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Abstract: Drought is a multifaceted natural disaster that can impact the ecological environment, crop
yield, and social economy through the hydrological cycle process. Meteorological drought occurs
first, which then propagates to other forms. This study presents the propagation characteristics of
meteorological to hydrological drought in different river basins of China. The main drivers of drought
propagation are also quantitatively analyzed in this study. The standardized precipitation index
(SPI) and standardized runoff index (SRI) were used to describe meteorological and hydrological
drought, respectively. The Songhua and Liaohe River Basin (SLRB), Haihe River Basin (HARB),
Huaihe River Basin (HURB), Yellow River Basin (YRB), Yangtze River Basin (YARB), Pearl River Basin
(PRB), Southeast Basin (SEB), Southwest Basin (SWB), and Continental Basin (CB) were analyzed in
this study. The precipitation and runoff datasets were used to compute the SPI and SRI, respectively.
The results showed that the drought propagation time was mainly 1–3 months in China. In general,
drought propagation had a stronger relationship in the central and eastern river basins of China than
in the western river basins (SWB and CB). Spring and winter had a weaker drought propagation
relationship than autumn and winter. Drought propagation was driven by precipitation in the HURB,
YARB, SEB, and PRB; soil moisture and precipitation were drivers in the HARB and YRB; moreover,
soil moisture and potential evapotranspiration were drivers in the SLRB and CB. This study improves
the understanding of the characteristics and drivers of drought propagation in droughts in river
basins. Therefore, this study might provide a reference to reveal the mechanism of drought.

Keywords: hydrological drought; meteorological drought; drought propagation; SPI; SRI

1. Introduction

Drought is recognized as a natural environmental disaster [1–4]. Meanwhile, drought
also has a negative impact on the environment, ecology, agriculture, and social economy of
a region [5–9]. Compared with other types of disasters, drought is unpredictable, difficult
to defend, and has a wide range of influencing characteristics [5,9–12]. Therefore, drought
has more serious uncertainty [13], destructiveness [5], and crypticity [14] than other types
of disasters in the natural environment. Moreover, drought also has an important impact
on the ecological environment at basin scales [2,12,15].

Based on the origin and impact, drought is also divided into many types, such as
meteorological drought, hydrological drought [16], agricultural drought [1], vegetation
drought [9], groundwater drought [17], and socioeconomic drought [18]. Drought trans-
mission can also be divided into many types [5,16]. Therefore, meteorological, agricultural,
and hydrological droughts are early development drought types in nature [5]. Meanwhile,
meteorological drought usually occurs when a lack of precipitation appears in a region for
a period of time [5,19], while hydrological drought is defined as inadequate surface and
subsurface water resource conditions occurring in a region [5,20]. At present, droughts
are usually described by the drought index in many studies [1,5,14,21]. For example,
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Vicente-Serrano et al. [22] employed a standardized precipitation evapotranspiration in-
dex to explore global vegetation response time to meteorological drought; Asadi Zarch,
et al. [23] used a standardized precipitation index (SPI) to investigate global warming and
global drought change trends; Wu et al. [24] used a nonparametric standardized runoff
index to investigate hydrological drought risk in the Loess Plateau; Ding et al. [16] used
a standardized runoff index (SRI), standardized precipitation evapotranspiration index
and the Palmer drought severity index to analyze the relationship among meteorological,
agricultural and hydrological drought in China. The SLRB (Songhua and Liaohe River
Basin), HARB (Haihe River Basin), HURB (Huaihe River Basin), YRB (Yellow River Basin),
YARB (Yangtze River Basin), PRB (Pearl River Basin), SEB (Southeast Basin), SWB (South-
west Basin), and CB (Continental Basin) were analyzed in this study. Meanwhile, the
simulated and observed datasets have also been widely used in the calculation of drought
indices in many studies [9,13,23,25,26]. For example, Vicente-Serrano et al. [22] used the
Climatic Research Unit (CRU) precipitation and potential evapotranspiration dataset to
compute the global SPEI; Peel et al. [27] also used the CRU precipitation and temperature
dataset to divide global climate regions; Zhang et al. [28] also used the CRU precipitation
and potential evapotranspiration dataset to compute the Palmer drought severity index
in China. Ding et al. [16] used a runoff dataset to compute the SRI in China. Therefore,
the dataset could be reliably used to compute drought because the dataset has a wide
application and a high accuracy [16,22,27,29].

At present, there are many drought-related studies [15,30–33]. Some studies have
focused on the effects of drought. For example, Zhou et al. [2] and Xu et al. [14] analyzed
the vegetation response time and the degree of SPEI; Huang et al. [12] investigated the
propagation time from meteorological to hydrological drought in the Wei River Basin; Guo
et al. [34] also investigated the propagation thresholds from meteorological to hydrological
drought in the Wei River Basin. Some studies have focused on drought change. For
example, Yao et al. [35] analyzed the drought change trend during 1961–2013 in China;
Yao et al. [36] also analyzed the drought change trend in the future across China. Some
studies have focused on developing new drought indices. For example, Wang et al. [37]
developed a new drought index of the standardized precipitation evapotranspiration runoff
and estimated its applicability in Sichuan Province; Zhang et al. [38] also developed a new
framework to monitor global multicategory and multiscalar drought.

However, most of these previous studies on drought characteristics were about trend
frequency and risk [33] and the evaluation of drought propagation characteristics is still
relatively rare. Therefore, the objective of this study was to explore the drought propagation
relationship due to meteorological and hydrological droughts in different seasons across
nine river basins of China. The aim of this study was as follows: (1) to investigate the
propagation time and relationship of meteorological and hydrological drought in the
main river basins of China; (2) to analyze the relationship between meteorological and
hydrological drought on an annual scale; (3) to quantitatively analyze the main drivers
of drought propagation in China; and (4) based on the results of this study, to explain the
reasons for the difference in drought propagation in China. The findings could also be
used to understand the propagation from meteorological to hydrological drought and the
propagation differences among different river drains.

2. Data and Methods
2.1. Study Area

China has a diverse climate because it has an enormous expansion and complex
terrain [36]. Its land and ocean areas are approximately 9.63 × 106 km2 and 3 × 106 km2,
respectively [39]. From Figure 1, The major rivers in China include the Songhua River,
Liaohe River, Haihe River, Huaihe River, Yellow River, Yangtze River, Pearl River, Tarim
River, Yarlung Zangbo River, Salween River, and Lancang River [10,15,40–42]. The main
river basins in China include the Songhua and Liaohe River Basins (SLRB), Haihe River
Basin (HARB), Huaihe River Basin (HURB), Yellow River Basin (YRB), Yangtze River Basin
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(YARB), Pearl River Basin (PRB), Southwest Basin (SWB), Continental Basin (CB) and
Southeast Basin (SEB).
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Figure 1. Geographic zones (a) and main river basins (b) in China. The main river basins include the
Songhua and Liaohe River Basins (SLRB), Haihe River Basin (HARB), Huaihe River Basin (HURB),
Yellow River Basin (YRB), Yangtze River Basin (YARB), Pearl River Basin (PRB), Southeast Basin
(SEB), Southwest Basin (SWB), and Continental Basin (CB).

2.2. Data Sources

In this study, hydrological and meteorological drought were computed based on
runoff and P (precipitation) in China, respectively [3,16,21]. The runoff data were provided
by Atmospheric and Climate Sciences [43]. The runoff dataset had a monthly temporal
resolution and a 0.5◦ × 0.5◦ spatial resolution during 1901–2014, globally [43]. Based
on observational data (including antecedent precipitation, temperature, and streamflow),
Ghiggi et al. [43] used a machine learning algorithm to predict monthly runoff. Moreover,
Ghiggi et al. [43] also compared and checked the simulation data of a runoff dataset and
different global hydrological models. The results showed that the runoff dataset had a
higher accuracy and reliability than advanced global hydrological models. Many studies
have also proven the reliability of GRUN runoff data [44,45]. The runoff dataset was also
applied in similar drought studies, such as Ding et al. [16]. (https://figshare.com/articles/
GRUN_Global_Runoff_Reconstruction/9228176, accessed date: 21 May 2022).

The Climatic Research Unit precipitation data were obtained from the Climatic Re-
search Unit (CRU) of the British Atmospheric Data Center [29]. Many studies have also
proven the reliability of CRU precipitation data [44,45]. This CRU dataset was interpolated
from the meteorological station’s daily observation data globally [46]. Therefore, CRU
precipitation data were used in this study. The CRU precipitation data had a monthly tem-
poral resolution and a 0.5◦ × 0.5◦ spatial resolution during 1901–2014, globally [26,29,46].
(http://mpimet.mpg.de/cdi, accessed date: 21 May 2022).

SM (soil moisture), PET (potential evapotranspiration), and P were used to analyze
the drought propagation attribution in China. The SM dataset used was the ERA-Interim
reanalysis product provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) [16]. The SM dataset had monthly a temporal resolution and a 1.25◦ × 0.94◦

spatial resolution during 1979–2016, globally. We also used the linear interpolation method
to change the spatial resolution to 0.5◦ × 0.5◦ [47]. The PET dataset was also provided
by the Climatic Research Unit. The PET dataset had monthly temporal resolution and a
0.5◦ × 0.5◦ spatial resolution during 1901–2014, globally [11,22]. Because the time series
of the SM dataset (1979–2016) was different from that of the other datasets (1901–2014),
attribution analysis of drought propagation was based on the overlapping time series of
different datasets (1979–2014) in this study.

https://figshare.com/articles/GRUN_Global_Runoff_Reconstruction/9228176
https://figshare.com/articles/GRUN_Global_Runoff_Reconstruction/9228176
http://mpimet.mpg.de/cdi
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2.3. Methodology

The use of standardized drought indices has been increasingly witnessed in the
meteorological and hydrological community for drought monitoring and impact assess-
ment [20,23,24,43] due to the simplicity, standardized nature, and flexibility of use in time
and space [48]. In this study, SPI and SRI are used to represent meteorological drought and
hydrological drought, respectively. Both SPI and SRI can describe the characteristics of
drought at different timescales, and the standardized index calculation process is relatively
simple. The Pearson correlation analysis and Lindeman–Merenda–Gold (LMG) method are
used to analyze the drought propagation characteristics.

2.3.1. Meteorological Drought Index: Standardized Precipitation Index

The SPI has been widely used in meteorological drought studies [23,49]. The SPI was
computed using the monthly P data of a region [5,49,50]. The P time series used gamma
distribution probability to fit into the SPI computational process [49]. Meanwhile, the
gamma distribution was defined as follows:

g(x) =
1

βαΓ(α)
xα−1

k e−
xk
β , f or xk > 0 (1)

where α > 0 is a shape parameter, β > 0 is a scale parameter, xk is the P amount, and g(x) is
the gamma distribution formula.

F(xk < x0) =
1√
2π

∫ ∞

0
e−Z2/2dx (2)

The approximate solution can be obtained as follows:

SPI =
t− (c2t + c1)t + c0

((d3t + d2)t + d1)t + 1.0
, when F(x) > 0.5 (3)

SPI = − t− (c2t + c1)t + c0

((d3t + d2)t + d1)t + 1.0
, when F(x) ≤ 0.5 (4)

where t =
√

ln 1
F(x)2 , c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788 and

d2 = 0.189269, d3= 0.001308.

2.3.2. Hydrological Drought Index: Standardized Runoff Index

The SRI has also been widely used in hydrological drought studies [20,24]. The compu-
tational process and principles of SRI were similar to those of SPI [24]. However, the runoff
time series uses the log-normal distribution probability to fit into the SRI computational
process [16,36]. Meanwhile, the log-normal distribution was defined as follows:

f (x) =
β

α

(
x− γ

α

)β−1
[

1 +
(

x− γ

α

)β
]−2

(5)

F(x) =

[
1 +

(
α

x− γ

)β
]−1

(6)

where α > 0 is a shape parameter, β > 0 is a scale parameter, xk is the P amount, and F(x) is
the log-normal distribution formula.

2.3.3. Drought Propagation Relationship

In this study, Pearson correlation analysis [51] was used to describe the drought
propagation relationship from meteorological (SPIk) to hydrological (SRI1) drought in
different river basins [11,25,52] (k shows the accumulation). Many studies also used the
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accumulation period with the maximum Pearson correlation coefficient to define drought
propagation time between SPIk and SRI1 [14,19,53]. The maximum correlation coefficient
of the Pearson method can effectively reflect the drought propagation relationship among
different drought types and define the drought propagation time [6,14,19,52,53]. Then,
we used this method to describe the relationship and time of drought propagation. The
cross-wavelet transform method was used to show the effect of meteorological drought at
different timescales on hydrological drought and to explore the detailed relationship [9,19].
For each river basin, the mean precipitation and runoff values were computed into the
SPI and SRI, respectively. Cross-wavelet transform was also applied to the relationship
between the SPI and SRI on an annual scale [17,24].

2.3.4. Drivers of Drought Propagation

In this study, the relative importance of drivers was quantified using the LMG method
in the propagation from meteorological to hydrological drought [16,54]. The relative im-
portance refers to quantifying the contribution of individual regression factors to multiple
regression models. The relative contribution rates of each factor to the droughts in the
model were then calculated by averaging all of the possible marginal contributions to
the variables and by decomposing the dependent variable variance. Finally, the Pearson
coefficient correlation was used to evaluate the correlation between droughts and factors.
Regression variables and quantifying the relative importance of the explanatory variable
can be avoided using LMG in many studies [54–56]. Therefore, the LMG method can
quantify the influence degree of drought factors with PET, PRE, and SM. Based on relative
importation, we analyzed the distribution characteristics of influencing factors on drought
in different climate regions. Based on these advantages, the relative importance of P, SM
and PET was quantified using the LMG method in the propagation from meteorological to
hydrological drought. The formula of LMG was defined as follows:

LMG
(

xj
)
=

1
p

p−1

∑
k=0

∑
S ⊆ {x1, ··· ,xp}/{xj}

n(S) = k

seqR2(
{

xj
}∣∣S)

Ck
p−1

(7)

where x is the regression variable, S is the set of variables that were entered into the model,
and R2 is the goodness of fit of the model. Therefore, the LMG is the expectation of the
marginal contribution of regression variable xj in all sequences.

3. Results
3.1. Long Time Series Drought Propagation

Based on the drought correlation analysis, the characteristics of the propagation from
meteorological to hydrological drought were investigated [57]. From Figure 2a, we found
that the propagation time was mostly 1–2 months in 70.79% of the areas of China; the
drought propagation time of 1–2 months was mainly distributed in the SLRB, HARB,
HURB, northern YRB, northern CB, western YARB, western PRB, and eastern SWB. The
drought propagation time was 3–4 months in 23.93% of the areas of China; the drought
propagation time of 3–4 months was mainly distributed in the southern YRB, western
YARB, western PRB, eastern SEB, and western CB. The drought propagation time was
6–9 months in 5.28% of the areas of China; the propagation time of 6–9 months was mainly
distributed in the western CB. As shown in Figure 3a, the SLRB (76% areas), SEB (83%
areas) and CB (54% areas) mainly had 1-month drought propagation time; the HURB (75%
areas), PRB (57% areas) and SWB (58% areas) mainly had a 2-month drought propagation
time; the drought propagation times were mainly 2 (45% areas) and 3 (48% areas) months
in the HARB; the drought propagation times were mainly 1 (21% areas), 2 (31% areas) and
3 (27% areas) months in the YRB; the drought propagation times were mainly 1 (32% areas),
2 (27% areas) and 4 (22% areas) months in the YARB.
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From Figure 2b, we found that the propagation relationship generally showed higher
and lower correlation coefficients from meteorological to hydrological drought in north-
western and southern China, respectively. As shown in Figure 3b, the different timescales
(DTS) correlation coefficients had higher values (approximately 0.80–0.90) in the YARB, SEB,
PRB, and SWB; the DTS correlation coefficient had lower values (approximately 0.30–0.80)
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in the CB; and the DTS correlation coefficient showed higher (approximately 0.80–1.00) and
lower (approximately −0.15–0.40) values in the southern and northern CB, respectively.
However, the DTS correlation coefficient was between 0.50 and 0.80 in the SLRB, HARB,
YRB, and HURB. The DTS correlation coefficient had higher (approximately 0.60–1.00) and
lower (approximately 0.20–0.60) values in the eastern and western regions, respectively.
In Figure 3b, in general, there were strong drought propagation relationships in different
river basins of China in summer and autumn. However, there were weaker propagation
relationships in spring and winter. In summer, the correlation coefficient (approximately
0.45–0.85) showed a strong propagation relationship from meteorological to hydrological
drought for the SLRB, HARB, YRB, HURB, YARB, SEB, and PRB; however, the correlation
coefficient (approximately 0.25–0.50) showed a weak propagation relationship for the SWB
and CB (western China). In autumn, the correlation coefficient (approximately 0.50–0.75)
showed a strong propagation relationship from meteorological to hydrological drought for
the HURB, YARB, SEB, and PRB (southeastern China); however, the correlation coefficient
(approximately 0.20–0.50) showed a weak propagation relationship for the SLRB, HARB,
YRB, SWB, and CB. In spring and winter, the correlation coefficient showed a weak propa-
gation relationship from meteorological to hydrological drought for the SLRB, HARB, YRB,
and CB (northern China); however, the correlation coefficient showed a strong propagation
relationship for the HURB, YARB, SEB, PRB and SWB (southern China). Figure 3c,d show
the statistical results of the correlation coefficient and propagation time in mainland China.
It is seen in Figure 3c,d, that the relationship between meteorological drought and hydrolog-
ical drought was stronger in summer and autumn than in spring and winter. The drought
propagation time was mainly 1–3 months. Meanwhile, the propagation relationship be-
tween meteorological and hydrological drought was shown to be stronger (correlation
coefficient about 0.50–0.85) in different timescales.

In general, meteorological to hydrological drought had a weak propagation relation-
ship across western China in summer, and northern China in spring and winter; more-
over, meteorological to hydrological drought had a strong propagation relationship across
southeastern China in autumn, and southern China in spring and winter. Moreover, the
propagation relationship was similar in summer, autumn, and winter across the SLRB,
HARB, and YRB; the correlation coefficient was a higher level in summer; however, the
correlation coefficient was a lower level in winter across the SLRB, HARB, and YRB.

3.2. Annual Scale Drought Propagation

The change characteristics of meteorological and hydrological drought are compared
on an annual scale in Figure 4. From Figure 4a–g, we found that meteorological and
hydrological drought had the same change characteristics in the SLRB, HARB, YRB, HURB,
YARB, SEB, and PRB. The correlation coefficients were 0.79, 0.90, 0.42, 0.84, 0.79, 0.85 and
0.88 in the SLRB, HARB, YRB, HURB, YARB, SEB, and PRB, respectively. Moreover, the
SLRB, HARB, HURB, YARB, SEB, and PRB showed the same wave trough of SPI and SRI
in 1925, 1965, and 1985. The SLRB, HARB, HURB, YARB, SEB, and PRB also showed the
same peak-trough of SPI and SRI in 1950, 1970, and 1995. However, meteorological and
hydrological droughts had different change characteristics in the SWB and CB (Figure 4h,i).
The correlation coefficients were 0.30 and 0.22 in the SWB and CB, respectively. In general,
the SPI time series showed an increasing trend from 1960 to 2000 across the SWB and CB.
However, in general, the SRI time series showed a decreasing trend from 1910 to 1960, and
a stable trend from 1960 to 2014.
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In Figure 5, in general, meteorological and hydrological drought had an evident
positive relationship in the SLRB, HARB, YRB, HURB, YARB, SEB, and PRB; however,
meteorological and hydrological drought had no significant positive relationship in the SWB
and CB. The relationship varied among different river basins in China. The relationship of
drought propagation occurred at a larger timescale (more than 32a) in the SLRB, HARB,
YRB, HURB, YARB, and SEB. Moreover, the SLRB, HARB, YRB, HURB, YARB, and SEB
had periodicity characteristics of larger timescales in 1935–2014, 1901–1980, 1901–1960,
1901–1995, 1901–1960, and 1901–1990, respectively. Drought propagation occurred on a
large timescale (between 16a and 32a) in the HARB, HURB, YARB, SEB, and PRB. Moreover,
the HARB, HURB, YARB, SEB, and PRB had periodicity characteristics of large timescales
in 1955–2010, 1955–2005, 1940–1955, 1955–2005, and 1925–2014, respectively. In Figure 5b,d,
the HURB and HURB had similar periodicity characteristics at different timescales; the
relationship of drought propagation occurred on a small timescale (between 4a and 8a) in
the HARB and HURB, which had a periodicity characteristic in 1920–1940 and 1995–2010;
drought propagation occurred on a medium timescale (between 8a and 16a) in the HARB
and HURB, which had periodicity characteristics in 1950–1985. Moreover, the SLRB also had
a periodicity characteristic of a medium timescale (between 8a and 16a) during 1960–1980.
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3.3. Attribution Analysis of Drought Propagation

Figure 6 shows the factors driving propagation from meteorological to hydrological
droughts in China. In general, P was the primary driving factor for drought propagation in
southern China. However, potential evapotranspiration and soil moisture were the primary
drivers for drought propagation in northern China. In Figure 7a, the primary drivers of
PET, P, and SM had 34%, 14%, and 52% areas, respectively, in the SLRB; from Figure 6,
in general, PET, SM, and P showed primary drivers in the northern, southwestern, and
southern eastern SLRB. The primary drivers of SM and P were 34% and 66%, respectively,
in the HARB; SM and P were the primary drivers in the northern and southern HARB. The
primary drivers of PET, P, and SM had 5%, 22%, and 73% areas in the YRB, respectively. P
had large areas (proportion more than 90%) in the HURB, YARB, SEB, and PRB. Both P and
SM had 45% areas in the SWB; P showed as a primary driver in the western and southern
SWB; moreover, SM showed as a primary driver in the central SWB. PET and SM had 31%
and 55% areas in the CB, respectively; PET showed as a primary driver in the central and
western CB; moreover, SM showed as a primary driver in the northern and southern CB. In
general, PET and SM had higher proportion areas as primary drivers in the SLRB and CB;
SM had high proportion areas as a primary driver in the HARB and YRB; and P had higher
proportion areas as a primary driver in the HURB, YARB, SEB, and PRB.

From Figure 7b, P (relative importance approximately 0.10–0.35), PET (approximately
0.10–0.50), and SM (approximately 0.30–0.60) displayed a similar relative importance in the
SLRB and CB. Moreover, P (approximately 0.20–0.45), PET (approximately 0.05–0.20), and
SM (approximately 0.40–0.70) displayed a similar relative importance in the HARB and
YRB. However, P had a high relative importance in the HURB (approximately 0.60–0.70),
YARB (approximately 0.40–0.80), SEB (approximately 0.70–0.82), and PRB (approximately
0.65–0.82). Both P (approximately 0.32–0.50) and SM (approximately 0.30–0.48) showed a
similar relative importance in the SWB. In general, the SLRB and CB showed a similar rela-
tive importance of P, PET, and SM for the propagation from meteorological to hydrological
drought; The HARB and YRB had a similar relative importance of driver factors; and P had
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the highest relative importance for the propagation of drought in the HURB, YARB, SEB
and PRB.
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4. Discussion
4.1. Difference Analysis of Drought Propagation in Different River Basins

Based on Section 3.3, we analyzed the direct drivers (P, PET, and SM) for the propaga-
tion from meteorological to hydrological drought in different river basins of China. How-
ever, many indirect factors also impact drought propagation, such as topography [58,59],
hydrological cycle characteristics [59,60], land cover [61], and climate type [19]. In Figure 3b,
the propagation relationship was weak for meteorological to hydrological drought that
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occurred in spring and winter across the SLRB and CB. Many studies have found that
the freezing and thawing of snow could obstruct drought propagation [62,63]. Snowmelt
could produce runoff and relieve hydrological drought [63]. However, P did not play a
key role in the process of runoff from snowmelt. Meanwhile, the temperature was below
zero degrees Celsius, and snow also accumulated on the ground [7] in winter across the
SLRB and CB (Figure 8a). When the snow melted in spring and accumulated in winter,
the propagation from meteorological to hydrological drought was obstructed. Therefore,
snowmelt could obstruct the propagation from meteorological to hydrological drought
in spring and winter. Meanwhile, based on Figure 3b, we also found that accumulated
snow could also obstruct drought propagation in winter across the HURB, YAR, and the
SWB. There was a low level of P (Figure 8b), and the desert had a large area proportion
(Figure 1b) in the CB. Zhou, et al. [64] and Wang, et al. [65] found that the desert of the CB
had low levels of SM. Han, et al. [66] also found that PET was also high in the CB. The small
amount of P mainly supplied SM and PET in the CB [64,66], which could explain why SM
and PET were the main drivers of drought propagation. Therefore, runoff was difficult to
produce by P in summer and autumn across the CB. Moreover, Figure 3b also proved that
the drought propagation relationship was weak in summer and autumn across the CB.
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Based on Section 3.1, we found that the propagation relationship was strong from
meteorological to hydrological drought in the HURB, YARB, SEB, and PRB. Based on
Section 3.3, we also found that P was the primary driving factor in the HURB, YARB, SEB,
and PRB. Many studies found that there were higher SM levels in the HURB, YARB, SEB,
and PRB [64,65]. Meanwhile, from Figure 8b, P was also higher in the HURB, YARB, PRB,
SEB, and SWB [50]. Therefore, runoff could be easier to produce under saturated conditions
(high levels) of SM, rather than unsaturated conditions (low levels) of SM [67]. Therefore,
drought propagation would have a strong relationship when P and SM were at higher
levels in the HURB, YARB, SEB, PRB, and SWB. Moreover, from Figures 9b and 10e,f,h,i,
we found that mountainous areas were proportionally greater in the YARB, SEB, PRB,
and SWB. P could produce more runoff in mountains than in the plains [59]. Therefore,
mountains could be an indirect factor in strengthening drought propagation in the YARB,
SEB, PRB, and SWB. Meanwhile, the plain also experiences ponding and waterlogging
when rainwater infiltrates the soil instead of runoff across the ground [59]. From Figure 9b,
plain and platform were in higher proportions in the SLRB, HARB, and HURB. Therefore,
propagation drought would be obstructed by the plains and platforms in the central SLRB,
southeastern HARB, and HURB. The relationship of drought propagation shows large
differences in summer and autumn across the SLRB and HARB. From Figure 8b, we found
that the annual precipitation was similar between the SLRB and HARB. However, Yao
et al. [68] found that the precipitation was mainly in summer and autumn across the HARB.
Zhou et al. [64] also found that SM in summer was higher than in autumn in the SLRB and
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HARB. Therefore, the high levels of P and SM in summer could have a stronger propagation
relationship than those in autumn in the SLRB and HARB.
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4.2. Comparisons and Limitations

Many studies have also investigated drought propagation characteristics, mechanisms,
and times [1,21,69]. Zhou et al. [1] also found that the drought propagation time was
1–2 months from meteorological to hydrological drought in the YARB. The results of
Wang et al. [15] also showed that meteorological drought usually occurred earlier than
hydrological drought, and a positive correlation was shown between hydrological and
meteorological drought in the YRB. Wu et al. [24] found that hydrological drought showed
a higher risk in the spring than in other seasons across the Loess Plateau. Meanwhile, this

http://www.resdc.cn/
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study also found that the drought propagation relationship was weaker than that in other
seasons between meteorological and hydrological droughts in the YRB. Guo et al. [34]
found that the propagation of hydrological drought had a threshold and sensitivity among
various regions. This study also investigated the drivers of drought propagation in different
river basins. Therefore, when the drivers reach a certain level, the threshold of propagation
could be achieved from meteorological to hydrological drought [1,12,34]. Zhou et al. [6]
found that the propagation time was 2–6 months from meteorological to hydrological
drought in the PRB. This study also found that the drought propagation time was longer
than 2 months in most areas of the PRB.

However, this study also had some limitations. For example, abnormal drought prop-
agation relationships were not adequately explained for the CB and SWB [10]. Moreover,
human activities [70] and land cover [61] might affect the propagation relationship and the
time from meteorological to hydrological drought. Because human activities and land cover
could have complex mechanisms impacting drought propagation [61,70], we were not able
to sufficiently analyze human activities and land cover in this study. Previous studies
have shown that if more variables, such as temperature, evaporation, and soil moisture
are taken into account when calculating the drought index, the drought characteristics
will change [71,72]. In this study, the SPI, with the characteristics of multiple timescales
and easy calculations, was selected to represent meteorological drought. In the future, the
meteorological drought index considering multiple factors should be applied in the study
of drought propagation. However, the above limitations might be an interesting study
direction to investigate drought in the future.

5. Conclusions

In this study, we investigated the propagation characteristics of meteorological to
hydrological drought across nine river basins in China. We also quantitatively analyzed
the main drivers of drought propagation in China. The results show that the drought
propagation time of the nine basins in China was mainly 1–3 months, and the relationship
between meteorological drought and hydrological drought in spring and winter is weaker
than in summer and autumn. In general, the propagation relationship from meteorological
to hydrological drought was strong based on correlation analysis in different timescales. The
SLRB, SEB, and CB mainly had a 1-month propagation time; The HARB, YRB, HURB, YARB,
PRB, and SWB had a 2–3-month propagation time. The drought response relationship of
the basins located in central and eastern China is stronger than that of the western basins,
and the driving factors affecting the drought propagation relationship of different basins
are different. P was the single main driving factor of drought propagation in the HURB,
YARB, SEB, and PRB; SM and PET were the main drivers of drought propagation in the
SLRB and CB, and SM and P were the main drivers of drought propagation in the HARB
and YRB. Moreover, the underlying surface condition and other factors are also important
factors affecting drought propagation, which need to be further explored.

Overall, the results of this study can improve our understanding of the drought propa-
gation mechanism from the perspective of the river basin, and can help to more effectively
strengthen drought monitoring and prevention, especially under changing climate condi-
tions in the future. It also provides a reference for the study of global drought propagation.
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