential energy is the largest. The minimum run-up
height appears between 90◦ and 150◦, and the run-up height is about 0.8 times the wave
amplitude. The wave run-up is lower than the incident wave height, and the wave height
decreases because of the dissipation of energy caused by the nonlinearity of the cylindrical
shoulder. The maximum run-up height at 180◦ is only smaller than the 0◦ case, which is
close to 1 times the incident wave amplitude. This is because the two wave diffraction fields
generated in the shoulder of the cylinder will converge here, resulting in local elevation of
the wave surface in this area.

In addition, with the increase of wave steepness, the discreteness of the wave run-up
height distribution curve (half w type) becomes larger, and the concaveness also increases;
that is, the increase of wave steepness will lead to the increase and decrease of run-up.
The possible reason for this phenomenon is that the increase of wave steepness causes
the increase of wave nonlinearity, resulting in the increase of average water level. The
run-up height of the cylinder near 0◦ (wave-front side) increases with the increase of wave
steepness, and decreases at the shoulder. The run-up height near 180◦ has little change
with wave steepness, which is close to the incident wave height.

Figure 16 shows the distribution of dimensionless maximum run-up height under dif-
ferent scattering parameters at the same wave steepness. It can be seen that the distribution
curves of dimensionless maximum run-up height under different scattering parameters
have little difference at low wave steepness, and the overall trend is relatively flat. With
the increase of wave steepness, the differences of dimensionless maximum run-up dis-
tribution curves of different scattering parameters increase gradually, the dimensionless
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run-up height in the 0◦ region increases gradually, the 90◦ region decreases continuously,
the 180◦ region remains basically unchanged, and the distribution curve is concave. In
addition, it is also found that under the same wave steepness, the dimensionless maximum
run-up height distribution curve under ka = 0.157 is basically lower than that under other
scattering parameters.
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3.2.2. Radial Run-Up Height Distribution

Figures 17 and 18 show the distribution of dimensionless maximum wave run-up
height at each radial measuring point representing the working condition (A–D column,
representing 0◦, 45◦, 90◦, and 135◦ directions, respectively). It can be seen that when the
wave steepness is small, the dimensionless maximum run-up height around the cylinder
changes little in each radial direction, and the curve is relatively flat. The distribution curve
of each column is close. With the increase of the wave steepness, the nonlinearity of the
wave increases, and the dispersion of each data point on the same radial distribution curve
becomes larger. The deviation between the dimensionless maximum run-up height curves
of each radial becomes larger, and the radial values of columns A and B decrease gradually.
The values of columns C and D gradually increase along the radial direction, and the two
sides form a conjugate relationship.

In the front of the cylinder (column A, B), the dimensionless maximum run-up height
gradually decreases along the radial direction. This indicates that a large wave surface
uplift has occurred upstream before the wave propagates to the cylinder, which is consistent
with the time t0 in Figure 14. In addition, the above phenomena also show that the increase
in wave steepness will lead to the increase of run-up in the upstream region of the cylinder
and the decrease of run-up in the corresponding downstream region.
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(kA = 0.05): (a) T = 1.4 s, H = 0.049 m; (b) T = 1.73 s, H = 0.073 m; (c) T = 2.1 s, H = 0.102 m;
(d) T = 2.5 s, H = 0.133 m.
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3.3. The Variation of Horizontal Wave Force with Scattering Parameters

Figure 19 shows the time series curves of horizontal wave force under different
wave steepnesses for each representative working condition. It can be observed that the
nonlinearity of the time series curve of the horizontal wave force increases with the increase
of wave steepness. Under the same wave steepness, the larger the period is, the larger the
amplitude of incident wave is, the stronger the nonlinearity of the time series curve is, and
the greater the wave force is. At the same time, it is also found that, with the increase of
the period (wave amplitude increases), the absolute value of the peak of the horizontal
wave force is less than the absolute value of the trough, and the amplitude is asymmetric,
that is, the mean value of the wave force moves downward, as shown in Figure 20. It can
also be seen from Figure 20 that the time series curves of wave forces in different periods
are similar before the peak passes through the cylinder, but they are different after the
peak passes through the cylinder. The greater the period, the stronger the nonlinearity of
the time series curve, and there is a trend of secondary peaks (the second wave peak only
appears when kA > 0.3 and when it is a long-wave). Rainey et al. [33] considered that the
reason for the secondary loading cycle was due to the cylinder’ s obstruction of the wave
peak, which caused the filling of the downstream cavity behind the cylinder.
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In order to further analyze this phenomenon, nine periods with wave steepnesses of
0.15 were selected to decompose the wave force, and the mean value of the wave crest,
the mean value of the wave trough, the total value (the difference between the wave crest
and the wave trough value) and the mean value of the time series curve are investigated,
respectively. As shown in Figure 21, it can be seen that the mean value of the horizontal
wave force is 0 in the short-wave cases, but with the increase of the period, in the long-wave
cases, the absolute value of the wave trough is greater than the absolute value of the wave,
and the horizontal wave force moves down. The reason for the above amplitude asymmetry
is that, under the same wave steepness, the nonlinearity of the wave force time series curve
increases with the decrease of scattering parameters, and the nonlinearity is more obvious
in long-wave cases.
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where 𝜔  is the angular frequency of the incident wave; 𝑏  is the cylinder draft; and 𝐽ଵଶ(𝑘𝑎) and 𝑌ଵଶ(𝑘𝑎) are the first-order derivatives of the first-order and second-class Bes-
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For further analysis of the horizontal wave force, the dimensionless horizontal wave
force is defined:

fx =
Fx

ρgHah
kh

tanh(kh)
(15)

where fx is the dimensionless horizontal wave force; and Fx is the average wave force
amplitude, which is obtained by calculating the standard deviation (STD) of the stable
wave force time series results of five periods:

Fx =
√

2STD(Fx(t)) (16)

where Fx(t) represents the horizontal wave force time series result; and STD is the standard
deviation calculation.

For the fixed vertical cylinder and the truncated cylinder under linear waves, the hori-
zontal wave force on them can be obtained, respectively, according to the linear diffraction
theory, as follows:

FF(t) =
2ρgH

k2 A(ka)(tanhkd) cos(ωt− α) (17)
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, α = tan−1

[
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Y′1(ka)

]
(19)

where ω is the angular frequency of the incident wave; b is the cylinder draft; and J2
1 (ka)

and Y2
1 (ka) are the first-order derivatives of the first-order and second-class Bessel functions,

respectively.
Figure 22 shows the variation of the dimensionless horizontal wave force fx with the

scattering parameter ka under all conditions and the comparison results with the linear
diffraction theory formula. It can be observed that, in the range of ka ∈ [0.1− 0.4], the di-
mensionless horizontal wave force is between [0.17− 0.986], the dimensionless horizontal
wave force increases nonlinearly with the increase of ka, and the dimensionless horizontal
wave force does not change with the change of wave steepness parameter; that is, in the
range of small scattering parameters, the wave steepness parameter is not a significant
indigenous influencing parameter of the horizontal wave force. By comparing the simu-
lation value with the theoretical value, it can also be found that the draft has little effect
on the maximum run-up height of the fixed truncated cylinder under regular waves, but
it has a great influence on the horizontal wave force. The horizontal wave force of the
vertical cylinder (upright) and the truncated cylinder is very different. The simulation
value is in good agreement with the theoretical value of the fixed truncated cylinder when
the scattering parameters are small (long-wave), but with the increase of the scattering
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parameters(ka > 0.25), there is a deviation between the two, indicating that the linear
diffraction theory hypothesis overestimates the wave force at high frequencies, which is
related to the limitation of the small amplitude hypothesis of the linear diffraction theory.
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4. Conclusions

Based on OpenFOAM, a three-dimensional numerical wave flume is established to
simulate the interaction between regular waves and fixed truncated cylinders. The wave
run-up and wave load results of fixed truncated cylinders are compared. The main results
of this study can be summarized as follows:

(1) The fixed cylinder draft has little effect on the maximum wave run-up height, but has a
significant effect on the horizontal wave force. The maximum wave run-up height of a
fixed truncated cylinder can be predicted theoretically by a fixed vertical cylinder run-
up height estimation formula. The estimation formula proposed by Vos et al. [11] has
good prediction at low wave steepness, but it will be underestimated with the increase
of wave steepness, while the estimation formula proposed by Bonakdar et al. [12] can
predict the wave run-up height well.

(2) At the same wave steepness, the radial dimensionless run-up height increases with
the increase of scattering parameters. The radial run-up height distribution gradually
decreases in the upstream along the radial direction of the cylinder, and increases in
the downstream, indicating that before the wave propagates to the cylinder, there is
a large wave surface uplift in the upstream due to the scattering of the cylinder. At
the same time, the increase of wave steepness will also lead to the increase of run-up
height in the upstream region of the cylinder, and the decrease of run-up height in the
corresponding downstream region.

(3) Under the same wave number, the average amplitude of horizontal wave force in-
creases linearly with the increase of incident wave radiation. Under the wave parame-
ters and structural parameters simulated in this paper, the dimensionless horizontal
wave force increases nonlinearly with the increase of scattering parameters, and
the wave steepness parameter is not the significant influence parameter. When the
scattering parameter is small, the theoretical value is consistent with the simulation
results. With the increase of scattering parameters, the linear diffraction theory will
overestimate the horizontal wave force.

5. Future Work

In this paper, only the 2nd order Stokes regular waves are introduced to investigate
the interaction between waves and fixed truncated cylinders, and there is still further work
to be carried out:

(1) The effects of larger wave steepness on the wave run-up and wave load could be
considered.

(2) The wave conditions in practical engineering applications are irregular, such as solitary
waves, extreme waves, etc., and wave breaking occurs when waves interact with
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structures. When the extreme waves break, water and air will react violently, and there
will be an obvious turbulence effect, which will have a strong impact on structures,
and are different from the effects caused by unbroken waves [34]. Therefore, the
effects of extreme waves on the wave run-up and wave load could be considered.

(3) There are many factors that affect the wave run-up, such as the scattering parameters,
the wave steepness, the wavelength to diameter ratio, the water depth, etc. This
paper mainly focuses on the effects of scattering parameters and wave steepness on
the wave run-up and wave load; the effects of other parameters could be studied in
further investigations.
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