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Abstract: A reclamation coal mine in Baishui County of Shaanxi Province, China, was selected as
the study area to develop a fast survey method for estimating soil heavy metal concentrations using
spectral data. A portable object spectrometer manufactured by Analytical Spectral Devices (ASD)
was used to measure soil spectral reflectance, and an X-ray fluorescence device was utilized to obtain
the content of heavy metals. The Savitzky-Golay filter, first derivative reflectance (FDR), second
derivative reflectance (SDR), continuum removal (CR), and continuous wavelet transform (CWT)
were used to transform the original reflectance (OR) spectra for enhancing the spectral characteristics,
respectively. Furthermore, correlation analysis was introduced to determine the characteristic bands
and the correlations of heavy metals. Partial least squares regression (PLSR), extremely learning
machine (ELM), random forest (RF), and support vector machine (SVM) were implemented for
quantitatively determining relations between heavy metal contents and spectral reflectance. The
outcomes demonstrated that the spectral transformation methods could effectively capture the
characteristic bands and increase the relations between heavy metal contents and spectral reflectance.
The relation between Fe and Ni was close with a relatively high correlation coefficient (r = 0.741).
RF combined with CWT at the decomposition scales of 9 demonstrated the best performance with
the highest R2

v (0.71) and the lowest RMSEv (1019.1 mg/kg) for inferring Fe content. Ni content
was inferred based on the close relationship between Fe and Ni. The result of RF was better than
other methods with the highest R2

v (0.69) and the lowest RMSEv (1.94 mg/kg) for estimating Ni
concentration. Therefore, the RF model was chosen for mapping Fe and Ni contents in the study area.
The present study revealed that the indirect inversion methods using spectral data can be effectively
used to predict heavy metal concentrations. The outcomes supply a new perspective for retrieving
heavy metal content based on hyperspectral remotely sensed technology.

Keywords: hyperspectral; soil heavy metals; indirect inversion method; random forest

1. Introduction

Soil is the basic natural resource for agricultural production and the largest carbon
reservoir in terrestrial ecosystems [1,2]. The soil environment is a key factor for sustain-
ing social and economic development and assuring healthy crop production for human
beings [3]. In recent decades, heavy metal pollution in soils has aroused global concerns
due to their poisonousness, persistence, non-degradation, and half-life period [4,5]. China,
the largest developing country in the world, has been underlining the speedy urbaniza-
tion and industrialization process [6–8]. A large number of mining resources have been
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developed for meeting the demands of economic development [9]. However, mining and
smelting activities are regarded as the main sources of heavy metal pollution in soil [10].
Moreover, plenty of abandoned mines without any preventative measures for heavy metals
exhibited seriously negative effects on the soil environment [11]. In 2016, the Chinese
government had to spend CNY 60.69 million (CNY 1 = USD 0.68) to investigate 6,150 km2

of mining areas with the environmental deterioration generated by mine drainage [12].
Therefore, it is necessary to investigate heavy metals distribution in abandoned mines for
land consolidation and reclamation in the future.

Traditional methods with high precision for obtaining heavy metals distribution are in-
situ sampling combined with laboratory chemical analysis, whereas traditional approaches
have obvious deficiencies, including low efficiency, high cost, time-consuming, and small
scope of application. Meanwhile, the chemical analysis methods may generate secondary
pollution in the environment due to the materials used in the lab process. In comparison,
spectrum technology, based on visible and near-infrared reflectance (VNIR) spectroscopy,
supplies a new perspective for rapidly and efficiently detecting heavy metal concentrations.
At present, VNIR technology has been widely used in retrieving soil heavy metal contents.
For example, many studies demonstrated the feasibility of using spectrum technology to
detect soil lead concentration and predicted the spatial distribution of lead [13]. Chen et al.
examined the reliability of using soil spectral reflectance to estimate the concentration of
Cd, Pb, As, Cr, Cu, and Zn in suburban soils [14]. Han et al. inferred As concentration
based on hyperspectral remote sensing data [15]. Tan et al. established the model between
the selected spectral features and the soil heavy metal data based on an ensemble learning
method [16]. Most published studies constructed the inversion model directly. However,
soil heavy metals are trace elements that may hardly be detected in spectral response
compared to water, organic matter, and clay mineral. Various challenges were met for
inversing heavy metal contents using VNIR due to the low correlation between trace
metal and spectra and the complication of soil’s physical and chemical properties [4,17].
Therefore, it is really hard to capture the spectral response signals through direct inversion
methods. Fortunately, previous research proved that heavy metals are always related to
organic matter, clay minerals, hyperspectral indices, and iron oxides [18]. For example,
some studies confirmed that the relations between organic matter and heavy metals were
close [18,19]. In addition, other research proved that the relations between heavy metals and
Fe are close [20]. To our knowledge, Fe is one of the dominant elements in soils [21]. Hence,
the close relationship between heavy metals and related materials in the soils supplies a
chance to detect heavy metal contents indirectly. For example, Zhang et el. took an indirect
approach to predict soil heavy metal contents using hyperspectral indices [22]. Wang et al.
took the indirect inversion model based on iron oxide content to estimate As, Zn, and Cd
quantitatively [23]. Shen et al. proved the feasibility of indirect inversion based on the Fe
element to infer Cu concentration [17]. Therefore, this paper attempts to use the Fe element
as a proxy to infer soil heavy metal elements based on VNIR indirectly.

One of the key processes of predicting heavy metal concentrations in this study is to
capture the spectral response signals of heavy metals in the soil. However, it is hard to
detect the spectral response signals of heavy metals in the soil owing to spectral noises,
mixed overlapping peaks, and other uncertainties [24–26]. Therefore, the suitable spectral
preprocessing methods that can be used for removing undesirable effects and enhancing
interesting features are valuable for inversing heavy metals in soils. A variety of methods,
including first (FD) and second derivatives (SD), continuum removal (CR), square root
(SR), logarithm, reciprocal of the logarithm, and reciprocal have been used for spectral
preprocessing by previous studies. For example, some researchers used FD and SD to
extract spectral information and assess their relation to soil heavy metals, such as As, Cd,
Cu, Pb, and Zn [24,26–28]. Similarly, the related researchers reviewed spectral derivative
techniques and reported that FD and SD are frequently applied [4]. Although the spectral
derivative transformations can remove the baseline effect and enhance minor absorption
features, the FD and SD may ignore some detailed spectral signals [29,30]. Meanwhile,
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some other transformation methods were adopted for soil spectral data, including min-max
normalization (MMN), multiplicative scatter correction (MSC), spectral optimized indices,
Gaussian filtering (GF), standard normal variate (SNV), and Fractional-order derivative
(FOD) [31–33]. However, the efficiency of previous methods concerning spectral prepro-
cessing was relatively weak and not very significant because the heavy metals were trace
elements in the soil. The spectral preprocessing approaches need to be further strengthened.
Therefore, it is necessary to develop an efficient spectral transformation method to enhance
the spectral response of heavy metals in the soil. Published studies confirmed that the
capabilities of wavelet transform (WT) are powerful and reliable in extracting spectral
features of heavy metals in the soil [12]. WT has been widely used in signal and image
analysis, denoising, compression, and decomposition. In addition, continuous wavelet
transforms (CWT) demonstrated outstanding performance in enhancing the spectral re-
sponse of heavy metals in the soil [34,35]. Moreover, CWT combined with inversion models
can effectively improve the coefficient value of determination for calibrating heavy metal
contents. According to the published studies, the capability of using spectral data based on
machine learning methods in estimating heavy metals concentrations has been confirmed
by many previous studies [36–39], but the feasibility and reliability of using a combination
method of CWT and machine learning based on spectral data to indirectly estimate heavy
metal concentrations at a reclamation coal mine are still uncertain.

The objectives of this study are to (1) examine the difference in characteristic bands
selection in different experimental conditions based on Fe element, including in-situ, lab-
based processed (the soil samples were processed in the lab before surveying reflectance
spectra of soil), and lab-based unprocessed (the soil samples were unprocessed before mea-
suring soil spectral reflectance); (2) find the optimal combination between transformation
method and machine learning by the accuracy of inversion; (3) explore the feasibility of
inversion indirectly.

2. Materials and Methods

A flowchart of this study is summarized as follows (Figure 1): heavy metal concentra-
tions were surveyed in the study area, including Cr, Zn, Ni, Cu, Mn, and Fe. Meanwhile,
soil spectra were collected in field samples, lab-processed samples, and lab unprocessed
samples from a mining area. Spectral preprocessing was implemented based on the removal
of wavelength in noisy regions and Savitzky-Golay smoothing methods. FDR, SDR, CR, and
CWT transformation were applied to the smoothed spectra. Correlation analysis was used
to determine the correlation between Fe and the other metals and extract the characteristic
bands. Additionally, PLSR, ELM, RF, and SVM models were used to calibrate for estimating
Fe concentration, inferring Ni concentration indirectly based on the optimal model.
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vation of the sampling region with a total area of approximately 12.55 km2 is decreased 
from northwest to southeast. The transport route of coals is located in the south of the 
study area. It belongs to a warm temperate continental monsoon climate, with northeast 
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average annual precipitation of 598.2 mm [40]. In this area, the land is mainly devoted to 
planting wheat, fruit trees, and other economic crops. The county has an agricultural acre-
age of 48,000 hectares and a cultivated area of 34,596 hectares [41]. The ecosystem of this 
area is fragile due to long-time mining resource development. The abandoned coal mine 
with waste slag accumulation easily leads to heavy metal pollution through rain and 
wind. Furthermore, a large number of chemical fertilizers are frequently used in the soil 
for improving the amount of production, which possibly leads to heavy metal accumula-
tion in the soil [42,43]. 

Figure 1. Workflow of the present study.

2.1. Study Area

An abandoned reclamation coal mine in Baishui County, located in Weinan City,
Shaanxi Province, northwest of China, was selected as the study area (Figure 2). The
elevation of the sampling region with a total area of approximately 12.55 km2 is decreased
from northwest to southeast. The transport route of coals is located in the south of the
study area. It belongs to a warm temperate continental monsoon climate, with northeast
and northwest prevalent wind directions, an average annual temperature of 11.6 ◦C, and
average annual precipitation of 598.2 mm [40]. In this area, the land is mainly devoted
to planting wheat, fruit trees, and other economic crops. The county has an agricultural
acreage of 48,000 hectares and a cultivated area of 34,596 hectares [41]. The ecosystem of
this area is fragile due to long-time mining resource development. The abandoned coal
mine with waste slag accumulation easily leads to heavy metal pollution through rain and
wind. Furthermore, a large number of chemical fertilizers are frequently used in the soil for
improving the amount of production, which possibly leads to heavy metal accumulation in
the soil [42,43].
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In the lab, samples were airdried at room temperature, and impurities containing 
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grounded using a plastic rod. Then, samples were placed into an oven to dry until the 
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instrument and to ensure the relative standard deviation ranged from 3% to 5%, In this 
study, six heavy metals were detected, and other heavy metals were below the detection 
limit. 

  

Figure 2. Location of the study area and in-situ sampling sites. (a): An abandoned cement factory,
(b): An empty field heaped with cinders.

2.2. Soil Sampling and Pretreatment

One hundred in-situ topsoils (0–20 cm) samples were collected with a post-hole digger
in a reclamation coal mine in Baishui County on 29 April 2020. The sample collecting
rule has been adopted to ensure that the interval between the two sites was suitable.
Each representative in-situ sample (about 300 g) contained five subsamples that were
positioned as wintersweet (HJ/T166-2004). We used a portable receiver of the Global
Navigation Satellite System (GNSS) to capture the signals from Continuously Operating
Reference Stations (CORS) of Qianxun Corporation and to survey the sampling site’s actual
position via the Real-time kinematic (RTK) method. The China Geodetic Coordinate System
2000 (CGCS2000) was obtained for each sample site with reliable precision. Furthermore,
samples were put into polyethylene bags and were transported to the laboratory for the
next pretreatment.

In the lab, samples were airdried at room temperature, and impurities containing
gravel and other foreign matters were removed with tweezers, then crushed and grounded
using a plastic rod. Then, samples were placed into an oven to dry until the weight did
not change. Next, a 0.7 mm nylon aperture sieve was used to sieve samples and put them
into clean polyethylene bags for analysis. Each sample with 4 g weight was put into a
32 mm mold to squeeze a tablet under 30-ton pressure for concentrations measuring via
SPECTRO xSORT X-ray fluorescence made in German. The average concentration was
used as the final record for eliminating the errors. Finally, Sample Result Manager for X-ray
fluorescence (SPECTRO xSORT) was introduced to handle metal concentrations data. To
ensure data quality and precision, we introduced quality assurance and quality control
(QA/QC) to evaluate the data. The GSS-series and GSD-series geochemical reference
standard materials (Institute of Geophysical and Geochemical Prospecting, Lang fang,
China) were adopted to calibrate the X-ray fluorescence (SPECTRO xSORT) instrument and
to ensure the relative standard deviation ranged from 3% to 5%, In this study, six heavy
metals were detected, and other heavy metals were below the detection limit.

2.3. Spectral Measurement and Preparation
2.3.1. Spectral Measurement

The spectral reflectance of three different kinds of samples includes field spectra (FS),
laboratory-processed spectra (LPS), and laboratory unprocessed spectra (LUS), respectively.
In the field, sampling sites were always located in relatively flat and open areas to decrease
adjacent reflectance and eliminate shadows during the field spectral survey. To keep the
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original state of soil, vegetation, pebbles, roots, and voids were excluded carefully from
the surface before measuring soil spectra. Soil spectra measurement was conducted from
10 AM to 2 PM on a sunny day. In the laboratory, a 1000 W halogen lamp was utilized as
the light source. Spectral measurements were conducted in a dark room and all surveyors
were required to put on black clothes to eliminate unnecessary spectral noise.

Soil spectra were measured in both laboratory and field using a portable object spec-
trometer manufactured by Analytical Spectral Devices (ASD FieldSpec 4 Standard Res)
of America. The ASD spectrometer with a spectral range of 350 to 2500 nm has a 1 nm
resolution. To minimize bias, a warm-up with 30 min duration was carried out for the
spectrometer. Before surveying, a whiteboard with 99% reflectance was introduced to
calibrate the spectrometer [33]. The soil sample was filled with a black dish with a diameter
of 10 cm and a depth of approximately 1 cm. The soil part beyond the dish height was
scraped with a knife blade to ensure a smooth surface [39]. The observation angle between
the light and the vertical direction was set as 15◦. The 50 cm distance was adjusted between
the light source and the soil samples. In addition, the distance and angle between the probe
and the samples were 15 cm and 90◦, respectively [39]. Furthermore, every sample was
surveyed 10 times to minimize observation errors, and the average spectrum was recorded
as the final spectrum after 10 times of scanning.

2.3.2. Spectral Smoothing and Spectral Transformation

The preprocessing of original spectra was implemented to decrease spectral noise,
including noise area removal, spectral smoothing, and transformation. (1) A detector shift
was corrected using ViewSpecPro software based on original reflectance (OR) in LPS, LUS,
and FS; (2) Due to the influence of the instrument noise, water vapor, and complex field
environment, the spectra at an interval of the edge bands of 350–399 nm and 2401–2500 nm
were deleted in LPS and LUS, and the edge bands of 350–399 nm, 1291–1429 nm, and 1731–
2500 nm were removed from each soil sample in FS [14,44]; (3) The Savitzky-Golay filter
(second order and 21 points) was used to smooth spectra for denoising and eliminating
errors produced by baseline drift, tilt, etc. [31,45]; and (4) The smoothed spectral reflectance
was transformed based on FDR, SDR, and CR (Equations (1)–(3)) methods to enhance the
spectral characteristics [14]. Meanwhile, the CWT method (Equations (4)–(5)) was chosen
to compare with the above three spectral transform methods [46–50]. The Gaussian 4
function was chosen as the basis function according to previous studies [12]. Moreover,
decomposition scales were divided into ten scales, including 21, 22, 23, . . . , 29, and 210.

FDR =
ρλi+1 − ρλi−1

2∆λ
(1)

SDR =
ρλi+1 − 2ρλi + ρλi−1

∆λ2 (2)

CR =
ρλi

ρ850 +
ρ2500−ρ850
2500−850 ×

(
ρλi − ρ850

) (3)

where ρλi−1, ρλi, and ρλi+1 represent reflectances of the bands λi−1, λi, λi+1, respectively;
and ∆λ is the band interval.

W f (a, b) ≤ f ; ϕa,b ≥
∫ +∞

−∞
f (t)ϕa,b(t)dt (4)

ϕa,b(t) =
1√
a

ϕ

(
t− b

a

)
(5)

where f (t) is the measured reflectance from a sample; t is the band interval; ϕa,b(t) is the
basic function; a is the scaling factor; and b is the shift factor.
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2.4. Correlation Analysis for Determining the Characteristic Bands

The correlation analysis method was introduced to determine the relationship between
spectral reflectance and heavy metal concentrations. Furthermore, the relation between
the content of the dominant element in the soil (such as Fe element) and other heavy
metal concentrations were obtained for evaluating the feasibility of indirect inversion. The
correlation coefficient (r) was used to quantitatively describe the correlation [51]. The
computational formula [52] is as follows:

r =
∑n

i=0(yi − y)(xi − x)√
∑n

i=1(yi − y)2 ∑n
i=0(xi − x)2

(6)

where yi is the content of heavy metal of the ith sample; xi is the spectral reflectance of the
ith band; y is the average value of the soil’s heavy metal content; x is the average value of
each band; and n is the number of samples.

2.5. Calibration and Validation
2.5.1. Partial Least Squares Regression (PLSR)

PLSR proposed by Herman O.A. Wold includes multiple linear regression, canonical
correlation analysis, and principal factor analysis [53]. PLSR can eliminate the influence
of multiple correlations and allow the number of samples to be less than the number of
variables. PLSR is good at hyperspectral bands with collinearity and spectral noise [54].
Recently, PLSR has been widely utilized in estimating heavy metal concentrations using
hyperspectral remote sensing technology [55].

2.5.2. Extreme Learning Machine (ELM)

The ELM is a new algorithm for single-hidden-layer feedforward networks. For the
network, the number of hidden layer nodes needs to be set and the input weight, as well
as the offset of hidden elements in the process of execution, does not need to be adjusted.
Hence, the ELM has speedy training speeds and higher generalization performance. No
parameters need to be manually adjusted except predefined network architecture [56–58].

2.5.3. Random Forest (RF)

The RF algorithm is a bagging method based on a classification and regression tree
(CART) [25,59]. The potential of RF is the significance of each feature that can be evaluated
with unbiased estimation during the classification process, and the problems with numerous
missing data can be tackled. In addition, the RF can be used to process big data without any
dimensionality reduction that outperforms traditional models. The basic theory of RF bagging
is to select the outcomes of several weak classifiers and form a strong classifier [60,61].

2.5.4. Support Vector Machine (SVM)

Plenty of scholars are paying increasing attention to SVM owing to its excellent
generalization performance. SVM minimizes structural risk as a regression aim [62]. SVM
uses a kernel function to transform the nonlinear regression into linear regression and solve
the problem of small samples and high dimensions. SVM has been successfully applied
in the remote sensing field. The prediction performance of the SVM was assessed via the
penalty coefficient C and the kernel parameter Gamma. Therefore, the generalization ability
and prediction accuracy can be improved by choosing appropriate parameters [63].

2.5.5. Validation

Leave 30% out cross-validation, a widely used method, was introduced to evaluate the
reliability of models. The statistics used in the study were the coefficient of determination
R2 and root mean square error (RMSE) [64].
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2.5.6. Software

Spectral smoothing, spectral transformation, correlation analysis, PLSR, ELM, RF,
and SVM were executed via MATLAB version 2016b. Moreover, Sample Result Manager
(a specific software for SPECTRO xSORT, XHH03, SEEGER GMBH, Boschstrasse, Kleve,
Germany) was used to export the heavy metal contents, and ArcGIS10.0 were used for
analyzing and mapping in this paper.

3. Results
3.1. Statistical Analysis of Heavy Metals in Soil

Table 1 demonstrated the surveyed statistical value of 100 samples in the study
area. Statistical analysis showed that the mean contents of Fe (28,787.56 mg/kg) and Mn
(580.34 mg/kg) in soil were higher than in others. The mean Ni, Zn, and Cu contents were
close to the Shaanxi soil background value. The maximum content of the Cu (135 mg/kg)
element and the mean concentration of Ni (27.40 mg/kg) exceeded the national pollution
thresholds, according to the Chinese Soil Environmental Quality Standard [65]. This result
implied that parts samples of Cu may exist in pollution conditions. Furthermore, the mean
concentration of Cr (76.42 mg/kg) was higher than the Shaanxi soil background value. In
the soil environment, the accumulation of soil heavy metals is accompanied by an increase
in variability. The dispersion and variation characteristics of heavy metal concentration
were displayed by the standard deviation (SD) and coefficient of variation (CV), respectively.
The CV of the Cu element was the largest among all metal elements (63.42%).

Table 1. Descriptive statistics for soil heavy metals contents of the study area. Unit (mg/kg).

Paraments Cr Ni Zn Cu Mn Fe

Mean 76.42 27.40 67.37 19.57 580.34 28,787.56
Standard deviation (SD) 11.93 2.92 16.66 12.41 38.60 1761.97

Minimum 47.70 20.07 41.65 9.60 469.50 23,839.00
Maximum 107.50 34.12 201.50 135.00 723.00 34,223.00

Coefficient of variation (CV, %) 15.61 10.64 24.73 63.42 6.65 6.12
Shaanxi soil background value 62.50 28.80 69.40 21.40 557.00 -
Chinese soil background value 61.00 26.90 72.40 22.60 583.00 -

A histogram and a box plot of the heavy metals (Figure 3) represented that the distri-
bution of the elements except Cu is normal distribution, which showed better prediction
results based on the regression model [66]. A significant extent of changes especially Fe,
Mn, and Zn was detected for all metal elements. Parts of the samples had high values, such
as Zn (190 mg/kg) and Cu (122 mg/kg).
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3.2. Analysis of Soil Spectral Characteristics

Figure 4 shows the reflectance spectrum of soil samples of the OR and SG smoothed
data in the study area. As shown in Figure 4, some differences in terms of the values of
spectral reflectance under each experimental method were observed. The overall trend of
the spectral reflectance was similar, and the value of spectral reflectance was between 0 and
0.6 for LPS and FS, whereas, the value of spectral reflectance of the LUS was significantly
lower than LPS. The FS had higher spectral reflectance than the LUS because FS was
measured in the field and the samples contained some alien stuff such as stones and
roots. The locations of the spectral absorption were roughly the same, and the peaks
could hardly be found from 500 to 800 nm for the gradual increase and fast growth rate
of the spectral reflectance, and the spectral reflectance tended to be stable after 800 nm.
The spectral absorption peaks and valleys were detected at 800 nm, 1000 nm, 1400 nm,
1900 nm, and 2200 nm. The related experiment indicated that the most significant impact
of organic matter is observed from 600 to 800 nm [67]. Published research reported that the
absorption peaks between 750 and 1000 nm are owing to the electronic transitions of the
Fe3+ in oxy/hydroxides [68]. The absorption feature of iron oxides and crystalline Fe was
at 900 nm and 850 nm [69]. The absorption valleys occurring at 1400, 1900, and 2200 nm
were due to OH− groups, H2O molecules, and clay minerals, such as kaolinite, illite, and
smectite [70,71].
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First, the OR curve chart under different experimental conditions including FS, LPS,
and LUS was transformed using SG smoothed spectral reflectance data. Then, three trans-
formation methods including FDR, SDR, and CR were introduced to further highlight
spectral characteristic bands (Figure 5). Clearly, the spectral responses were significantly
improved after the spectral transformation, and relatively weak absorption peaks in the
original spectral reflectance were highlighted, especially CR. Moreover, the spectral trans-
formation methods used in the present study effectively decreased the impacts of parallel
background values and spectral information, and the spectral characteristic bands can be
easily captured.
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3.3. Correlation Analysis of Heavy Metals Concentration in Soil

The correlation relationship among heavy metals was reflected by R (Table 2). The
correlation between each heavy metal and Fe was significantly positive at a level of 0.05.
The correlation coefficient between Fe and Mn was 0.851, followed by 0.741 for Fe and
Ni. Relatively significant correlations were detected between Ni and Cr (r = 0.296), Ni
and Zn (r = 0.353), as well as Cu and Zn (r = 0.876). The relatively high r concerning Cu
and Zn demonstrated Zn was a copper-philic element and tend to be compatible with
symbiotics. This result demonstrated that the migration and accumulation features of
heavy metals were similar in this study. The highest r was 0.851 in terms of Fe and Mn
owing to the majority of the Fe and Mn in the soil occurring in the shape of ferromanganese
compounds. Furthermore, Mn was more readily aggregated and absorbed by Fe. The
previous study confirmed that Mn is one of the major natural sources of soil, and man-made
pollution is less [72]. Meanwhile, Ni is mainly distributed on the soil surface and derived
from traffic and coal combustion. The study area belonged to the coal mining area and
accumulated a lot of waste coal slag. Mining and smelting have also led to Ni contamination
of agricultural soils [73]. In addition, some crops accumulated Ni in contaminated soil. Ni
and Ni compounds are carcinogens of animals and humans according to the International
Agency for Research on Cancer [74,75]. Therefore, Mn was not considered in this work. Ni
was mainly studied because of its high risk and higher correlation with Fe.
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Table 2. Correlation coefficient matrix for soil metal elements.

Elements Mn Cr Zn Ni Cu Fe

Mn 1
Cr 0.189 1
Zn 0.522 ** 0.159 1
Ni 0.646 ** 0.296 ** 0.353 ** 1
Cu 0.405 ** 0.182 0.876 ** 0.179 1
Fe 0.851 ** 0.213 * 0.436 ** 0.741 ** 0.274 ** 1

Note: ** Correlation is significant at 0.01 level. * Correlation is significant at the 0.05 level.

3.4. Determining the Characteristic Bands for Fe Element Using R2 and CWT

The determination coefficients (R2) between Fe content of soil samples and OR, SG,
FDR, SDR, as well as CR under different experimental conditions including FS, LPS, and
LUS were determined and exhibited in Figure 6.
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The previous study indicated that a threshold of 0.36 represents a high correlation be-
tween the two variables [76]. The R2 of OR and SG was larger than 0.36 during 400–511 nm
(R2: 0.36–0.38) and 400–512 nm (R2: 0.36–0.38) under the LPS. On the contrary, no matter
which experimental conditions or spectral transformation we conducted, the R2 between
the Fe concentration and the spectral reflectance obtained by different transformation
methods was lower than 0.36. Clearly, the variation range of the visible light curve was
more significant compared with near-infrared under the LPS condition. It revealed that the
spectral response of Fe in the visible light section was more significant, and this outcome
was in line with the findings of some previous studies [77–79]. So, the bands with R2 > 0.36
under LPS conditions were selected as characteristic bands for estimating Fe content using
models [76]. Significance tests demonstrated that the correlation coefficient was significant
at level p < 0.01.

The CWT and correlation analysis were implemented on the SG for selecting charac-
teristic bands. The R2 was shown in Figure 7. Clearly, the R2 changed significantly among
different decomposition scales (Figure 7). Furthermore, R2 values achieved stabilized with
increasing in the wavelet decomposition scales. The effect of decomposition scales from
4 to 9 in the LPS, 2 to 8 in the LUS, and 4 to 8 in the FS were better than other scales
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according to the values. For LPS (Figure 7a), the more significant red region with large
coefficient values can be found in Figure 7. The characteristic bands for the Fe element were
determined according to the bands with larger R2 (R2 > 0.36) [76] at a different wavelength
and eight decomposition scales including 1 (401–406 nm), 2 (401–404 nm, and 406–408 nm),
3 (401–408 nm and 412–417 nm), 4 (402–418 nm and 431–438 nm), 5 (403–434 nm and
444–459 nm), 6 (400 nm and 437–440 nm), 8 (541 nm, 616 nm, 899 nm, 913 and 914 nm), and
9 (557–659 nm and 1176–1298 nm) in LPS. The corresponding R2 value were 0.374–0.378,
0.37–0.379, 0.362–0.388, 0.362–0.382, 0.361–0.384, 0.36–0.379, 0.361–0.434, and 0.36–0.429.
The results showed that the important bands of Fe belong to the visible light bands. The
maximum R2 of LUS and FS are 0.24 and 0.21, respectively, both less than 0.36 and insignif-
icant. Therefore, soil spectra were not screened out for characteristic bands and estimated
Fe content in LUS and FS.
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3.5. Estimating Metals Concentration Using RF, PLSR, and ELM Methods
3.5.1. Fe Concentration Estimation

The characteristic bands chosen by OR, SG and CWT in LPS were used to construct
inversion models (Tables 3 and 4). The RF methods were introduced to determine the
quantitative relationship between Fe content and OR, SG as well as spectral reflectance
transformed by CWT at different scales. Meanwhile, the PLSR, SVM, and ELM were
selected as comparison models with RF for choosing the optimum estimation model.
Clearly, for OR (Table 3), the results of RF (ntree = 100) had the highest R2

v (0.64) and the
lowest RMSEv (899.9), followed by ELM (R2

v = 0.55, RMSEv = 1345.5), SVM (R2
v = 0.49,

RMSEv = 1575.5), and PLSR (R2
v = 0.30, RMSEv = 1674.8). For SG (Table 3), the results of RF

(ntree = 100) outperformed other methods with the highest R2
v (0.64) and the lowest RMSEv

(969.7), followed by ELM (the number of hidden neurons = 21) (R2
v = 0.41, RMSEv = 1676.7),

PLSR (R2
v = 0.36, RMSEv = 1591.5), and SVM (−c = 4) (R2

v = 0.36, RMSEv = 1702.1) through
adjusting the parameters circularly (Table 3). For the CWT method, the best outcomes
occurred in the decomposition scales of 9, and RF (ntree = 100) demonstrated better
performance than other methods with the highest R2

v (0.71) and the lowest RMSEv (1019.1),
followed by ELM (the number of hidden neurons = 35) (R2

v = 0.47, RMSEv =1765.9), PLSR
(R2

v = 0.41, RMSEv = 1143.1) and SVM (−c = 2) (R2
v = 0.41, RMSEv = 1539.2). It was obvious

that RF was superior to the other three models. Therefore, the model constructed by RF
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at the decomposition scales of 9 was chosen as the estimation model for inferring soil
Fe content.

Table 3. Accuracy evaluation for inferring Fe concentration using PLSR, ELM, RF, and SVM models
based on OR and SG transformation.

Transform Model
Calibration Dataset (n = 70) Validation Dataset (n = 30)

R2
c RMSEc R2

v RMSEv

OR

PLSR 0.44 1214.3 0.30 1674.8
ELM 0.56 1177.6 0.55 1345.5
RF 0.84 864.6 0.64 899.9

SVM 0.62 977.1 0.49 1575.5

SG

PLSR 0.39 1286.7 0.36 1591.5
ELM 0.554 1035.3 0.548 1468.0
RF 0.85 863.4 0.64 969.7

SVM 0.54 1143.7 0.36 1702.1

Table 4. Accuracy evaluation for inferring Fe concentration using PLSR, ELM, RF, and SVM models
based on CWT.

Decomposition Scales Model
Calibration Dataset (n = 70) Validation Dataset (n = 30)

R2
c RMSEc R2

v RMSEv

1

PLSR 0.40 1269.6 0.36 1631.9
ELM 0.59 1172.5 0.40 1084.7
RF 0.83 824.1 0.60 1186.3

SVM 0.44 1348.6 0.39 1419.0

2

PLSR 0.39 1374.4 0.33 1411.2
ELM 0.54 1170.5 0.42 1591.4
RF 0.86 806.2 0.59 1084.6

SVM 0.42 1435.2 0.36 1258.3

3

PLSR 0.39 1291.8 0.38 1569.2
ELM 0.49 1207.9 0.37 1622.6
RF 0.83 774.4 0.53 1376.3

SVM 0.43 1349.3 0.38 1504.1

4

PLSR 0.39 1477.1 0.32 1137.7
ELM 0.58 1211.0 0.42 1672.5
RF 0.86 837.0 0.68 695.0

SVM 0.52 1245.5 0.32 1460.0

5

PLSR 0.38 1383.8 0.37 1418.0
ELM 0.64 1017.3 0.46 1580.4
RF 0.81 880.7 0.59 1096.3

SVM 0.47 1115.0 0.39 1776.0

6

PLSR 0.40 1226.6 0.32 1750.4
ELM 0.62 1149.2 0.41 1348.6
RF 0.81 862.7 0.58 1099.2

SVM 0.46 1257.0 0.30 1575.0

8

PLSR 0.46 1397.5 0.42 1145.9
ELM 0.62 1149.2 0.41 1348.6
RF 0.83 758.7 0.61 1276.0

SVM 0.61 1074.0 0.4 1498.9

9

PLSR 0.45 1433.3 0.41 1143.1
ELM 0.64 1095.1 0.47 1765.9
RF 0.85 768.9 0.71 1019.1

SVM 0.66 955.1 0.41 1539.2

3.5.2. Ni Concentration Estimation

Table 2 demonstrated that the concentration of Fe and Ni has close relations with a
relatively higher correlation coefficient (R = 0.741). Therefore, the present study used in-situ
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measured Fe content to infer Ni content, and the inversion models were established with
Fe as the dependent variable and Ni as the independent variable, including PLSR, ELM,
RF, and SVM (Table 5). Clearly, the outcomes of RF outperformed other methods with the
highest R2

v (0.69) and the lowest RMSEv (1.94), followed by SVM (R2
v = 0.57, RMSEv = 2.13),

ELM (R2
v = 0.52, RMSEv = 2.53), and PLSR (R2

v = 0.51, RMSEv = 2.55).

Table 5. Accuracy evaluation for inferring Ni concentration using indirect inversion models including
PLSR, ELM, RF, and SVM.

Model
Calibration Dataset (n = 70) Validation Dataset (n = 30)

R2
c RMSEc R2

v RMSEv

PLSR 0.60 1.63 0.51 2.55
ELM 0.59 1.92 0.52 2.53
RF 0.83 1.24 0.69 1.94

SVM 0.59 1.89 0.57 2.13

To exhibit the capability of the estimation method of Fe and the indirect inversion
model of Ni, the scatterplots concerning the measured content and predicted content for Fe
and Ni based on the RF model was illustrated in Figure 8. For the testing samples of the Fe
element, the majority of sample contents were underestimated and the estimated Fe content
was lower than the measured Fe content. For the testing samples of Ni element, most scatter
points were underestimated when the measured Ni content was larger than 25 mg/kg.
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3.6. The Spatial Distribution of Soil Ni Element

The distributions of Fe and Ni in the study area were mapped via the Kriging interpola-
tion method in the ArcGIS toolbox based on the optimal model (Figure 9). The interpolation
results of concentrations illustrated that some differences can be found between the pre-
dicted and measured concentration values of the two elements, but the spatial distribution
trend and the heavy metals concentrations range were close. A little difference between the
measured and predicted Fe distributed northwest of the study area, and the difference of Ni
in the north of the study area was observed. From the distribution of the predicted Fe and
Ni elements content, a significant positive correlation was obtained between the Ni content
and Fe content, and the spatial distribution trend was similar, indicating that significant
absorption and aggregation relations existed between Ni and Fe elements. The predicted
Ni content in the study area decreases first and then increases from southeast to northwest.
The predicted Ni element was mainly distributed in the southeast of the study area with
the highest concentrations than other positions based on Figure 9, and the enrichment of
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the Ni element exceeded the background value of Shaanxi Province (28.80 mg/kg). On
the contrary, the lowest contents of Ni occurred in the northeast and southwest part of the
study area and were lower than the background value of Shaanxi and China (28.80 mg/kg,
26.90 mg/kg).

Water 2022, 14, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 9. The spatial distribution map of Fe and Ni elements in the study area. 

4. Discussion 
4.1. The Possible Reason for the Accumulation of Heavy Metals in the Study Area 

Soil heavy metals contamination is becoming a worldwide environmental issue, es-
pecially in developing countries due to rapid urbanization and industrialization [80,81]. 
For the study area, Cr mean concentration surpassed both the background value of China 
and Shaanxi. Although Ni content was lower than the threshold of Shaanxi, it was higher 
than the background value of China. Mn average concentration surpassed the background 
value of Shaanxi but was lower than the threshold of China. Most previous studies re-
vealed that the source of Mn is a natural source [82]. The mean content of Fe and Mn in 
soil was higher than others for Fe and Mn compounds infiltrating into the soil during 
mining. In general, though the mining area has been remediated, three (Cr, Ni, and Mn) 
heavy metals in soil still have slight accumulation and the heavy metal contaminations 
still have not been eliminated. Though the Cu and Zn mean contents of all samples were 
lower than both the threshold of China and Shaanxi (Table 1), parts of the soil samples’ 
mean concentration exceeded the national and local thresholds. We inferred that Cu and 
Zn may be affected by anthropogenic activities [83]. In addition, parts of metals in the 

Figure 9. The spatial distribution map of Fe and Ni elements in the study area.

4. Discussion
4.1. The Possible Reason for the Accumulation of Heavy Metals in the Study Area

Soil heavy metals contamination is becoming a worldwide environmental issue, espe-
cially in developing countries due to rapid urbanization and industrialization [80,81]. For
the study area, Cr mean concentration surpassed both the background value of China and
Shaanxi. Although Ni content was lower than the threshold of Shaanxi, it was higher than
the background value of China. Mn average concentration surpassed the background value
of Shaanxi but was lower than the threshold of China. Most previous studies revealed
that the source of Mn is a natural source [82]. The mean content of Fe and Mn in soil was
higher than others for Fe and Mn compounds infiltrating into the soil during mining. In
general, though the mining area has been remediated, three (Cr, Ni, and Mn) heavy metals
in soil still have slight accumulation and the heavy metal contaminations still have not



Water 2022, 14, 2784 16 of 21

been eliminated. Though the Cu and Zn mean contents of all samples were lower than both
the threshold of China and Shaanxi (Table 1), parts of the soil samples’ mean concentration
exceeded the national and local thresholds. We inferred that Cu and Zn may be affected by
anthropogenic activities [83]. In addition, parts of metals in the study area with relatively
large CV implied human inputs may be the main source of contamination. The field survey
conducted by our team found that the pesticides, fertilizers, and other agrochemicals used
for promoting products and killing insects of the crop may be the reason for increasing
the concentration of Zn, Cu, and Cr. Given that the research area was near the downtown
of Baishui County and the coal mine, dense population distribution, coal mine chemical
industries, and air pollution deposition, possibly concentrated Cr, Ni, and Zn elements
were present [75].

4.2. The Characteristics of Spectral Response for Heavy Metals and the Efficiency of the Spectral
Transformation Methods

To our knowledge, as the concentration of metals increases the spectral reflectance tended
to decrease. Previous studies showed that polluted soil samples revealed a significant spectral
absorbance than clean soil samples, especially in the range of 700–2500 nm [27,84–86]. However,
the spectral response of heavy metals in the soils was relatively weak because the concen-
tration of the heavy metals was very low. Moreover, the chemical and physical attributes of
the soil were complicated that led to the spectral reflectance of soil samples being a mixture
of spectra but not a pure one [28,87]. The suitable spectral transformation methods are
meant for enhancing the spectral response-ability in estimating heavy metal concentrations
based on VNIR spectral technology [57,88]. Therefore, the Savitzky-Golay filter (second
order and 21 points) and the FDR, SDR, CR, and CWT methods were used to smooth the
spectra and enhance the spectral characteristics, respectively. Multiple points were tried
in this experiment, including 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, and 25. The 21 points
with the highest accuracy were adopted in this study. Clearly, the spectral responses were
significantly improved after the spectral transformation (Figure 5), and relatively weak
absorption peaks in the original spectral reflectance were highlighted. Moreover, the spec-
tral transformation methods used in the present study effectively decreased the impacts
of parallel background values and spectral information, and the spectral characteristic
bands can be easily captured. However, according to our experiment results, FDR and SDR
were unsuitable to establish an inversion model in the study. It proved that the CWT and
correlation analysis can be efficiently used to choose characteristic bands.

4.3. The Precision Comparison of Estimation Models Combined with Different Transformation
Methods in Inferring Metal Content

For Fe simulation, the current study demonstrated that the precision of the RF combined
with CWT outperforms the other methods. Some previous studies also obtained a similar
outcome [46,51]. To ensure global transformation, sufficient training samples were required
by previous spectral transformation methods. CWT can be implemented from the time
domain due to a time-scale analysis of signals. Hence, the spectral features can be extracted
more efficiently for the time domain as well as frequency domains were used to characterize
the local features of the signal. The RF method [89], a data-mining technique originating
from a classification and regression tree (CART) model, is a tree-based ensemble learning
method [38]. Hence, many regression trees are contained by RF. Complex data pretreatment
is not mandatory by RF, and the calculation ability is relatively stronger than the other
methods such as artificial neural networks and gradient-boosted machines [90]. In addition,
the relative significance of each spectral band can be detected using the RF algorithm.

Furthermore, the present study developed an indirect inversion method using spectral
data for inferring heavy metal concentrations in the soil. Although the direct quantitative
relations between spectral reflectance and metal contents have been determined by pub-
lished research, the accuracy was not satisfactory due to the low content of heavy metals in
the soils and the weak spectral response. Fortunately, the spectral response of the organic
matter, iron, and other constant elements is relatively significant. Though spectral charac-
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teristic bands of heavy metals were hardly captured due to their relatively low contents
during the VNIR region, the indirect relations between heavy metals and organic matter,
clay minerals, and iron oxide can be determined for inferring heavy metal contents [18,39].
This study revealed that the relationship between Ni and Fe was obvious. Although the
correlation between Mn and Ni is significant, Mn was not selected as a proxy to inverse
soil heavy metals indirectly because soil heavy metals were mainly adsorbed on iron oxide,
organic matter, and clay minerals instead of Mn. The indirect inversion model of soil Ni
was constructed based on the relation between Fe and Ni. The estimation capability of the
indirect inversion method was evaluated by the current. The indirect inversion method
was reliable and feasible.

4.4. Limitations of This Paper

Though some findings were obtained by the present study, some limitations still exist.
Firstly, the indirect inversion method using spectral data was restricted by the relationship
between heavy metals and iron. Only the significant correlations between the heavy metals
and iron can be assured that the precision of the indirect inversion model in estimating
heavy metals content can be acceptable. Secondly, the current study was carried out locally
not globally. Therefore, the suitability of the methods used in this study needs to be verified
in other areas owing to the influence of uncertainties such as different spectral noise. Thirdly,
the difference between field spectra and laboratory spectra needs to be further studied. If
the inversion model can be established by field spectra, the practical value will be enlarged.
Therefore, we plan to correct the field spectra using laboratory spectra to eliminate spectral
differences caused by environmental factors and improve model accuracy in the future. The
results obtained from current research should be treated cautiously because the spectral
reflectance of the soil samples was surveyed under laboratory conditions that are completely
different from the outdoor environment. Up to now, retrieving heavy metal contents based
on remotely sensed imagery and spectral reflectance of in-situ soil samples is still a big
challenge due to the complicated chemical and physical attributes of the soil, atmospheric
absorption and scattering, soil moisture content, particle size, plant cover, and litter. In
addition, heavy metals’ spectral characteristics are very complicated due to their coexistence
in the soil. We plan to extract the relevant spectral bands as modeling variables based on
the adsorption and retention of heavy metals by various soil components to improve the
accuracy of the inversion model, including iron oxide, organic matter, and clay. In addition,
we plan to map the heavy metals contents distribution using hyperspectral images collected
by satellite or UAV (unmanned aerial vehicle) and to verify the feasibility of the indirect
inversion method in other areas in the future.

5. Conclusions

The present study proposed an indirect inversion method based on the significant
relationship between Fe and Ni for inferring Ni content using hyperspectral reflectance
data. The precision of different inversion models combined with spectral transformation
methods was compared. Some findings were obtained as follows: Two heavy metals
including Cr (76.42 mg/kg) and Ni (27.40 mg/kg) in the study area have slight accu-
mulation and the concentrations exceeded the national pollution thresholds according to
the Chinese Soil Environmental Quality Standard. The correlation between each heavy
metal and Fe was positively significant at a level of 0.05. The correlation coefficient was
0.741 concerning Fe and Ni. The characteristic bands for the Fe element were determined
based on correlation analysis and CWT in LPS. Namely, the characteristic bands for the
Fe element were determined on eight decomposition scales, including 1 (401–406 nm),
2 (401–404 nm and 406–408 nm), 3 (401–408 nm and 412–417 nm), 4 (402–418 nm and
431–438 nm), 5 (403–434 nm and 444–459 nm), 6 (400 nm and 437–440 nm), 8 (541 nm,
616 nm, 899 nm, 913 and 914 nm), and 9 (557–659 nm and 1176–1298 nm) in LPS. For
the CWT method, the best outcomes occurred in the decomposition scales of 9, and RF
demonstrated better performance than other methods with the highest R2

v (0.71) and the
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lowest RMSEv (1019.1), followed by ELM (R2
v = 0.47, RMSEv = 1765.9), PLSR (R2

v = 0.41,
RMSEv = 1143.1) and SVM (R2

v =0.41, RMSEv = 1539.2) through adjusting the parameters
circularly. The outcomes of RF outperformed other methods with the highest R2

v (0.69)
and the lowest RMSEv (1.94), followed by SVM (R2

v = 0.57, RMSEv = 2.13), ELM (R2
v = 0.52,

RMSEv = 2.53), and PLSR (R2
v = 0.51, RMSEv = 2.55). The feasibility of the indirect inversion

method was proven in this study. We will continue to explore the sensitive spectral bands
for retrieving toxic metals and conduct experiments in mapping heavy metals’ spatial
distribution using hyperspectral remote sensing images.
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