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Abstract: The degradation of acyclovir (ACY) and atenolol (ATL) in the UV/peroxydisulfate (UV/PDS)
process has been systematically considered, focusing on the degradation kinetics, theoretical models,
and reaction pathways via applying a microfluidic UV reaction system. The removal efficiencies
of ACY and ATL were >94.8%, and the apparent degradation rate constants (kobs) were 0.0931
and 0.1938 min−1 at pH 6.0 in the UV/PDS system. The sulfate radical (SO4

•−) and hydroxyl radical
(•OH) were identified as the major reactive radicals. The pH-dependent reaction rate constants of
ACY and ATL with •OH and SO4

•− were measured via the competing kinetics. Meanwhile, the
contributions of •OH and SO4

•− for ACY and ATL degradation were calculated by the radical steady-
state hypothesis, and the results revealed that SO4

•− occupied a decisive position (>84.5%) for the
elimination of ACY and ATL. The contribution of •OH became more significant with the increasing
pH, while SO4

•− was still dominant. Moreover, ACY and ATL degradation performance were system-
atically evaluated via the experiments and Kintecus model under different operational parameters
(Cl−, Br−, HCO3

−, NOM, etc.) in the UV/PDS process. Furthermore, the plausible reaction path-
ways of ACY and ATL were elucidated based on the Fukui function theory and ultra-performance
liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS)
analysis. The UV/PDS process has been demonstrated to be an efficient and potential application for
micropollutants mitigation.

Keywords: UV/PDS; micropollutants; radical contribution rates; kinetic models; degradation pathways

1. Introduction

Acyclovir (ACY) and atenolol (ATL), as the typical and most widely used antiviral
and β-blocker agents, are frequently adopted against cardiovascular diseases and two
common virus infections (herpes simplex and varicella-zoster) [1,2]. ACY and ATL have
been frequently detected in different aquatic environments (from ng L−1 to µg L−1) owing
to their scarce biodegradability and widespread usage during the last decade [2–4]. ACY
and ATL could not be effectively eliminated by the conventional treatment processes,
including precipitation, biodegradation, and flocculation; hence, wastewater treatment
plant effluents are regarded as one of the most important pollution resources. Therefore,
in order to effectively respond to Green China and Carbon Neutrality [5,6], it is urgent
to explore efficient and eco-friendly technologies for the diminution of ACY and ATL in
water treatment.

In this sense, the UV/peroxydisulfate process (UV/PDS) has received considerable
attention recently due to the in situ generation of sulfate radicals (SO4

•−, 2.5–3.1 V) and

Water 2022, 14, 2811. https://doi.org/10.3390/w14182811 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14182811
https://doi.org/10.3390/w14182811
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8257-171X
https://orcid.org/0000-0002-1106-3766
https://doi.org/10.3390/w14182811
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14182811?type=check_update&version=3


Water 2022, 14, 2811 2 of 17

hydroxyl radicals (•OH, 1.8–2.7 V), relatively high stability, the wider operational pH range,
and its high mineralization efficiency of organic pollutants [7–11]. To date, many studies
have been conducted to investigate the removal efficiencies of diverse pollutants, the
effects of main influential parameters, and the identification of reactive species, etc., in the
UV/PDS process [12–15]. Liu et al. (2013) compared the degradation performance of ATL
in UV/hydrogen peroxide (UV/H2O2) and UV/PDS processes and observed that UV/PDS
was superior to UV/H2O2 for efficient ATL degradation due to the longer half-life time of
SO4

•− and its higher reactivity with ATL than •OH [3]. Although the removal efficiencies
of diverse micropollutants in the UV/PDS process have been widely investigated, limited
reports have taken note of the contributions and reaction mechanisms of SO4

•− and •OH
under different operational conditions.

On the basis of previous studies, the degradation of pollutants in the UV/PDS pro-
cess is mainly attributed to •OH, SO4

•−, and UV direct photolysis [9,12,16]. In order to
accurately investigate the contributions and reaction mechanisms of SO4

•− and •OH in the
UV/PDS system, the microfluid-based UV reaction system (MVPS) was deployed in this
study. The MVPS system, with the advantages of a small total volume, minimum waste
liquid generation, and controllable reaction rate via radiation flux, could explore the dy-
namics process in detail and in-depth [17]. Moreover, both the steady-state assumption and
the Kintecus model were applied to compare the radical contribution rates. Furthermore,
the elucidation of the degradation pathways of ACY and ATL based on density functional
theory (DFT) has rarely been reported in the UV/PDS system.

Therefore, the aims of the present study are (1) to explore the degradation performance
of ACY and ATL and the effects of influencing factors in the UV/PDS process; (2) to
determine the pH-dependent reaction rate constants of •OH and SO4

•− with ACY and
ATL; (3) to calculate the contributions of •OH and SO4

•− at different operational factors
via steady-state assumption and the Kintecus software; (4) to elucidate the degradation
pathways of ACY and ATL based on DFT and ultra-performance liquid chromatography-
tandem quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analysis in the
UV/PDS process. It is worth noting that this research would provide some theoretical
support and preliminary exploration, especially for the applicability in wastewater for
micropollutants abatement replying on the UV/PDS process.

2. Material and Methods
2.1. Chemicals

Sinopharm Chemical Reagent (Shanghai, China) provided the majority of the com-
monly used experimental drugs. The PDS, humic acid sodium salt, ACY (>99.0%), ATL
(>98%), and 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO, >95%) were obtained from Sigma-
Aldrich (St. Louis, MO, USA) and Aladdin (Shanghai, China). Methanol (MeOH) and
acetonitrile (ACN) were chromatographically pure and supplied by Fisher Scientific (Geel,
Belgium). Ultrapure water (>18.2 MΩ cm), obtained from an A10 Milli-Q system (Millipore,
Boston, MA, USA), was used in all of the experiments.

2.2. Experimental Procedures

The batch experiments were conducted in the MVPS equipped with a micro-fluorescent
silica detector (MFSD) in the present study (Figure S1). The detailed structure and operational
parameters were described in the study by Li et al. [17]. The photon fluence rates at 254 nm
(Fp,o,UV) in the MVPS was determined and calculated to be 1.12 × 10–3 Einstein m–2 s–1 in
this study, based on the degradation of uridine (0.01 mM) (Text S1, Figure S2) [18].

Before the batch experiments in MVPS, the lamp was warmed for 30 min until the
MFSD signal was stabilized. A mixture solution of moderate PDS reagent, ACY and ATL
solution, and phosphate buffer (5 mM) was pumped through the UV tube to receive ir-
radiation in MVPS, and the reaction was started. All of the reactions were performed
at 20 ◦C. The samples were withdrawn from the MVPS system at interval times, immedi-
ately quenched with Na2S2O3 solution, and stored at 4 ◦C for subsequent analysis.
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2.3. Analytical Methods

The e2695 high-performance liquid chromatography (HPLC) system equipped with
a Sunfire C18 column (150 mm × 4.6 mm, 5µm) and a 2489 Vis-UV detector (Waters,
Milford, MA, USA) was used to measure the concentrations of ACY and ATL during the
photolysis reaction. MeOH and water (v:v = 40:60), as the mobile phase with a flow rate
of 0.55 mL min−1, were deployed for ACY detection, while phosphate and ACN (v:v = 95:5)
at a flow rate of 1.0 mL min−1 was used for ATL analysis. DMPO, a spin-trapping reagent,
was employed for the identification of radicals for the electron paramagnetic resonance test
(EPR, Bruker A-300 spectrometer, Karlsruhe, Baden Wuerttemberg, Germany). Moreover,
the UPLC-QTOF-MS system (Agilent, Wilmington, DE, USA) was applied to determine the
intermediates of ACY and ATL in the UV/PDS process. The detection parameters of the
UPLC-QTOF-MS system are Supplemented in Text S2 in detail.

2.4. Determination of the Second-Order Reaction Rate Constants

The second-order reaction rate constants of ACY and ATL with •OH (k•O H,ACY and
k•O H,ATL) and SO4

•− (kSO•−4 ,ACY and kSO•−4 ,ATL) at different pH values were determined
using the competitive kinetics method. The p-chlorobenzoic acid (pCBA) (k•O H,pCBA =
5 × 109 M−1 s−1) and benzoic acid (BA) (kSO•−4 ,BA = 1.2 × 109 M−1 s−1) were chosen as
the competitive chemicals in the UV/H2O2 and UV/PDS processes, respectively [19]. The
calculation steps and results are depicted in Text S3 and Figures S3–S7.

2.5. Determination of the Relative Contributions of •OH and SO4
•−

The degradation of ACY and ATL in the UV/PDS system could be represented as
Equations (1) and (2).

− ln
[ACY]T
[ACY]0

= k•O H,ACY

∫
[•OH]dt + kSO·−4 ,ACY

∫
[SO•−4 ]dt + kPDS,ACY

∫
[PDS]dt + kUV,ACYt (1)

− ln
[ATL]T
[ATL]0

= k•O H,ATL

∫
[•OH]dt + kSO·−4 ,ATL

∫
[SO•−4 ]dt + kPDS,ATL

∫
[PDS]dt + kUV,ATLt (2)

The PDS oxidation and UV direct photolysis are negligible (Figures S8 and S9). Mean-
while, Equations (1) and (2) can be simplified to Equations (3) and (4) on account of the
steady-state assumption of the radicals.

− ln [ACY]T
[ACY]0

≈ k•O H,ACY
∫
[•OH]dt + kSO•−4 ,ACY

∫
[SO•−4 ]dt

= (k•O H,ACY[
•OH]ss + kSO•−4 ,ACY[SO•−4 ]ss)t

(3)

− ln [ATL]T
[ATL]0

≈ k•O H,ATL
∫
[•OH]dt + kSO•−4 ,ATL

∫
[SO•−4 ]dt

= (k•O H,ATL[
•OH]ss + kSO•−4 ,ATL[SO•−4 ]ss)t

(4)

where [•OH]ss and [SO4
•−]ss represent the steady-state concentrations of •OH and SO4

•−,
respectively. In addition, the apparent degradation rate constants of ACY and ATL (kobs)
would be further simplified to Equations (5)–(7).

kobs = k•O H,ACY[
•OH]ss + kSO•−4 ,ACY[SO•−4 ]ss (5)

kobs = k•O H,ATL[
•OH]ss + kSO•−4 ,ATL[SO•−4 ]ss (6)

kobs = kexp,•O H + kexp,SO•−4
(7)
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Nitrobenzene (NB), a typical probe compound of •OH (k•O H,NB = 3.0 × 109 M−1 s−1,
kSO4

•− ,NB < 106 M−1 s−1), was used to determine the [•OH]ss [20,21] in the UV/PDS process.
The [•OH]ss during the reaction could be further expressed as Equation (8):

kobs,NB = k•O H,NB[
•OH]ss + kUV,NB (8)

where kobs,NB and kUV,NB indicate the pseudo-first-order rate constant and the single UV
photolysis rate constant (min−1) of NB (Figure S10). k•O H,NB represents the reaction rate
constants of NB with •OH.

2.6. Kinetic Model

In this study, a reaction kinetic model was performed using Kintecus 6.80 software
(James C. Ianni, Albuquerqua, NM, USA) [22] to simulate the concentrations of ACY, ATL,
and reactive radicals in the UV/PDS process on the basis of 150 elementary reactions
(Table S1). All of the rate constants of the above reactions were acquired from our determi-
nations, literature, or estimations of similar reactions. The Kintecus model, with its high
predictability and accuracy, has been widely used for simulating chemical reaction kinetics
in the UV/chlorine [23], UV/H2O2 [24,25], and UV/PDS processes [12,25].

2.7. Quantum Chemistry Calculation

The molecular regioselectivity of ACY and ATL was investigated by the quantum
chemical calculation based on DFT. All of the geometry optimizations were implemented at
the B3LYP/6–31 G (d) level using the Gaussian 09 program [26]. The wavefunction analysis
was carried out at the B3LYP/6–31G (d) level using Multiwfn 3.8 (T. Lu, Beijing, China) [27],
based on the structure configuration from the Gaussian optimization. The condensed Fukui
function (f 0) was employed as a popular and powerful tool in this study to predict the
regioselectivity of ACY and ATL to radical attack at the atomic level. All of the calculation
details of f 0 are Supplemented in Text S4.

3. Results and Discussion
3.1. Degradation Efficiencies of ACY and ATL in Different Processes

Figure 1 reveals that the removal of ACY and ATL was significantly promoted in
the UV/PDS process with the kobs values of 0.0931 and 0.1938 min−1 (R2 ≥ 0.99), re-
spectively. However, the ACY and ATL degradation via direct PDS oxidation and UV
photolysis can be neglected (Figure 1). The UV/PDS process can produce both SO4

•−

and •OH due to UV activation of peroxide bond and sulfate conversion [19] (Figure S11)
(Equations (9) and (10)) [12,28], resulting in distinct improvement for the elimination of
quinolone drugs [29], dyestuff [30], nonsteroidal anti-inflammatory drugs [10], etc.

S2O8
2− + hv254 → 2SO•−4 (9)

SO4
•− + OH− → •OH + SO4

2− (10)

To verify the roles of SO4
•− and •OH for the enhanced ACY and ATL removal, the

scavenger experiments were performed in the UV/PDS process (Figure 1). Tertiary butanol
(TBA) was used to quench •OH (k•O H,TBA= (3.8−7.6) × 108 M−1 s−1 and kSO•−4 ,TBA=

(4.0−9.1)× 105 M−1 s−1) [31–33], and MeOH can quench both SO4
•− and •OH (k•O H,MeOH

= 9.7 × 108 M−1 s−1 and kSO•−4 ,MeOH = 2.5 × 107 M−1 s−1) [34–36]. It is notable from
Figure 1 that in the presence of TBA and MeOH, the kobs values of ACY degradation
reduced by 7.53% and 57.0%, while they declined by 6.73% and 42.0% for ATL, respectively.
It is noteworthy from Figure 1 that SO4

•− instead of •OH played a vital role in both
ATL and ACY degradation in the UV/PDS process. Therefore, it is essential to evaluate
the specific contribution rates of SO4

•− and •OH for pollutant removal under different
parameters in the UV/PDS process.
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Figure 1. ACY (a) and ATL (b) degradation by UV, PDS, UV/PDS, UV/PDS + TBA, and UV/PDS +
MeOH processes. Conditions: [ACY]0 = 0.022 mM, [ACY]0 = 0.019 mM, [PDS]0 = 0.6 mM, [TBA]0 =
[MeOH]0 = 10 mM, pH = 6.0.

3.2. Effects of PDS Dosage

The effects of PDS dosage on the degradation of ACY and ATL were explored and
modeled by the Kintecus 6.80 software(James C. Ianni, Albuquerqua, NM, USA). As
depicted in Figure 2, with the increment in the PDS dosage from 0.1 to 1.0 mM, the
degradation of both ACY and ATL was significantly strengthened, and the kobs values
of ACY and ATL degradation were promoted from 0.0104 to 0.1213 min−1 and 0.0432
to 0.3031 min−1 (R2 > 0.99), respectively. The specific rate constants of •OH and SO4

•−

for ACY and ATL degradation (kexp,•OH and kexp, SO•−4
) calculated by the steady-state

assumption are also presented in Figure 2. The modeled degradation rates of ACY and ATL
(kobs,mod) highly agreed with the experimental values (kobs) in the UV/PDS process within a
credible range (<25%).
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Figure 2. Effects of PDS dosage on the radical contributions and kobs of ACY (a) and ATL (b) in
UV/PDS process. Conditions: [ACY]0 = 0.022 mM, [ATL]0 = 0.019 mM, [PDS]0 = 0.6 mM, pH = 6.0.

In addition, it can be noted from Table 1 that the [•OH]ss and [SO4
•−]ss in the

UV/PDS process gradually increased from 1.00 × 10−14 to 28.72 × 10−14 M and from 1.46
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to 8.38 × 10−13 M as the PDS dosage rose from 0.1 to 1.0 mM. Due to the rapid photodecom-
position rate of PDS (Figure S12), the yields of both [•OH]ss and [SO4

•−]ss in the UV/PDS
system were evidently expedited (Table 1) [37], resulting in the gradual increment of the
kexp,•OH and kexp, SO•−4

values of ACY and ATL (Figure 2). The higher [SO4
•−]ss led to the

higher contribution of SO4
•− to the degradation of ACY and ATL, manifesting that SO4

•−

rather than •OH played a major role in pollutant removal. It can be obviously seen from
Figure 2 that the modeled results (kobs,mod) derived from the kinetic model were in good
agreement with the experimental values (kobs) in most cases.

Table 1. [•OH]ss and [SO4
•−]ss in UV/PDS process at different PDS dosages and pHs.

Radical Species
(M)

PDS (mM) pH

0.1 0.3 0.6 1.0 6.0 9.0 10.0 11.0

[•OH]ss × 10–14 1.00 3.00 9.83 28.72 9.44 12.27 17.72 17.86
[SO4

•–]ss × 10–13 1.46 3.39 6.03 8.38 6.13 3.83 2.66 1.79

3.3. Effects of Solution pH

The k•O H,ACY,kSO•−4 ,ACY, k•O H,ATL, and kSO•−4 ,ACY values at pH 6.0−11.0 were deter-
mined based on the competition kinetics, and the results are depicted in Figure 3. The
k•O H,ACY and kSO•−4 ,ACY values declined from 1.50 × 109 to 1.30 × 109 M−1 s −1 and from

1.58 × 109 to 1.00 × 109 M−1 s−1, respectively, with the pH value rising from 6.0 to 11.0
(Figure 3a,b). Russo et al. reported the k•O H,ACY to be 2.3 × 109 M−1 s−1 at pH 6.0 [2], and
the k•O H,ACY and kSO•−4 ,ACY values at different pHs have been seldom investigated. For ATL

(Figure 3c,d), with the increment of pH (6.0−11.0), the k•O H,ATL decreased from 4.6 × 109

to 4.11 × 109 M−1 s −1, while the kSO•−4 ,ATL increased from 4.56 × 109 to 5.64 × 109 M−1 s −1.
The pH dependency of the second-order reaction rate constant could be ascribed to a combi-
nation of various effects due to the reaction of free radicals (•OH and SO4

•−) with dissimilar
pollutant species, which are the significant parameters of the following kinetic study.

As shown in Figure 4, with the increase in the solution pH from 6.0 to 11.0, the kobs
of ACY and ATL distinctly declined from 0.0931 to 0.071 min−1 and 0.1938 to 0.101 min−1,
respectively, and the kobs,mod were consistent with the experimental results. Addition-
ally, as the pH increased from 6.0 to 11.0, the kexp,•OH slightly enhanced from 0.00878
to 0.01378 min−1 for ACY degradation and from 0.02607 to 0.04357 min−1 for ATL degra-
dation, respectively. However, the overt reduction in kexp, SO•−4

for ACY and ATL degra-
dation was observed. The kexp, SO•−4

of ACY and ATL decreased by 30.59% and 63.79%,
respectively (Figure 4).

Moreover, the [•OH]ss and [SO4
•−]ss exhibited similar change patterns with the

kexp, •OH
and kexp, SO•−4

(Table 1). It is notable that the [•OH]ss obviously increased from

9.44 × 10−14 to 17.86 × 10−14 M, while the [SO4
•−]ss reduced from 6.13 to 1.79 × 10−13 M

with the increasing pH from 6.0 to 11.0 in the UV/PDS processes. Guan et al. (2011) [38]
discovered that when the solution pH > 9.3, the distinct fast conversion of SO4

•− to •OH
caused the declining formation rate of SO4

•− from photolysis of peroxymonosulfate (PMS)
and the reduction in the oxidative power, which were in agreement with the changes of
[•OH]ss and [SO4

•−]ss in the current study. Liu et al. 2013 [3] investigated the elimination
of ATL in the UV/PDS process with a pH range of 3.0−11.0 and discovered the declined
degradation rate of ATL with the pH decreasing from 7.0 to 9.0. Furthermore, the reaction
of OH− with SO4

•− by Equation (10) at high pH, could also result in the decreasing trend
of SO4

•− [29].
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Figure 3. The second-order rate constants of ,OH ACY
k • (a), 

4 ,SO ACY
k •− (b), ,OH ATL

k• (c), and 

4 ,SO ATL
k •− (d) under different pHs. (black star, measured k; red lines, speciation). Conditions: [ACY]0 

= 0.022 mM, [ATL]0 = 0.019 mM, [PDS]0 = 0.6 mM, pH = 6.0.  

As shown in Figure 4, with the increase in the solution pH from 6.0 to 11.0, the kobs of 

ACY and ATL distinctly declined from 0.0931 to 0.071 min−1 and 0.1938 to 0.101 min−1, 

respectively, and the ,obs modk  were consistent with the experimental results. Additionally, 

as the pH increased from 6.0 to 11.0, the kexp,•OH slightly enhanced from 0.00878 to 0.01378 

min−1 for ACY degradation and from 0.02607 to 0.04357 min−1 for ATL degradation, re-

spectively. However, the overt reduction in 
4exp, SO

k •−  for ACY and ATL degradation was 

observed. The 
4exp, SO

k •−  of ACY and ATL decreased by 30.59% and 63.79%, respectively 

(Figure 4). 

Figure 3. The second-order rate constants of k•O H,ACY(a) kSO•−4 ,ACY(b), k•O H,ATL(c), and
kSO•−4 ,ATL (d) under different pHs. (black star, measured k; red lines, speciation). Conditions:
[ACY]0 = 0.022 mM, [ATL]0 = 0.019 mM, [PDS]0 = 0.6 mM, pH = 6.0.
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Figure 4. Effects of solution pHs on the radical contributions and kobs of ACY (a) and ATL (b) in
UV/PDS process. Conditions: [ACY]0 = 0.022 mM, [ATL]0 = 0.019 mM, [PDS]0 = 0.6 mM.

3.4. Effects of Operation Parameters in UV/PDS Process
3.4.1. Chloride

The existence of Cl− significantly affected the removal efficiencies of ACY and ATL
in the UV/PDS process (Figure 5). As shown in Figure 5a,b, the kobs of ACY and ATL
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decreased by 36.56% and 53.36%, with augmenting Cl− concentration from 0 to 3 mM.
Additionally, the kmod,•O H increased by 62.0−344.4% and kmod,SO•−4

declined by 82.7−85.1%

in the presence of 3 mM Cl−, respectively. With the augmentation of the Cl− concentration
from 0.5 to 3 mM, the [•OH]ss gradually increased from 6.62 × 10−14 to 32.24 × 10−14 M,
while the [SO4

•−]ss decreased from 4.52 × 10−13 to 1.38 × 10−13 M for ACY and ATL
degradation (Table S2). Lutze et al. [23] reported that SO4

•− would be converted to •OH
in the presence of Cl− at pH ≥ 5.0 (Equations (11)−(15)). Cl− can react quickly with •OH
to form ClOH•− with a rate constant of 4.3 × 109 M−1 s−1(Equation (13), reverse). In
addition, the extremely rapid decomposition rate constant of ClOH•− (6.1 × 109 M−1 s−1,
Equation (13)) can obviously suppress the reaction between Cl− and •OH. However, only
at pH < 3.0 did the yield of Cl• from the reaction of ClOH•− with H+ become important
(Equation (14)) [39,40]. Noteworthily, the reactions between Cl− and •OH/SO4

•− could
also produce several reactive chlorine species (Cl•, Cl2•−, ClO•, etc.).

SO4
•− + Cl− → SO4

2− + Cl • k = 3.0× 108 M−1s−1 (11)

Cl• + H2O→ ClOH•− + H+ k = 2.5× 105 M−1s−1 (12)

ClOH•− ↔ •OH + Cl− k f or = 6.1× 109 M−1s−1, krev = 4.3× 109 M−1s−1 (13)

ClOH•− + H+ → Cl• + H2O k = 2.1× 1010 M−1s−1 (14)

Cl• + Cl− → Cl2•− k = 8.5× 109 M−1s−1 (15)
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free radical CO3•− [6,41], leading to the scavenging effects of •OH and SO4•−. Furthermore, 

the presence of 3 mM HCO3− caused 
mod, OH

k • , and 
4mod,SO

k •− to decrease by 32.6−36.6% and 

25.5−32.6%, respectively. Moreover, at pH 6.0, both H2CO3 and HCO3− (pKa1 = 6.3, pKa2 = 

10.3) reacted with SO4•− in an analogous rate constant [42–44]. According to the simulation 

Figure 5. Effects of Cl− and HCO3
− dosages on the kobs of ACY (a,c) and ATL (b,d) degrada-

tion and specific rates of •OH and SO4
•− in UV/PDS process. Conditions: [ACY]0 = 0.022 mM,

[ATL]0 = 0.019mM, [PDS]0 = 0.6 mM, pH = 6.0.
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3.4.2. Bicarbonate

It can be seen from Figure 5c,d that the kobs for the abatement of ACY and ATL declined
by 8.8−11.82% with the addition of 3 mM HCO3

− in the UV/PDS system. HCO3
− can react

quickly with •OH (8.5 × 106 M−1 s−1) and SO4
•− (1.6 × 106 M−1 s−1) to form secondary

free radical CO3
•− [6,41], leading to the scavenging effects of •OH and SO4

•−. Furthermore,
the presence of 3 mM HCO3

− caused kmod,•OH, and kmod,SO•−4
to decrease by 32.6−36.6%

and 25.5−32.6%, respectively. Moreover, at pH 6.0, both H2CO3 and HCO3
− (pKa1 = 6.3,

pKa2 = 10.3) reacted with SO4
•− in an analogous rate constant [42–44]. According to the

simulation results (Table S2), [•OH]ss and [SO4
•−]ss distinctly decreased by 6.67%−5.69%

and 7.08%−3.77% as the HCO3
− concentration rose from 0.5 to 3 mM, respectively, resulting

in the obvious reduction in the degradation rates of ACY and ATL.

3.4.3. Bromide

It can be observed from Figure 6a,b that the addition of Br− inhibited the removal
efficiencies of ACY and ATL in the UV/PDS process. The kobs for ACY and ATL degradation
decreased by 37.7 and 61.14%, respectively, as the Br− concentration increased from 0
to 1.0 mM. Furthermore, kmod,•OH and kmod,SO•−4

decreased by 2.6−66.1% and 51.5−75.1%

with the addition of 1.0 mM Br−. Because Br− exhibits higher rate constants reacting with
SO4

•− and •OH (Equations (16) and (17)) than ACY and ATL do, it can be considered a
scavenger of SO4

•− and •OH, which may be the main reason for the decreased removal
efficiencies of ACY and ATL. In addition, Lu et al. 2016 [45] also observed that the presence
of Br− notably suppressed the removal of o-phthalic acid (PA) in SO4

•−-based advanced
oxidation systems, and PA probably did not react with the generated reactive bromide
species directly.

SO4
•− + Br− → SO4

2− + Br• k = 3.5× 109M−1s−1 (16)

•OH + Br− → BrOH•− k = 1.0× 1010M−1s−1 (17)

3.4.4. NOM

It can be observed from Figure 6c,d that the natural organic matter (NOM) markedly
inhibited the removal efficiencies of ACY and ATL in the UV/PDS process. It is worth
noting that the kobs for ACY and ATL significantly dropped by 36.6% and 50.9% with
the addition of 3.0 mgC L−1 NOM. Meanwhile, the kmod,•OH, and kmod,SO•−4

decreased

by 35.3−57.8% and 25.7−56.3%, respectively, under the same conditions (3 mgC L−1 NOM).
It is noted from Figure 6 that the experimental kobs for the abatement of ACY and ATL
were highly compliant with the simulated results. It is well known that NOM can react
with •OH (1.4 × 104 L mgC−1 s−1) and SO4

•− (6.8 × 103 L mgC−1 s−1), resulting in their
reduction [23]. Furthermore, NOM could act as an inner filter of UV light affecting the
yields of •OH and SO4

•− derived from direct photolysis of PDS [44,46].

3.4.5. Sulfate and Nitrate

It can be seen in Figure S13 that the abatement of ACY and ATL in the UV/PDS process
was markedly restrained by the addition of SO4

2−. The kobs for ACY and ATL decreased
by 15.1% and 13.8%, respectively, when the concentration of SO4

2− increased to 3 mM. In
addition, the kmod,•OH and kmod,SO•−4

decreased by 18.6−35.3% and 19.2−33.1% in the pres-

ence of 3 mM SO4
2−. Furthermore, we can intuitively find that the experimental values are

consistent with the simulated values. The higher concentration of SO4
2− could induce the re-

ductions of the redox potential of SO4
•−/SO4

2− and the oxidation capacity of the UV/PDS
process on the basis of the Nernst equation (Equations (18) and (19)) [47,48]. Whereas
SO4

•− could also be formed through the reaction of •OH with SO4
2−(Equation (20)). How-



Water 2022, 14, 2811 10 of 17

ever, the lower reaction rate constants of SO4
•− with ACY/ATL than •OH would lead to

suppressive effects on the kobs of ACY and ATL degradation.

SO4
•− + e− → SO4

2− (18)

E
(SO4

•−/SO4
2−) = Eθ

(SO4
•−/SO4

2−) +
RT
zF

ln
[SO4

•−][
SO4

2−
] (19)

SO4
2− + •OH→ SO4

•− + OH− (20)
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Figure 6. Effect of Br– dosage and NOM on the kobs of ACY (a,c) and ATL (b,d) degradation and 

specific rates of •OH and SO4•− in UV/PDS process. Conditions: [ACY]0 = 0.022 mM, [ATL]0 = 0.019 

mM, [PDS]0 = 0.6 mM, pH = 6.0. 

2

4 4SO Br SO Br•− − − •+ → +  
9 1 13.5 10 M sk − −=   (16) 

Figure 6. Effect of Br– dosage and NOM on the kobs of ACY (a,c) and ATL (b,d) degradation
and specific rates of •OH and SO4

•− in UV/PDS process. Conditions: [ACY]0 = 0.022 mM,
[ATL]0 = 0.019 mM, [PDS]0 = 0.6 mM, pH = 6.0.

NO3
− (0.5−3 mM) visibly inhibited the removal efficiencies of ACY and ATL in the

UV/PDS system (Figure S14). The kobs for ACY and ATL decreased by 26.0% and 27.7%, as
the NO3

− concentration rose to 3 mM. The kmod,•OH and kmod,SO•−4
decreased by 18.6−37.1%

and 19.2−36.3% in the presence of 3 mM NO3
−, respectively. NO3

− can be used as a
photosensitizer, consuming UV254 during the reaction. Wang et al. demonstrated the
strong inhibition of NO3

− on the degradation of TAP in the UV/PDS system [49]. Lin
et al. revealed that NO3

− can significantly reduce the radiation intensity received by PMS,
thereby slowing down the degradation of BPA [21].
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3.5. Oxidation Mechanisms and Degradation Pathways Speculation

The f 0 of ACY and ATL based on the Hirshfeld charge was calculated using Multiwfn
software [46,50,51], and the results are represented in Tables S3 and S4 and Figures 7 and 8.
Moreover, Tables S5 and S6 tabulated the reasonable transformation products (TPs) of ACY
and ATL [52,53], which were detected by UPLC-QTOF-MS.
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According to the results in Table S3 and Figure 7a, the highest values of f 0 (blue area
in Figure 7a) were achieved in the C1, C2, C5, C8, N6, N16, and O15 positions of ACY
(Figure S15a), which were much easier to be attacked by •OH and/or SO4

•−. An et al. [54]
also found similar degradation patterns for ACY, and the dominating reaction pathway
of ACY with •OH initiated by the addition onto the ortho site of methoxy substituent
on the benzene ring (i.e., C1 and C2 positions in this study). As shown in Figure 7b,
combining the six detected transformation intermediates (Table S5) and the results of the
Fukui function calculations, three degradation pathways for ACY in the UV/PDS process
were proposed. Pathway I underwent the electrophilic addition reaction through •OH
attacking the ACY N-heterocycle, resulting in the formation of the hydroxylated products
TP1 and TP2 through dihydroxylation. Pathway II: ACY may also transform to TP3 through
a de-alcoholic reaction and subsequent hydroxylation. Pathway III: The C5 and N6 could
be further attacked by •OH and SO4

•−, further causing ring opening and the production of
TP4 through further hydroxylation. Then, TP4 could generate TP5 through H addition or
TP6 by de-alcoholic reaction and hydroxylation.

It can be observed from Table S4 and Figure 8a that the •OH/SO4
•− radicals most

favorably attack the C5, C6, C7, C18, C19, O1, and O9 positions of ATL (Figure S15b). In
addition, Miao et al. [55] also reported that •OH would most likely attack the C3 position
of ATL (i.e., the C6 position in this study) to produce hydroxylation products. In addition,
Miao et al. [55] also reported that the atom with a higher 2FED2

HOMO value in the ATL
structure was the O11 position (i.e., O9 position in this study), indicating that the breaking
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of the ether bond is reasonable. Herein, three plausible transformation pathways of ATL
(Figure 8b) on the basis of the 10 transformation products (Table S6) were as follows.
Pathway I: the oxidation of the primary amide group in the main side chain would lead to
the formation of TP1 with m/z 268. Subsequently, the addition of oxygen to the alkyl group
and hydrogen abstraction by •OH contributed to the generation of TP2 and was further
hydroxylated to produce TP3. •OH/SO4

•− can attack ether linkage and undergo cleavage
of ether linkage to form TP4 with m/z 134. Pathway II: The secondary amine structure of
ATL could be attacked by •OH/SO4

•−, causing the cleavage of the C−N bond to produce
TP5. Afterward, TP4 and TP6 could also be attributed to the split of the ether linkage
caused by the attack of •OH/SO4

•−. After that, the reaction initiated at the secondary
amine moieties (–NH–) and dimerization would lead to the yield of TP7. Pathway III
revealed the electrophilic addition reaction through •OH attacking the ATL aromatic ring,
producing the hydroxylated product TP8, which was then carbonylated to generate TP9
and hydroxylated to TP10.

4. Conclusions

In summary, the degradation of ACY and ATL derived from SO4
•− and •OH in the

UV/PDS process was comprehensively investigated concerning kinetic simulations and
degradation mechanisms. The second-order rate constants at 6.0−11.0 for ACY and ATL
reacting with •OH were estimated to be 1.30−1.50 and 3.45−4.60 M−1s−1, and those for
ACY and ATL with SO4

•− were 1.00−1.58 and 4.56−5.64 M−1s−1, respectively. In addition,
the radical quenching experiments and the steady-state assumption calculation demon-
strated that SO4

•− instead of •OH was the predominant radical for pollutant elimination in
the UV/PDS process. Additionally, the kinetic model deployed in the current study could
well predict the degradation rates of ACY and ATL under different operational parame-
ters. The degradation rates of •OH and SO4

•− for ACY and ATL degradation were highly
pH-dependent. Based on the prediction of the active sites via the Fukui function and the
intermediates of ACY and ATL identified by UPLC-QTOF-MS, the plausible transformation
pathways of ACY and ATL in the UV/PDS process have been proposed. This study could
provide some theoretical support and preliminary exploration for pollutant removal in the
UV/PDS system. Furthermore, the toxicity of the target pollutants and their intermediates
in the UV/PDS system could be considered in future studies.
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under direct UV photolysis; Figure S3: Determination of the second-order rate constant for the re-
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