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Abstract: Precipitation and near-surface air temperatures are significant meteorological forcing for
streamflow prediction where most basins are partially or fully data-scarce in many parts of the world.
This study aims to evaluate the consistency of MSWXv100-based precipitation, temperatures, and
estimated potential evapotranspiration (PET) by direct comparison with observed measurements and
by utilizing an independent combination of MSWXv100 dataset and observed data for streamflow
prediction under four distinct scenarios considering model parameter and output uncertainties.
Initially, the model is calibrated/validated entirely based on observed data (Scenario 1), where for
the second calibration/validation, the observed precipitation is replaced by MSWXv100 precipitation
and the daily observed temperature and PET remained unchanged (Scenario 2). Furthermore, the
model calibration/validation is done by considering observed precipitation and MSWXv100-based
temperature and PET (Scenario 3), and finally, the model is calibrated/validated entirely based on the
MSWXv100 dataset (Scenario 4). The Kling–Gupta Efficiency (KGE) and its components (correlation,
ratio of bias, and variability ratio) are utilized for direct comparison, and the Hanssen–Kuiper
(HK) skill score is employed to evaluate the detectability strength of MSWXv100 precipitation for
different precipitation intensities. Moreover, the hydrologic utility of MSWXv100 dataset under four
distinct scenarios is tested by exploiting a conceptual rainfall-runoff model under KGE and Nash–
Sutcliffe Efficiency (NSE) metrics. The results indicate that each scenario depicts high streamflow
reproducibility where, regardless of other meteorological forcing, utilizing observed precipitation
(Scenario 1 and 3) as one of the model inputs, shows better model performance (KGE = 0.85) than
MSWXv100-based precipitation, such as Scenario 2 and 4 (KGE = 0.78–0.80).

Keywords: meteorological forcing; MSWX; TUW; hydrologic modeling; mountainous basin; Turkey

1. Introduction

Precipitation and near-surface air temperature datasets with high spatial and temporal
resolutions are crucial for many hydroclimatic studies such as hydrology, meteorology,
agriculture, natural resources management, energy systems, hydrologic modeling, and risk
assessment [1,2]. Moreover, air temperature variation plays a significant role in forming
different precipitation patterns, which is essential for climate change studies and has high
control on snowmelt and accumulation dynamics over snow-dominant regions, which
causes seasonal streamflow regime oscillation [3–5]. Traditionally, air temperature is mea-
sured with a standard meteorological shelter placed 2 m above the ground [6] and the
amount of precipitation is estimated by rain gauges located above the ground level [7,8].
However, denser meteorological stations are required to capture the spatio-temporal vari-
ability of precipitation and air temperature, presenting reliable weather observation over
a region. Similarly, topographic complexity of highly elevated regions, cost of installa-
tion and maintenance, limitations in data-sharing policy, and potential hydro-political
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tensions for transboundary river basins have been a great challenge for accurate weather
observation in recent decades [9–12]. Furthermore, full or partial shortcomings of weather
data observation often limited hydrological prediction in an ungauged basin (PUB) [13].
Therefore, an additional effort is needed to collect data if financial support is available or to
explore alternative data sources that are more feasible. Hence, gridded weather datasets
from numerous sources such as satellite and numerical weather prediction models’ output
are a kind of alternative to filling data scarcity over a particular region.

In recent years, a large number of gridded precipitation and air temperature datasets
varying in spatial and temporal resolution have been provided for public use. Some of
these datasets only present precipitation estimates, and the others are able to provide
minimum, maximum, and average temperatures in addition to precipitation, where they
are essential for potential evapotranspiration (PET) estimates and governing hydrologic
models. Examples of gridded precipitation datasets are Precipitation Estimation from
Remotely Sensed Information Using Artificial Neural Networks-Dynamic Infrared Rain
Rate (PDIR-Now) [14], multi-source merging such as Multi-Source Weighted-Ensemble
Precipitation (MSWEP) [15], and Climate Hazards group InfraRed Precipitation with
Stations (CHIRPS) [16]. Some gridded datasets, such as Multi-Source Weather version 100
(MSWXv100) [17] and Climate Forecast System Reanalysis (CFSR) [18], are able to present
both temperature and precipitation along with other climatological variables.

Regardless of how much physical information from the basin, including land use,
land cover, soil, and topography, is incorporated or excluded by selecting a specific hy-
drologic model in the validation process, several studies have evaluated the accuracy
of gridded weather datasets in driving hydrological models for streamflow prediction,
which are mostly focused on precipitation rather than other meteorological forcing. For
instance, Zhang et al. [19] evaluated three gridded precipitation datasets (CHIRPSv2.0,
TMPA-3B42v7, and PERSIANN-CDR) over various basins having different climatic regimes
in China using the Coupled Routing and Excess Storage (CREST) hydrologic model by
considering two different scenarios: when the model parameters are calibrated by ob-
served precipitation (Scenario-1) and each precipitation dataset individually (Scenario-2).
Overall, precipitation datasets displayed high ability for daily streamflow simulation
in Scenario-2, where TMPA-3B42v7 with a Nash–Sutcliffe Efficiency (NSE) of 0.96 and
CHIRPSv2.0 with a NSE of 0.90 showed higher streamflow reproducibility over humid
basins, while PERSIANN-CDR demonstrated the best performance (NSE = 0.67) in arid
basins. Bhati et al. [20] evaluated TMPA-3B42v7 for streamflow prediction over the Up-
per Mahi basin using the Soil and Water Assessment Tool (SWAT) hydrologic model,
considering four-year calibration/validation periods from 1998 to 2001 on a monthly
scale. The result showed a strong correlation (R2 > 0.77) of TMPA-3B42v7 with ob-
served streamflow for runoff prediction. Gunathilake et al. [21] investigated the hy-
drologic utility of 12 precipitation datasets (TMPA-3B42v7, TMPA-3B42RT, PERSIANN,
PERSIANN-CCS, PERSIANN-CDR, CHIRPSv2.0, CMORPH, IMERGHHFv06, MSWEPv1.1,
APHRODITEv1801, APHRODITEv1901, and GPCCv1) over the Huai Bang Sai (HBS) basin
in northeastern Thailand, utilizing the SWAT hydrologic model for the period of 2004–2014
considering the monthly time step. They demonstrated that all satellite-based precipitation
datasets have a monthly NSE of more than 0.55, where MSWEPv1.1 and CHIRPSv2.0
were able to present streamflow close to observed discharge, especially for the calibration
period (2004–2007), while APHRODITEv1901 (NSE > 0.53) showed higher reproducibility
of streamflow compared to APHRODITEv1801, and GPCCv1 gauge-based gridded precipi-
tation datasets. Satgé et al. [22] compared the hydrologic utility of 19 gridded precipitation
datasets (CHIRPv2.0, ERA5, GSMaP-RTv6, IMERGHHEv06, IMERGHHLv06, MERRA2-
FLX, TMPA-3B42RTv7, CMORPH-BLD, CMORPH-CRT, GSMaP-Adjv.6, IMERGHHFv.06,
MERRA2-LND, PERSIANN-CSS-CDR, PERSIANN-CDR, TMPA-3B42v7, WFDEI-CRU,
WFDEI-GPCC, CHIRPSv2, and MSWEPv2.2) over ten distinct basins of the Juruá watershed
for ten years (2001–2010). They found that IMERGHHFv06 is the most reliable precipitation
dataset for streamflow prediction with a median Kling–Gupta Efficiency (KGE) of 0.79 and
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0.81 considering daily and monthly time steps. On the other hand, CHIRPv2.0 provided
the least accuracy of streamflow simulation, with KGE values of 0.36 and 0.11 using GR4J
and HyMOD, respectively.

In the same way, several authors evaluated various gridded precipitation datasets
over different catchments in Turkey. For example, Karakoc and Patil [23] compared TMPA-
3B42v7 and gauge-based precipitation estimates for monthly streamflow prediction in
western Turkey’s Kucuk Menderes river basin (3930 km2). Both TMPA-3B42v7 and gauge-
based precipitation estimates were used independently for EXP-HYDRO hydrologic model
calibration (2003–2009) and validation (2010–2012). They found that gauge-based precipi-
tation estimates showed higher performance (KGE = 0.82 for calibration; KGE = 0.76 for
validation) compared to TMPA-3B42v7 (KGE = 0.54 for calibration; KGE = −1.08 for valida-
tion) and the post bias correction of TMPA-3B42v7 with ground gauge data considerably
increased TMPA-3B42v7 dataset performance (KGE = 0.81 for calibration; KGE = 0.62
for validation) for streamflow prediction. Similarly, Uysal and Şorman [24] employed
the Multilayer Perceptron (MLP) Artificial Neural Network (ANN) model to evaluate
PERSIANN and PERSIANN-CDR for streamflow prediction over the upper Euphrates
river basin (Karasu) in Turkey. The results indicated that both precipitation datasets ex-
hibited high streamflow reproducibility when post bias correction was applied to the
mentioned precipitation datasets, and the NSE increased from 0.38 to 0.68 and 0.48 to 0.61
for PERSIANN-CDR and PERSIANN for the validation period (2009–2011). Finally, Hafizi
and Sorman [25] evaluated the hydrological utility of 13 gridded precipitation datasets
(CPCv1, MSWEPv2.8, ERA5, CHIRPSv2.0, CHIRPv2.0, IMERGHHFv06, IMERGHHEv06,
IMERGHHLv06, TMPA-3B42v7, TMPA-3B42RTv7, PERSIANN-CDR, PERSIANN-CCS,
and PERSIANN) utilizing the TUW (Technical University of Wien) hydrologic model in
a mountainous basin for five water years (2015–2019) at a daily time step. The results
indicated that CPCv1, MSWEPv2.8, CHIRPSv2.0, and CHIRPv2.0 datasets outperformed
the others when model parameters are set for the ground observations.

In addition, several authors evaluated the spatio-temporal consistency of gridded
precipitation [26–33] and temperature [34–37] datasets over various regions by direct
comparison with observed data. The results infer that temperature datasets are much more
stable, showing higher performance compared to precipitation datasets over time and
space for the daily and monthly time steps.

Consequently, it appears from the literature that many gridded precipitation and tem-
perature datasets are evaluated either directly by observed precipitation and temperature
data or primarily focused on only utilizing precipitation datasets for streamflow prediction,
where some basins show a high record of precipitation estimates. At the same time, other
meteorological forcings may either be scarce or even non-existent. Hence, we see the
necessity of developing a new approach that exploits not only precipitation dataset but
also other meteorological forcing such as temperatures and estimated evaporation data
from a single non-ground source by integrating it with the existing ground observations
for streamflow simulation.

This study aims to evaluate the consistency of MSWXv100-based precipitation, tem-
peratures, and estimated potential evapotranspiration (PET) by direct comparison with
observed data and by integrating meteorological forcing from MSWXv100 datasets along
with ground observations for streamflow reproducibility under distinct model parameteri-
zation scenarios.

The structure of this paper is organized as follows: Section 1 presents a detailed intro-
duction to weather datasets and their hydrological utility. Section 2 provides information
on materials and methods. Section 3 shows results and comprehensive discussions, and
conclusions are presented in Section 4.
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2. Materials and Methods
2.1. Study Area

This study was carried out in the Karasu River basin (Figure 1), a mountainous
catchment in Turkey located between 38◦58′ E and 41◦39′ E and 39◦23′ N to 40◦25′ N.
Moreover, the study area is in the headwaters of the largest basin (Euphrates) in the eastern
part of the country, and its elevation varies from 1130 to 3500 m. Karasu basin has a
drainage area of around 10,250 km2, and the runoff volume is continuously measured by
stream gauging station (E21A019) at the outlet. Annual average runoff recorded at the
outlet of the basin is around 230.8 mm, where annual total precipitation is estimated as
431 mm and mean temperature recorded is around 9.2 ◦C in the basin. The basin receives
precipitation in the form of rain and snow; once the temperatures rise during the spring
and early summer seasons, snowmelt contributes up to two-thirds of the annual runoff
volume. Since the cascade dams are located downstream of the basin, accurate estimation
of runoff at the outlet of Karasu basin resulting from snowmelt is particularly vital for
flood forecasting, reservoir management, hydropower generation, irrigation, and water
supply [24]. Furthermore, Karasu catchment is one of the pilot basins for nationally and
internationally funded scientific projects [38–43]. Hence, it is crucial to understand the flow
regime changes and accurate estimation of runoff volume and its temporal distribution
over the region.
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2.2. Data

In this study, three types of hydrometeorological datasets were utilized; observed pre-
cipitation and temperature datasets (benchmark/reference), precipitation and temperatures
from the MSWXv100 dataset, and observed streamflow required for hydrological modeling.
The observed daily precipitation and temperatures (minimum, maximum, and average)
from 23 meteorological stations were provided by the State Meteorological Directorate
(MGM), and streamflow data for Kemah Boğazı (E21A019) stream gauging station at the
outlet of basin were obtained from State Hydraulics Works (DSI) of Turkey.

The Multi-source Weather (MSWX) version 100 is an operational global near-surface
gridded meteorological dataset with a high spatial (0.1◦) and temporal (3-hourly) resolution
and a short lag time (3 h of latency). Moreover, MSWXv100 provides medium-range (up to
ten days) and long-range (up to seven months) bias-corrected forecast ensembles and takes
advantage of other datasets such as CHELSA, CRU TS, ERA5, FLUXNET, GDAS, GEFS,
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GHCN-D, GSOD, and ISD. The dataset presents ten meteorological variables (precipitation,
average, minimum and maximum air temperature, surface pressure, relative and specific
humidity, wind speed, and downward shortwave and longwave radiation) and its historical
records are available from January 1979 onward. MSWXv100 is utilized in a wide range
of applications, including hydrological modeling, water resources management, flood
forecasting, drought monitoring, and disease tracking at the global/regional scale [17].
MSWXv100 data can be found at: www.gloh2o.org/mswx (accessed on 10 July 2022).

This study was conducted for five water years (October 2014 to September 2019) based
on the availability of selected datasets.

2.3. TUW Hydrologic Model and Streamflow Simulation Scenarios

In this context, the TUW conceptual hydrologic model developed by the Technical
University of Vienna is selected for streamflow simulation. The TUW model was built
on a similar structure to the HBV (Hydrologiska Byråns Vattenbalansavdelning) model
and tested over 320 Austrian catchments [44,45]. The model has been used in several
studies [44,46–50], and its related equations can be found in Parajka et al. (2007). The TUW
model has 15 parameters (Table 1) operating at a daily time step and is able to simulate
snow, soil moisture, and runoff processes. The model inputs are total daily precipitation
(mm), mean daily near-surface temperature (◦C), and daily potential evapotranspiration
(mm). The temperature-based Hargreaves–Samani method is utilized to calculate poten-
tial evapotranspiration, which uses the daily minimum and maximum near-surface air
temperature [51]. Moreover, the model parameters are calibrated by hydroPSO global
optimization algorithm [52,53] that implements the latest version of the Particle Swarm
Optimization (PSO) technique which has been successfully used to calibrate numerous
hydrological and environmental models [52,54–56].

Table 1. TUW model parameter properties. Abbreviations in the process column represent: S, snow;
SM, soil moisture; R, runoff.

ID Description Units Process Range

SCF Snow correction factor - S 0.9–1.5
DDF Degree-day factor mm/◦C /day S 0.0–5.0

Tr Temperature threshold above which precipitation is rain ◦C S 1.0–3.0
Ts Temperature threshold below which precipitation is snow ◦C S −3.0–1.0

Tm Temperature threshold above which melt starts ◦C S −2.0–2.0
LPrat Parameter related to the limit for PET - SM 0.0–1.0

FC Field capacity mm SM 0.0–600
BETA Non-linear parameter for runoff production - SM 0.0–20
cperc Constant percolation rate mm/day R 0.0–8.0

k0 Storage coefficient for very fast response day R 0.0–2.0
k1 Storage coefficient for fast response day R 2.0–30
k2 Storage coefficient for slow response day R 30–250

lsuz Threshold storage state mm R 1.0–100
bmax Maximum base at low flows day R 0.0–30
croute Free scaling parameter day2/mm R 0.0–50

The dataset is divided into calibration (October 2014 to September 2016) and validation
(October 2016 to September 2019) periods. It is worth mentioning that just like in many
parts of the world, several mountainous basins in Turkey have very limited or sometimes
non-existent meteorological forcing where only streamflow records are available. Generally,
two scenarios have been utilized for streamflow simulation using Gridded Precipitation
Datasets (GPDs) in the literature. In Scenario 1, the model is first calibrated by observed
meteorological data, then only observed precipitation is replaced by each GPD, and in
Scenario 2, the model is directly calibrated by each GPD [19,57–60]. However, in Scenario 1,
the model parameters are calibrated by observed meteorological data, which may not be the
optimal parameter set for GPDs. In Scenario 2, the model parameters are calibrated by each

www.gloh2o.org/mswx
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GPD individually, where other meteorological forcing such as observed temperature and
PET are still a part of the model input. Moreover, there are many basins with scarce/non-
existent meteorological data, and only streamflow values exist, which makes it harder
to apply the above two scenarios. The novelty of this study is to simulate streamflow
by considering four independent scenarios. Initially, it is assumed that fully observed
meteorological data exists, but later on, it is considered such that one or more observed
meteorological forcings do not exist, and we attempted to fill this gap with the MSWXv100
dataset. Hence, the following four scenarios can be illustrated as follows. In Scenario 1,
the model parameters are calibrated/validated entirely based on observed data (observed
precipitation, observed mean temperature, and estimated PET from observed data). In
Scenario 2, the model parameters are calibrated/validated by MSWXv100 precipitation,
observed mean temperature, and calculated PET based on observed data. In Scenario 3,
the model parameters are calibrated/validated by observed precipitation and MSWXv100
mean temperature, and the calculated PET is based on MSWXv100 data. Furthermore, in
Scenario 4, the model parameters were calibrated entirely based on MSWXv100 meteoro-
logical data (MSWXv100 precipitation, MSWXv100 mean temperature, and estimated PET
from MSWXv100 data).

2.4. Evaluation Approach

The modified Kling–Gupta Efficiency (KGE) (Equation (1)), including its three com-
ponents, namely Pearson correlation coefficient (r), the ratio of bias (β), and variability
ratio (γ), were utilized [61,62].

KGE = 1 − [(r − 1)2 + (β− 1)2 + (γ − 1)2]0.5 (1)

Among them, r is the Pearson correlation coefficient, which represents the linear
correlation between observed and climate dataset (Equation (2)); β measures the amount of
overestimation (β > 1) or underestimation (β < 1) of selected dataset (Equation (3)); and γ

is a relative measure of dispersion (Equation (4)). Moreover, µ and δ are the distribution
mean and standard deviation where s and o indicate estimated and observed values.

r =
1
n

n

∑
1
(on − µ0)(sn − µs)/(δo × δs) (2)

β =
µs

µo
(3)

γ = (δ s × µo)/(µ s × δo) (4)

KGE is relatively a new objective function providing an overall accuracy of the selected
dataset by balancing the contributions of correlation (r), ratio of bias (β), and variability
ratio (γ). This group of metrics has been used for many studies related to climate dataset
validation in recent year [26,29,40,63]. In the same way, the Hanssen–Kuiper (HK) skill
score (Equation (5)) is employed to assess the detectability strength of MSWXv100 for
different precipitation intensities and it has been used in previous studies related to GPDs
detectability assessment [9,40]. In Equation (5), M (Miss) shows that the observed precipi-
tation is not detected, F (False) represents the condition when a precipitation is detected
but not observed, H (Hit) indicates the correctly detected observed precipitation, and CN
(Correct Negative) shows that a no precipitation event is detected.

HK =
(H×CN)− (F×M)

(H + M) (F + CN)
(5)

The detectability strength of MSWXv100 precipitation is evaluated based on daily
precipitation from observed and MSWXv100, which is classified into the five following
thresholds: no/tiny precipitation (less than 1 mm/day), light precipitation (1–5 mm/day),
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moderate precipitation (5–20 mm/day), heavy precipitation (20–40 mm/day), and violent
precipitation (more than 40 mm/day) [64,65].

In addition, the Nash–Sutcliffe Efficiency (NSE) [66] along with the KGE are employed
to quantify the accuracy of simulated streamflow obtained from four distinct scenarios by
combining observed and MSWXv100 datasets (Equation (6)).

NSE = 1 − ∑n
i=1 (Q

s
i − Qo

i
)2

∑n
i=1 (Q

o
i −Qo

i

)2 (6)

where n is the sample size of the observed or calculated streamflow. Qo
i and Qs

i present the
observed and simulated streamflow, and Qo

i presents the mean observed streamflow. All
selected metrics have their optimum value at unity.

3. Result and Discussion
3.1. Evaluation of Meteorological Data at the Regional Scale

Figure 2 presents a comprehensive statistical analysis of meteorological data at the
regional scale derived from observed and MSWX datasets. Figure 2a displays daily tem-
perature distributions in the form of box and whisker plots. Considering the observed
temperatures, the region experiences a 9.0 ◦C daily mean average temperature while
this amount decreases to 3.3 ◦C for daily mean minimum temperature and increases to
16.1 ◦C for daily mean maximum temperature. Moreover, the observed daily maximum
temperature shows a wider distribution compared to the daily minimum and average
temperature records.

Furthermore, MSWX was able to exhibit close daily average temperature measure-
ments to the observed and no significant differences were detected between their medi-
ans. However, it shows slightly higher daily mean minimum (4.55 ◦C) and lower daily
mean maximum (15.7 ◦C) temperatures, comparatively. Referring to Figure 1, most of
the 23 stations in the region are located at low elevated, flat/near to flat, and open areas
(plateau regions). Hence, this condition may have less effect on average temperatures but
more on the extremes (minimum and maximum). In flat and open areas, minimum temper-
atures may be measured cooler and at the same time maximum temperatures warmer than
usual which may be the cause–effect relationship for the larger deviations at the extremes.
Figure 2b displays the mean daily precipitation, estimated PET, and average temperature
obtained from observed and MSWX datasets over five hydrological years (2015–2019).
Overall, MSWX shows higher precipitation and lower PET compared to observed data
in each distinct water year. Moreover, the region carried the lowest daily precipitation
amount in 2017. In the same way, the daily mean average temperature from observed and
MSWX shows the same pattern for the selected five years with a slight overestimate by
MSWX. The region received a lower average temperature during 2017 and a higher one
in 2018. Furthermore, the scatter plot (Figure 2c) indicates that MSWX daily precipitation
has a large variation compared to the observed which can also be confirmed by the low
coefficient of determination (R2 = 0.35). Finally, MSWX precipitation shows a larger residual
distribution with a slight overestimation for each water year, while estimated PET from
MSWX presents a lower variability residual and a small underestimation of PET over
selected years (Figure 2d).



Water 2022, 14, 2721 8 of 18

Water 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

from MSWX presents a lower variability residual and a small underestimation of PET over 
selected years (Figure 2d). 

 
Figure 2. Comparison of daily meteorological data from MSWXv100 against observed data. (a) Tem-
peratures (min, average, max) at the regional scale, (b) mean daily precipitation, PET, and temper-
ature over hydrologic years, (c) daily precipitation scatter plot, and (d) daily residuals for 
MSWXv100 and PET over five water year (2015–2019). 

3.2. Reliability and Detectability Strength of MSWXv100 Dataset at Daily Time Step 
At the regional scale, considering other meteorological forcing such as temperatures 

and PET, the ability of MSWX precipitation to quantify the daily precipitation amount is 
relatively lower, having a median KGE value of 0.53 (Figure 3a). Furthermore, MSWX 
precipitation has a lower correlation (median of 0.59), a higher bias ratio (median of 1.21), 
and a slightly lower variability ratio (median of 0.95). However, comparing the MSWX 
precipitation performance in this study with satellite-based, reanalysis, and multi-source 
merging gridded precipitation datasets evaluation over Karasu river basin with the same 
station distribution and time window [25], MSWX precipitation is the only dataset which 
shows the highest performance (median KGE of 0.53) over the selected catchment. Over-
all, meteorological forcing, such as temperatures and estimated PET from the MSWX da-
taset, displays much higher performance (median of KGE > 0.90) and is close to optimum 
value (unity) for each indicator. In addition, the daily average temperature from MSWX 
shows the highest performance with 0.97 KGE among selected meteorological variables. 
In consideration of five precipitation intensity thresholds (Figure 3b), MSWX precipitation 
shows lower frequency for daily precipitation events less than 1 mm compared to ob-
served precipitation, while it shows higher precipitation frequency for light (1–5 mm/day) 
and moderate (5–20 mm/day) precipitation, and close frequency to observed heavy (20–

Figure 2. Comparison of daily meteorological data from MSWXv100 against observed data.
(a) Temperatures (min, average, max) at the regional scale, (b) mean daily precipitation, PET, and
temperature over hydrologic years, (c) daily precipitation scatter plot, and (d) daily residuals for
MSWXv100 and PET over five water year (2015–2019).

3.2. Reliability and Detectability Strength of MSWXv100 Dataset at Daily Time Step

At the regional scale, considering other meteorological forcing such as temperatures
and PET, the ability of MSWX precipitation to quantify the daily precipitation amount is
relatively lower, having a median KGE value of 0.53 (Figure 3a). Furthermore, MSWX
precipitation has a lower correlation (median of 0.59), a higher bias ratio (median of 1.21),
and a slightly lower variability ratio (median of 0.95). However, comparing the MSWX
precipitation performance in this study with satellite-based, reanalysis, and multi-source
merging gridded precipitation datasets evaluation over Karasu river basin with the same
station distribution and time window [25], MSWX precipitation is the only dataset which
shows the highest performance (median KGE of 0.53) over the selected catchment. Overall,
meteorological forcing, such as temperatures and estimated PET from the MSWX dataset,
displays much higher performance (median of KGE > 0.90) and is close to optimum value
(unity) for each indicator. In addition, the daily average temperature from MSWX shows
the highest performance with 0.97 KGE among selected meteorological variables. In con-
sideration of five precipitation intensity thresholds (Figure 3b), MSWX precipitation shows
lower frequency for daily precipitation events less than 1 mm compared to observed precip-
itation, while it shows higher precipitation frequency for light (1–5 mm/day) and moderate
(5–20 mm/day) precipitation, and close frequency to observed heavy (20–40 mm/day) and
violent (more than 40 mm/day) storms. Moreover, MSWX shows the highest detectabil-
ity strength for daily precipitation of less than 1 mm and its detectability decreases by
increasing precipitation intensity, which is generally the case in literature [25,26,31,65].
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Usually, detecting an event with a low occurrence probability is harder than identifying an
event with a high occurrence. On the other hand, 5 diverse intensity thresholds instead
of a binary precipitation/no-precipitation event can be considered as a demanding clas-
sification scheme. This, along with larger frequency differences between light/moderate
intensities (Figure 3), could be attributed as the main reasons why MSWX demonstrates
higher detectability for moderate precipitation compared to light precipitation. Such results
are also observed in literature for other gridded precipitation products [25,65,67].
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strength expressed in the form of Hanssen–Kuiper (HK) skill score.

3.3. Streamflow Simulation under Individual Model Parameterization Scenarios

In this context, the TUW model was utilized to predict streamflow at the outlet of
Karasu basin using observed and MSWX data as meteorological forcing under four inde-
pendent model parameterization scenarios considering five hydrological years (2015–2019).
In each scenario, the model is first calibrated for two years (2015–2016), then validated
by obtaining behavioral parameter sets and optimum model parameters for another three
years (2017–2019). In the same way, the model was verified by considering the entire period
(2015–2019).

3.3.1. Calibration of Model Parameters and Uncertainty Analysis

The model parameters for four scenarios are calibrated by the hydroPSO package
in the R programming environment, which includes the Particle Swarm Optimization
(PSO) algorithm [52,53]. The PSO is a population-based stochastic optimization approach
utilized to explore a delimited search space with a swarm of particles to find the best set
of parameters required for the maximization of user-defined objective function. Here we
selected the Kling–Gupta objective function to be maximized. Considering the number of
parameters (15), the number of particles in the swarm is selected as 80 and the maximum
number of iterations is set to 50. Hence, 4000 model runs are obtained for each scenario. Fur-
thermore, in this study, we selected only those behavioral parameter sets whose goodness
of fit is greater than 0.3 (KGE > 0.3). According to the user-defined behavioral threshold
(beh.th > 0.3), 2572 parameter sets were utilized to map the variation of each parameter in
the form of box and whisker plots for four scenarios.

Figure 4 shows the density distribution of user-defined behavioral parameter sets
along with optimum parameter values within each parameter upper and lower bound
(Table 1) for four scenarios. Regardless of the whiskers and selected scenarios, when the
selected algorithm (PSO) is forced to search for behavioral parameter sets within the range
of each parameter value, sometimes the behavioral parameter sets vary in a smaller domain
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(interquartile) than the upper and lower threshold of a specific parameter, while some
behavioral parameter sets vary in a wider range (interquartile) close to the parameter
range. For example, the user-defined behavioral parameters set for the field capacity (FC)
parameter vary between 40 mm and 210 mm in four scenarios where the range of FC
changes from 0 mm to 600 mm. In the same way, the storage coefficient for slow response
(K2) range is from 30 days to 250 days, where the interquartile for behavioral parameter sets
considering all scenarios are obtained in a certain interval (30–100 day). On the other hand,
some parameters differed in their behavior under different parameterization scenarios. For
example, the user-defined behavioral parameter sets for the non-linear parameter for runoff
production (Beta) in Scenario 2 (PMSWX, TObs, and PETObs) and Scenario 4 (PMSWX, TMSWX,
and PETMSWX) show larger fluctuations (interquartile) compared to Scenario 1 (PObs, TObs,
and PETObs) and Scenario 3 (PObs, TMSWX, and PETMSWX). Moreover, some of the model
parameters demonstrate close behavioral parameter sets (interquartile) for a different
parameter value. For instance, the interquartile range of the Snow Correction Factor (SCF)
parameter for Scenario 1, Scenario 2, and Scenario 3 shows almost the same width in
the higher SCF values, whereas Scenario 4 shows the same interquartile of behavioral
parameter sets in lower SCF values, comparatively. Hence, the interquartile for behavioral
parameter sets provides the opportunity for the modification of some model parameter
ranges, over Karasu basin that needs an explicit endeavor, which is beyond the scope of
this study.
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while the “whiskers” represent the minimum and maximum values.

Additionally, based on the user-defined behavioral parameter sets (2572) obtained
during the calibration period by setting the goodness of fit (KGE) greater than 0.3, the
weighted quantile for model parameters are computed to provide an estimate of the
uncertainty in each model parameter. The 95 percent prediction uncertainty (95PPU) at
the 2.5% and 97.5% levels of the cumulative distribution for each model parameter are
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obtained by multiplying the standard quantile derived for a certain parameter based on all
user-defined behavioral parameter sets by the corresponding goodness of fit (KGE) values.
Figure 5 shows the 95PPU, median, and best values of model parameters. Considering
the lower (2.5%) and upper (97.5%) bound values of 95PPU obtained from the cumulative
distribution of model parameters for four scenarios against parameter values, the model
parameters demonstrate a distinct uncertainty range for each scenario. For example, in
Scenarios 1 and 3, the uncertainty bound for some parameters (e.g., Beta, K1, LPrat) varies
in a small range, or in other words, based on model parameter thresholds, the distance
between the lower and upper bound of 95 PPU is smaller than for the same parameters in
Scenarios 2 and 4. This can be attributed to the fact that if observed precipitation is used as
input, then the uncertainty bound for the model parameters decreases and there seems to
be a relatively larger uncertainty when the MSWX precipitation is utilized as one of the
meteorological forcing (Scenario 2 and Scenario 4).
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Figure 5. The 95 percent prediction uncertainty (95PPU) for model parameters during the calibration
period (2015–2016) obtained by 2572 user-defined behavioral parameter sets (KGE > 0.3).

3.3.2. Streamflow Simulation with 95PPU

The P-factor and R-factor are statistical indicators which evaluate the degree of un-
certainty in streamflow simulation. In general, the P-factor is calculated as the percentage
of measured data captured by 95% prediction uncertainty (95PPU), which is estimated at
the 2.5% and 97.5% levels of cumulative distribution of an output variable (in this case,
simulated streamflow), where the R-factor shows the average thickness of 95% prediction
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uncertainty (95 PPU) in the output variable. In general, a P-factor of 1 and an R-factor of
zero is a simulation which exactly corresponds to observed streamflow data.

The PSO algorithm was utilized to estimate the 95 percent prediction uncertainty
(95PPU) at the 2.5% and 97.5% levels of the cumulative distribution of streamflow simula-
tions obtained from 2572 behavioral parameter sets.

Table 2 shows the results of model output uncertainty (95PPU) considering four scenar-
ios for calibration, validation, and entire periods and Figure 6 displays the observed stream-
flow, simulated streamflow based on optimum model parameters (see Figures 4 and 5), and
95 percent prediction uncertainty (95PPU) bound for the calibration and validation periods.

Table 2. The 95PPU of streamflow simulation for four scenarios expressed in the form P factor and
R factor.

P/R-Factors Scenario 1 Scenario 2 Scenario 3 Scenario 4 Temporal Time Window

P-factor 0.84 0.74 0.84 0.78 Calibration Period 2015–2016
R-factor 1.24 1.28 1.30 1.27 Calibration Period 2015–2016
P-factor 0.66 0.58 0.66 0.60 Validation Period 2017–2019
R-factor 0.95 1.06 0.99 1.01 Validation Period 2017–2019
P-factor 0.73 0.65 0.74 0.67 Entire period 2015–2019
R-factor 1.05 1.13 1.09 1.09 Entire period 2015–2019
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Considering the entire period (2015–2019), 73% of streamflow observations with
a relative width (R factor) of 1.05 are enveloped by 95PPU in Scenario 1 (PObs, TObs,
and PETObs), while in Scenario 2 (PMSWX, TObs, and PETObs), only 65% of streamflow
observations with a relative width of 1.13 are covered by 95PPU. In the same way, 74% of
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streamflow observations with a relative width of 1.09 fall within the 95PPU considering
Scenario 3 (PObs, TMSWX, and PMSWX) and only 67% of streamflow observations are covered
by the 95PPU bound with a relative width of 1.09 for Scenario 4 (PMSWX, TMSWX, and
PETMSWX).

From the results, two important conditions can be spotted: precipitation data have
a significant effect on the uncertainty of simulated streamflow compared to average tem-
perature and PET meteorological forcing. For example, using observed precipitation,
temperature, PET (Scenario 1), and MSWX-based temperature and PET (Scenario 3) re-
sulted in covering a high portion of the observed streamflow by 95PPU bound. In the same
way, considering the uncertainty performance indicators (Table 2), all scenarios show high
P factors and a larger relative width (R-factor) for the calibration period compared to the
validation period. This can be attributed to the fact that the behavioral parameter sets were
obtained for the calibration period and the same sets were used for model verification.

Figure 7 presents the scatter plot of simulated streamflow against observed streamflow
for four selected scenarios considering the entire period (2015–2019) time window. The
color ramp demonstrates simulated streamflow bias for each scenario. For the low flows,
the 2017 hydrologic year seems to depart the most from the observed measurements and
for the high flows, the 2019 year shows the highest inaccuracy (Figure 6). Simulated
streamflow in four scenarios mostly underestimate observed flow when discharge is more
than 300 m3/s and the highest underestimation is obtained when the model is calibrated
entirely by MSWX data (Scenario 4). Overall, however, when observed precipitation is used
as one of the meteorological forcing (Scenario 1, 3), the model shows higher streamflow
reproducibility. That is why the coefficient of determination (R2) decreases from 0.77 to 0.67
as more meteorological forcing is being utilized by MSWX dataset within the four scenarios.

Figure 8 shows how well the observed and MSWX datasets simulate streamflow
in a certain scenario for the calibration (2015–2016), validation (2017–2019), and entire
study (2015–2019) time periods. Overall, when observed data are utilized for streamflow
simulation (Scenario 1), it comes with the best NSE, KGE, and correlation with observed
streamflow for calibration/validation and entire study period. Moreover, Scenario 3 (PObs,
TMSWX, PETMSWX) shows the second-best performance for streamflow simulation, followed
by Scenario 2 (PMSWX, TObs, PETObs). When the model is run entirely based on MSWX
datasets, the simulated streamflow still shows high accuracy although coming last among
all the scenarios for each period. Overall, the existence of bias in MSWX precipitation
(Section 3.2 and Figure 3) has a high influence on streamflow simulation compared to other
meteorological forcing. Using observed precipitation either with observed temperature and
PET or MSWX temperature and PET show high streamflow reproducibility. On the other
hand, model performance slightly degrades if partly or complete MSWX datasets are em-
ployed although still within acceptable limits. Moreover, looking at the direct comparison
of the MSWX precipitation dataset with observed precipitation (Figures 2c and 3a), MSWX
precipitation shows higher performance for streamflow simulation than its performance
obtained by direct comparison with ground data. This can be attributed to the fact that pre-
cipitation is the most uncertain part of the hydrologic cycle compared to streamflow while
its distribution varies over time and space faster than the variation of streamflow measured
at a single point (outlet). Moreover, for streamflow simulations, precipitation is probably
the most critical meteorological forcing for hydrological models. However, other model
forcings such as temperature and potential evapotranspiration, which show promising
performance (Figure 3) in direct comparison with ground observations, may also have an
influence for this study considering a significant snowmelt process in a mountainous basin.
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4. Summary and Conclusions

Based on benchmark (observed) meteorological data, this study evaluated MSWX
precipitation, temperatures, and calculated potential evapotranspiration (PET) by direct
comparison with observed data. The hydrological utility was performed by the TUW
model based on four scenarios blending observed and MSWX as meteorological forcing.
Observed meteorological data were provided from 23 stations and observed streamflow
was prepared at the outlet of Karasu basin. Moreover, three performance indicators were
utilized for MSWX dataset analysis, and the evaluation was done based on five hydrological
years (2015–2019). The following main conclusions can be drawn from this study:

• Overall, MSWX-based temperature data show high performance (median of KGE > 0.90)
when compared with observed temperatures directly. Among temperatures, the
MSWX average temperature shows the highest performance (median of KGE; 0.97) on
the regional scale. Compared to other meteorological forcing, MSWX-based precipi-
tation shows lower performance (median KGE of 0.53) for the daily time step at the
regional level. However, this is the only dataset which has the highest performance
compared to previous studies over the Karasu basin for the daily time step. In the
same way, MSWX based calculated PET shows high performance (median KGE of
0.93) for the study area.

• MSWX precipitation shows high detectability strength for moderate (5–20 mm/day)
precipitation and its detectability strength decreases for heavy (20–40 mm/day) and
violent (>40 mm/day) precipitation. MSWX precipitation showed a higher frequency
of occurrence for light (1–5 mm/day) precipitation compared to observed precipitation,
and the high frequency of occurrence directly affected MSWX detectability strength
for the mentioned precipitation threshold.

• Considering 95PPU in model parameters, when the model is calibrated entirely
by observed data (Scenario 1), it shows a relatively smaller range of uncertainty
(95PPU) for most model parameters, whereas Scenario 4, which is entirely based
on MSWX dataset, shows a slightly wider uncertainty bound (95PPU) for some
parameters comparatively.

• When observed precipitation is considered for model calibration (Scenario 1, 3), the
model shows high performance for streamflow simulation, where Scenario 2 and
Scenario 4 show lower streamflow reproducibility, especially for the validation pe-
riod. This can be attributed to the bias in MSWX precipitation datasets (Section 3.2),
which shows direct effects on streamflow simulation. However, considering MSWX
precipitation in different scenarios, it shows acceptable performance for streamflow re-
producibility.

This study confirms the outperformance of the MSWX dataset compared to previous
studies that dealt with climate data validation over the Karasu basin [24,25,40]. The novelty
of this study was raised for the basins which were partially or fully ungauged. Hence,
we considered four possible scenarios based on the basins’ data scarcity. Furthermore,
there are some precipitation datasets or PET individually, which can be an alternative for
data scarce basins, and we recommend the combination of meteorological forcing from
different available resources for streamflow simulation. However, our findings provide a
valuable contribution to the existing literature for regions with complex topography and
data scarcity, such as mountainous areas of Turkey and other similar regions of the world.
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