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Abstract: Heavy metal pollution represents an urgent worldwide problem due to the increasing
number of its sources; it derives both from industrial, e.g., mining, metallurgical, incineration,
etc., and agricultural sources, e.g., pesticide and fertilizer use. Features of membrane technology
are the absence of phase change or chemical additives, modularity and easy scale-up, simplicity
in concept and operation, energy efficiency, and small process footprint. Therefore, if membrane
technology is coupled to adsorption technology, one of the most effective treatment strategies to
remove heavy metals, namely, Adsorptive Membrane Technology, many typical disadvantages of
traditional processes to remove heavy metals, such as low-quality treated water, excessive toxic
sludge production, which requires further treatment, can be overcome. In this review, after a broad
introduction on the relevance of heavy metal removal and the methods used, a thorough analysis
of adsorptive membrane technology is given in terms of strategies to immobilize the adsorbents
onto/into membranes and materials used. Regarding this latter aspect, the impressive number
of papers present in the literature on the topic has been categorized into five types of adsorptive
membranes, i.e., bio-based, bio-inspired, inorganic, functionalized, and MMMs.

Keywords: heavy metals; metalloids; water cleaning; adsorptive membranes; multifunctional mem-
brane separation processes; process intensification

1. Introduction: A Broader Context
1.1. The Problem of Heavy Metals and Metalloids

With the rapid development of industrial fields related to metallurgy, electroplating,
machinery manufacturing, and electronics, a large amount of wastewater containing heavy
metals is discharged into bodies of water [1]. In particular, heavy metals, along with almost
all pollutants, find their way finally to the sea as the ultimate sink. Moreover, not only
sea water but also other sources of drinking water, e.g., surface water and groundwater,
are likely to be polluted by heavy metals [2,3]. Although metals are removed during the
desalination of seawater, desalinated drinking water still might contain various metals
and metalloids (i.e., the elements such as boron, arsenic, antimony, and tellurium, located
along a diagonal line separating metals from non-metals on the periodic table) possibly
due to treatment and stabilization, blending with treated groundwater, and leaching of
metal components from pipes of the water distribution system (WDS) [4]. Unlike other
toxic substances, heavy metal ions cannot be biodegraded in nature and accumulate in
living organisms. Some of them can cause serious damage to the central nervous system
(lead, mercury), kidney (copper, lead, and mercury), skin (arsenic, chromium), and liver

Water 2022, 14, 2718. https://doi.org/10.3390/w14172718 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14172718
https://doi.org/10.3390/w14172718
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0002-9274-2567
https://orcid.org/0000-0003-2866-9286
https://orcid.org/0000-0002-4713-6883
https://orcid.org/0000-0002-7549-5015
https://doi.org/10.3390/w14172718
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14172718?type=check_update&version=3


Water 2022, 14, 2718 2 of 43

or lung (nickel, mercury, lead, and copper) [5,6]. Boron, a metalloid or semimetal, is
an essential element for plants and animals as well as human beings [7,8]. As a major
solution for water scarcity in this century, seawater desalination has attracted increasing
attention in recent years [9,10]. The concentration of boron in seawater is usually between
4 and 6 mg L−1 [11,12], but much higher values (>100 mg L−1) can be found in some
groundwater and wastewater sources [13]. The World Health Organization has imposed
a boron concentration limit of 2.4 mg L−1 [14] for drinking water, but many countries
have implemented stricter limits (<1 mg L−1) [15]. The boron concentration limit for
irrigation water can be much lower than that for drinking water (<0.5 ppm), which poses a
significant technological challenge [15–17]. The environmental regulations on heavy metals
are increasingly stringent as the guideline values of acceptability demonstrate (Table 1),
whereas the global needs for most heavy metals continue to increase due to the rapid
development of modern industrial activities [18,19].

Table 1. Heavy metals and metalloids in drinking water.

Element to Be
Removed Element Type Source Limit of Acceptability

(mg/L) Effect on Public Health [18,19] Refs.

Arsenic Metalloid

In groundwater, where there are
sulfide mineral deposits and

sedimentary deposits deriving from
volcanic rocks, the concentrations

can be significantly elevated.

10

Long-term exposure to arsenic in
drinking water is causally related to
increased risks of cancer in the skin,
lungs, bladder, and kidney, as well

as other skin changes, such as
hyperkeratosis and pigmentation

changes.

[20]

Boron Metalloid Groundwaters, seawater,
wastewaters 2400

Animals suffer from kidney failure
and reproductive system and

nervous system diseases while
plants can wither and eventually

die when exposed to excess
amounts of boron.

[21,22]

Cadmium (Heavy) metal

Cadmium is released to the
environment in wastewater from

steel and plastic industries,
batteries, impurities in the zinc of
galvanized pipes and solders and
some metal fittings, etc. Diffuse

pollution is caused by
contamination from fertilizers and

local air pollution. Food is the main
source of daily exposure to

cadmium.

3

The kidney is the main target organ
for cadmium toxicity. Cadmium has
a long biological half-life in humans

of 10–35 years. There is evidence
that cadmium is carcinogenic by the

inhalation route.
However, there is no evidence of

carcinogenicity
by the oral route and no clear

evidence for the genotoxicity of
cadmium.

[20]

Copper (heavy) metal

Copper is used to make pipes,
valves, and fittings and is present in

alloys and coatings. The primary
source most often is the corrosion of

interior copper plumbing.

2 Gastrointestinal effects [20]

Iron (heavy) metal

Anaerobic groundwater may
contain ferrous iron at

concentrations up to several
milligrams per liter. Iron may also
be present in drinking water as a

result of the use of iron coagulants
or the corrosion of steel and cast

iron pipes during water
distribution.

No health-based guideline
value is proposed

Iron is an essential element in
human nutrition, particularly in the

(II) oxidation state.
[20]

Lead (heavy) metal

Lead is rarely present in tap water
as a result of its dissolution from

natural sources. Rather, its presence
is primarily from corrosive water
effects on household plumbing

systems containing lead in pipes,
solder, fittings, or the service

connections to homes.

10

Exposure to lead is associated with
a wide range of effects, including

various neurodevelopmental effects,
mortality, impaired

renal function, hypertension,
impaired fertility, and adverse

pregnancy outcomes.

[20]

Manganese (heavy) metal

Manganese is naturally occurring in
many surface water and

groundwater sources, particularly
in anaerobic or low oxidation

conditions, and this is the most
important source of drinking water.

At levels exceeding 100 mg
L−1, it causes an undesirable

taste

Not of health concern at levels
found in drinking water [20]
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Table 1. Cont.

Element to Be
Removed Element Type Source Limit of Acceptability

(mg/L) Effect on Public Health [18,19] Refs.

Mercury (heavy) metal

Electrolytic production of chlorine,
in electrical appliances, in dental

amalgams and as a raw material for
various mercury compounds.

6
Hemorrhagic gastritis and colitis
with the ultimate damage to the

kidney.
[20]

Molybdenum (heavy) metal

Molybdenum is found naturally in
soil and is used in the manufacture

of special steels
and in the production of tungsten

and pigments. Molybdenum
compounds are used as lubricant

additives and in agriculture to
prevent molybdenum deficiency in

crops.

Although Mo is an essential
element in the human body,

WHO standards recommend
that it does not exceed 70 mg

L−1 in potable water

-

Nickel (heavy) metal

Where there is heavy pollution,
areas in which nickel that occurs

naturally in groundwater is
mobilized or where there is use of

certain types of kettles, of
non-resistant material in wells, or of

water that has come into contact
with nickel or chromium-plated

taps, the nickel contribution from
water may be significant.

70 Possibly carcinogenic [20]

Zinc (heavy) metal
High concentrations in tap water

can be observed as a result of
dissolution of zinc from pipes.

Not of health concern at
levels found in
drinking-water

May affect acceptability of
drinking-water

1.2. General Removal Methods of Heavy Metals and Metalloids

Several methods exist to remove heavy metal ions and metalloids from wastewater,
and all come with their advantages and disadvantages, as listed in Table 2. The efficiency
of chemical precipitation (Table 2, entry 1) under idealized conditions can be as high as
∼99% [23,24]. However, the technique can produce secondary pollution in the form of high
quantities of sludge and toxic fumes. Furthermore, it is only suitable for treating water
contaminated with high concentrations of heavy metals [5]. Adsorbents or ion-exchange
resins (Table 2, entries 2 and 3, respectively) can also be used to remove heavy metal ions
and other pollutants [25,26]. Adsorption is the most widely used method for heavy metal
removal because of its low cost, simplicity, adaptability, and ecofriendly nature, but it
has certain limitations such as a slow rate and a high internal diffusion resistance [27].
Moreover, the adsorption technology typically offers efficiencies that tend to decrease with
prolonged use [28,29]. The advancement in nanotechnology has allowed the design of
novel adsorbents based on nanomaterials.

Regarding ion-exchange, fully saturated ion-exchange resins must be converted by
chemical reactions, which can also cause uncontrolled secondary pollution. Flotation
(Table 2, entry 4) can be very efficient in treating specific heavy metal ions [30], but they
are demanding in terms of resources and thus they are cost-effective only in large-scale
processing and are not suitable for decontamination at smaller scales.

Membrane processes have in general several advantages (Table 2, entry 5) such as high
separation efficiency, ease to scale up, being environmentally friendly, and energy saving
compared to other processes with phase changes such as distillation. There are several
membrane processes that can be used for metal removal, as discussed below.
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Table 2. Overview of various processes for heavy metal and metalloid removal.

Entry # Process Description Advantages Disadvantages

1 Chemical
precipitation

Chemicals (calcium hydroxide
and sodium hydroxide in

hydroxide precipitation, iron
sulfide in sulfide precipitation)
react with heavy metals ions to

form insoluble precipitates,
which can be separated from
the water by sedimentation or

filtration

Relatively simple and
inexpensive

• Large volumes of relatively
low-density sludge with possible

problems of dewatering and
disposal.

• amphoteric characteristics of
metals hydroxides.

• inhibition of metal hydroxide
precipitation due to possible

presence of complexing agents in
the wastewater.

Moreover, in the case of sulfide
precipitation, evolution of toxic

H2S fumes in acidic conditions can
occur and formation of colloidal

precipitates can cause problems in
either settling or filtration

processes.

2 Adsorption

Heavy metal ions are directly
separated from wastewater by

adsorption on activated
carbon, low-cost adsorbents,

bio-adsorbents

Effective, economic,
flexible in design and

operation
Weak selectivity, waste product

3 Ion exchange

Solution containing heavy
metals ions passes through a
cation column allowing the

exchange with the hydrogen
ions on the resin

High treatment capacity,
high removal efficiency

Careful control of variables such
as pH, temperature, initial metal
concentration, contact time, and
ionic charge of the wastewater is

mandatory

4 Ion flotation
Metal ions made hydrophobic

by use of surfactants are
removed by air bubbles

Ease of operation, low
cost, and suitable for

treating large volumes of
dilute aqueous solutions

Careful control of variables such
as pH, temperature, and initial

metal concentration

5 Membrane
processes

A membrane acts as a selective
barrier in pressure-driven
membrane operations and
electrodialysis or only as

barrier in liquid membranes
operations allowing the
separation of metal ions

High separation
efficiency, easy to scale

up, environmentally
friendly, energy saving,
no phase changing, and

easy integration with
other traditional

processes

Careful selection of the membrane
materials to address the challenges

related to membrane lifetime,
fouling, and selectivity reduction

in the case of strong acidic,
alkaline, and/or oxidizing feed

solutions

1.3. A Glimpse at Membrane Processes for Heavy Metals and Metalloids Removal

The hardware of a membrane process, i.e., the membrane, is a selective barrier that
can be classified on the basis of its pore size and retained substances, which do not pass
through the pores (Figure 1).

As evidenced in Figure 1, metal ions (and metalloids) can be directly separated by
two pressure-driven membrane processes, i.e., reverse osmosis (RO) and nanofiltration
(NF) (Table 3, entries 1 and 2, respectively). Several successful studies have been reported
that have used NF membranes as tools for heavy metal removal [32–34]. Even though
the separation in NF occurs due to solution-diffusion as well as sieving mechanisms and
the Donnan effect, dielectric exclusion and electromigration also make NF useful in the
separation of both charged and uncharged organic solutes [35]. Converting produced
water from a pollution source into a new water resource is achievable through the use of a
combined NF as a pretreatment and RO system [36] or multistage RO rather than a single
membrane (NF or RO alone) (Figure 2).
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Figure 2. (a) NF as pretreatment for RO; (b) multistage RO scheme used in [37]. Adapted with
permission from [37], copyright of Elsevier.

Indeed, a current challenge for RO and NF membranes is the removal of neutral and
low molecular weight solutes as electrostatic repulsion and size exclusion mechanisms are
weak for these solutes. For example, in natural waters, the removal of the toxic metalloid
As(III), which has a pKa of 9.1 and Stokes radius of 0.24 nm [38], varies from 25% to
75% depending on operating conditions [39]. Therefore, pH adjustments and oxidation
of As(III) to As(V), which is charged at a neutral pH and has a slightly larger Stokes
radius (0.26 nm) [38], are the prevalent strategies to improve arsenic rejection [39]. Boron
is another small, neutral solute (metalloid) of concern, as it is present in seawater at an
average concentration of 5 mg L−1 [40]. In water, boron is present as boric acid (Stokes
radius of 0.16 nm and pKa of 9.2 in freshwater, 8.6 in saltwater) [41] and tends to diffuse
rapidly through RO membranes via hydrogen bonding between the hydroxyl groups in
boric acid and bound water in the membrane [42]. Conventional seawater and brackish
water RO membranes exhibit varying levels of single-pass boron rejection, which depend
on factors such as solution pH and membrane choice [43]. Consequently, desalination
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plants often deploy multistage RO (Figure 2b) to reduce boron concentrations to desired
levels: as mentioned above, maximum boron concentrations in the range of 0.5–1.0 mg L−1

are common for irrigation of several sensitive crops. At the Ashkelon plant in Israel, the
boron polishing system has been estimated to account for 10% of the overall energy cost [44].
Therefore, improving boron rejection will significantly benefit overall water purification
membrane performance. In general, RO membranes are designed to separate all ions
from water in a pressure-driven process that leads to highly efficient desalination, but
nonselective ion isolation [45].

In forward osmosis (FO) (Table 3, entry 3) as in RO and NF, a dense membrane is
used, but without applying any external pressure: the natural energy of osmotic pressure is
used to transport water through the membrane while retaining all the dissolved solutes
on the other side. In recent years, FO received interest from the scientific community for
heavy metal ion removal [46,47] due to its low polluted tendency, reduced energy cost,
and it being environmentally friendly. The membranes used are thin film composite (TFC)
membranes, typical of RO and NF, but further exploration before the process is effective by
these membranes is necessary.

Two other membrane operations that can be used directly for the removal of metals
are electrodialysis (ED) (Table 3, entry 4) and membrane capacitive deionization (MCDI)
(Table 3, entry 5).

ED, differently from RO and NF, is not pressure-driven, with its driving force an
electrical potential difference. Conventional ED membranes, which are ion-exchange
membranes, are highly selective for counterions over co-ions, but do not exhibit high
counterion–counterion selectivity needed for target ion isolation [48,49]. So, they are
capable of water desalination, but not selective transport behavior. A low-resistance
membrane is essential to achieve a high removal efficiency at low energy consumption.

MCDI (Table 3, entry 5) has emerged in the past 15 years (Figure 3) as an alternative
desalination technique and since then has received extensive research attention.
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MCDI removes salts by application of a voltage between two electrodes covered with
ion-exchange membranes (Figure 4), which maximizes the desalination performance in
terms of salt removal and energy efficiency [50].



Water 2022, 14, 2718 7 of 43Water 2022, 14, x FOR PEER REVIEW 7 of 43 
 

 

 
Figure 4. Schematic representation of the typical symmetric MCDI cell configuration: anode, posi-
tively polarized electrode; cathode, and negatively polarized electrode. Reproduced with permis-
sion from [50], used under CC-BY 4.0. 

MCDI can be defined as an adsorption-based water desalination process wherein 
ions are collected capacitively in the electrical double layer of polarized electrodes. During 
adsorption in MCDI, co-ions are expelled from the micropores as counterions are ad-
sorbed: the presence of a selective ion-exchange membrane prevents co-ions from exiting 
into the spacer channel.  

However, this electrostatic adsorption mechanism leads to low adsorption selectivi-
ties between different ion types with a similar charge [51].  

As shown in Figure 1, the pore size of microfiltration (MF) and ultrafiltration (UF) 
membranes are too large for metal ions and MF and UF can be used for their removal only 
integrated into the hybrid processes. In so-called polymer-enhanced ultrafiltration (PEUF) 
(Table 3, entry 6), water-soluble polymers (added in the feed stream) form macromolecu-
lar complex compounds with the metal ions to be removed, thereby exceeding the molec-
ular weight-cut-off (MWCO) of the membrane.  

In membrane bioreactors (MBR) (Table 3, entry 7) and osmotic membrane bioreactors 
(OMBRs) (Table 3, entry 8), a macroporous and dense membrane, respectively, acts like a 
barrier for the suspended and colloidal particles contributing to the effective removal of 
heavy metals attached to the sludge suspended solids [52]. MBR, which is the combination 
of the conventional activated sludge process followed by membrane separation, has 
proved to be an effective technology in treating industrial wastewater streams contami-
nated with insistent heavy metals [53]. Various mechanisms are at the basis of heavy metal 
ions removal in both physical, such as their entrapment within sludge floc, adsorption 
onto the flocs/vermiculates surface, diffusions into the flocs structure, and biosorption 
onto the cell walls of consortia, and chemical, such as metals precipitation by changing 
pH in the bio-tank [54,55]. OMBR is a combination of the FO process (mentioned above) 
and a bioreactor [55]. It is known for its low membrane fouling propensity and higher 
removal of nutrients and suspended solids with its increasing applications for direct and 
indirect portable reuse. One of the drawbacks of this technology is the accumulation of 
salts in the feed side of the membrane not only due to the reverse draw solute movement, 
i.e., “leakage” of salts from the draw solution toward the feed side, but also due to the 
accumulation of salts in the bioreactor originating from the feed that is totally rejected by 
the FO membrane salts accumulation and has negative impacts on the treatment perfor-
mances and the bacterial consortia as well [55]. 

  

Figure 4. Schematic representation of the typical symmetric MCDI cell configuration: anode, posi-
tively polarized electrode; cathode, and negatively polarized electrode. Reproduced with permission
from [50], used under CC-BY 4.0.

MCDI can be defined as an adsorption-based water desalination process wherein ions
are collected capacitively in the electrical double layer of polarized electrodes. During
adsorption in MCDI, co-ions are expelled from the micropores as counterions are adsorbed:
the presence of a selective ion-exchange membrane prevents co-ions from exiting into the
spacer channel.

However, this electrostatic adsorption mechanism leads to low adsorption selectivities
between different ion types with a similar charge [51].

As shown in Figure 1, the pore size of microfiltration (MF) and ultrafiltration (UF)
membranes are too large for metal ions and MF and UF can be used for their removal only
integrated into the hybrid processes. In so-called polymer-enhanced ultrafiltration (PEUF)
(Table 3, entry 6), water-soluble polymers (added in the feed stream) form macromolecular
complex compounds with the metal ions to be removed, thereby exceeding the molecular
weight-cut-off (MWCO) of the membrane.

In membrane bioreactors (MBR) (Table 3, entry 7) and osmotic membrane bioreactors
(OMBRs) (Table 3, entry 8), a macroporous and dense membrane, respectively, acts like a
barrier for the suspended and colloidal particles contributing to the effective removal of
heavy metals attached to the sludge suspended solids [52]. MBR, which is the combination
of the conventional activated sludge process followed by membrane separation, has proved
to be an effective technology in treating industrial wastewater streams contaminated with
insistent heavy metals [53]. Various mechanisms are at the basis of heavy metal ions
removal in both physical, such as their entrapment within sludge floc, adsorption onto
the flocs/vermiculates surface, diffusions into the flocs structure, and biosorption onto
the cell walls of consortia, and chemical, such as metals precipitation by changing pH
in the bio-tank [54,55]. OMBR is a combination of the FO process (mentioned above)
and a bioreactor [55]. It is known for its low membrane fouling propensity and higher
removal of nutrients and suspended solids with its increasing applications for direct and
indirect portable reuse. One of the drawbacks of this technology is the accumulation of
salts in the feed side of the membrane not only due to the reverse draw solute movement,
i.e., “leakage” of salts from the draw solution toward the feed side, but also due to the
accumulation of salts in the bioreactor originating from the feed that is totally rejected by the
FO membrane salts accumulation and has negative impacts on the treatment performances
and the bacterial consortia as well [55].
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Table 3. Membrane processes for heavy metal ion removal.

Entry # Membrane Process Membrane Type Driving Force Mechanism of
Separation Remarks Selected

Studies

1 Reverse Osmosis
(RO) dense Pressure difference solution-diffusion

The process can be performant in
removing low levels of heavy

metals. Usually, it is coupled to
other removal operations in a

hybrid–integrated process.

[56–66]

2 Nanofiltration (NF) porous charged
(1–10 nm) Pressure difference Donnan exclusion

Compared to RO, NF is an
energy-saving process and is very
attractive for effective removal of

heavy metal ions.

[67–69]

3 Forward osmosis
(FO) dense Osmotic pressure

difference solution-diffusion

Differently, from RO, FO can be
applied to treat high-salinity

wastewater with the challenging
objective to eliminate heavy

metals here contained. However,
FO suffers from concentration

polarization.

[70,71]

4 Electrodialysis (ED) ion-exchange
membranes

Electric potential
difference Ion exclusion

ED can only be cost-effective if
applied integrated with other

treatment processes.
Electrodeionization (EDI) can be

effectively used in removal of
metal ions from dilute solutions.

[72–80]

5
Membrane
Capacitive

DeIonization
(MCDI)

ion-exchange
membranes Electrical potential Ion exclusion

The electrostatic adsorption
mechanism leads to low

adsorption selectivities between
different ion types with a similar

charge.

[81,82]

6
Polymer-enhanced

ultrafiltration
(PEUF)

porous
(0.01–0.1 µm) Pressure difference size exclusion

PEUF is a combination of selective
binding of target metal ions to a
water-soluble polymer followed

by ultrafiltration.

[83–89]

7

Membrane
bioreactors

employing UF
membranes (MBRs)

porous
(0.01–0.1 µm) Pressure difference size exclusion

Removal efficiencies are lower
than other membrane processes

and depend on Mixed Liquor
Suspended Solids (MLSS)

concentration. Therefore, new
concepts such as the ion-exchange

membrane bioreactor (IEMB)
process were developed to

achieve high metal ions removal.

[90–92]

8
Osmotic membrane

bioreactors
(OMBRs)

dense Osmotic pressure
difference solution-diffusion

OMBR is a low membrane fouling
technology with high capability of
nutrient removals and rejections
of monovalent ions and thus can

be considered promising for
industrial wastewater containing

heavy metals.

[93]

9 Liquid membranes
(LMs)

porous
(0.1–10 µm)

Concentration
difference solution-diffusion

LMs can be efficiently used for
wastewater treatment. However,
instability problems over time are

one of the main shortcomings.

[94–96]

10 Membrane
distillation (MD)

porous
(0.1–10 µm)

Partial vapor
pressure difference

due to a
temperature

difference

vapor/liquid
equilibrium of a liquid

mixture occurs,
therefore, the permeate

composition is
dependent on the partial

pressure of respective
components of the feed.

Comparison with pressure-driven
membrane processes such as RO
or NF suggests that with direct

contact MD high metal ion
removal efficiencies can be

obtained.

[97,98]

11 Adsorptive
membrane Porous/dense

Pressure differ-
ence/Electrical

potential

Adsorption
(coordinative

interactions, ion
exchange, electrostatic
adsorption, hydrogen

bonding, specific surface
bonding, and chelation).

All the advantages of adsorption
(see Table 2) are combined with

the ones of the membrane
processes.

This review
and

references
herein

In addition to the pressure-driven membrane processes mentioned above, two other
different membrane operations using porous membranes and have traditionally been
applied in the field of heavy metal and metalloid removal: membrane distillation (MD) and
liquid membranes (LM) (Table 3, entry 9 and 10, respectively). Even though the membranes
used in both these two membrane processes are macroporous (i.e., with pores > 50 nm)
as in MF and UF, the driving forces and the membrane role are different, and both MD
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and LM can also be used not integrated with other membrane processes to remove metal
ions [94–98]. More specifically, MD is a thermally driven separation process, in which
only vapor molecules are able to pass through a porous hydrophobic membrane. In LM,
the membrane is not as selective as in other membrane processes, but it, containing an
organic phase, acts as a barrier between two aqueous solutions where the driving force
for mass transfer is due to a concentration gradient. LMs offer the possibility to operate
highly selective separation and recovery from dilute aqueous leading to extraction and
subsequent stripping operations in a single step. However, instability problems over time
are one of the main drawbacks.

All of the above membrane processes suffer from one main problem: specificity in
heavy ion removal. In other words, although they can perform very well with a given
heavy metal ion, they are highly inefficient in treating other metal contaminants, which
makes their use very limited. More importantly, the removal of several ions simultaneously
is highly inefficient. For example, using commercial NF membranes, it has been shown
that while the removal efficiency of nickel ions alone can reach 98% [99], the specific ion
removal of nickel and cadmium together decreases to ∼83% [100]. This hampers the use of
NF in treating environmentally polluted waters, in which several heavy metal ion pollu-
tants typically coexist together. Finally, in all cases, the efficiency of the above membrane
processes drops rapidly as soon as the feeding conditions depart from optimized pH and
concentrations. An extensive treatise of all the membrane processes for metal ions removal
is far beyond the scope of this review and further reading of the relevant publications on
each subject as reported in Table 3 (entries 1–10) and recent reviews [101–103] are recom-
mended. Among the various membrane processes for heavy metal removal, adsorptive
membrane technology so-called also membrane adsorbers (Table 3, entry 11) has gained
great attention [104–107] thanks to lower pressure demands and lower energy of mem-
brane operation without compromising the adsorption selectivity. Below, an overview of
adsorptive membrane technology as well as adsorptive membranes is given.

2. Adsorptive Membrane Technology

Adsorptive membrane technology is the integration of adsorption and membrane
technology as the name itself suggests. Adsorptive membranes are a whole emerging
class of materials shaped as membranes that exhibit improved performance compared to
conventional membranes [104,105,108,109].

Traditional adsorption is operated using packed beds filled with microporous beads in
order to maximize the active surface area. However, the convective flow, which drives the
feed through the packed bed, occurs around the microporous beads bypassing the active
pores within them. In order to optimize the process via a diffusive transport mechanism
from the exterior surface of the bead to the active sites within the beads, long residence
times to ensure that the active sites saturate with the feed are necessary and realized
thanks to the increased size of the equipment, which in turn increases capital and oper-
ating costs [110]. Conventional adsorptive membranes (Figure 5A) are usually prepared
by surface modification of porous UF/MF polymeric membranes, e.g., pore diameters,
dp ≈ 10−1000 nm (see Figure 1), with specific functional groups or the addition of nanopar-
ticles onto the membrane surface, which can bind the metal ions through ion exchange or
surface complexation, even though the pore sizes of these membranes (MF/UF) are larger
than the size of metal ions. They offer shorter diffusion distances between the solutes and
binding moieties on the sorbent surface [111–117]. Such an approach follows the paradigm
of traditional membrane filtration (MF, UF, coarse NF) (Figure 5A). This configuration
reduces mass transfer resistance and, consequently, affords higher throughput operation
while utilizing available binding sites more efficiently. The separation by adsorptive mem-
branes typically can be operated with lower pressure drop compared to packed beds
and requires a smaller capital footprint. Moreover, because the feed flows through the
membrane containing the active sites, the metal ions capture relies on diffusion lengths
on the scale of nanometers rather than micrometers, shortening the time required for the
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metal ions to bind with active sites compared to fixed bed filters and increasing the overall
throughput capabilities of the process [118–120]. However, despite the advantageous mass
transfer associated with membranes, the performance of many state-of-the-art conventional
adsorptive membranes is hindered by low binding affinities and limited saturation capaci-
ties, which have been the main hurdle in their commercialization. Advanced adsorptive
membranes (Figure 5B) are based on the incorporation of: (1) single-digit nanopores (i.e.,
pores with diameters < 10 nm) into the polymer matrix through carbon nanotubes (CNTs),
porous metal-framework (MOFs), porous aromatic frameworks (PAFs), and covalent or-
ganic frameworks (COFs); and (2) solute-selective ligands grafted to membrane polymer
chains [121]. More specifically, this second approach to design advanced adsorptive mem-
branes refers to tuning the coordinative interactions between the solute and the polymer
matrix, a key feature at the basis of the remarkable selectivity of biological membranes [122],
and the resulting adsorptive membranes are named [121] chelating membranes. These new
advanced adsorptive membranes can be used in multifunctional membrane separation pro-
cesses such as ion-capture-ED (IC-ED) and solute-capture diffusion dialysis (SC-DD) [123]
where the driving forces are electrical potential and concentration gradients, respectively,
but also NF. Regarding NF, the development of a systematic synthetic platform that allows
the functionalization of polymers with solute (metal ions)-selective ligands with controlled
water swelling is highly required. In fact, water swelling could ensure enough mobility
for the transport of the solutes through the membrane matrix as well as long-term stability
without the risk of leaching of metal ions-complexes (ionophores), a typical issue of LMs in
general and supported liquid membranes, in particular.
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adsorption sites.

2.1. Adsorptive Membranes
2.1.1. Ways to Introduce Adsorbents into/onto Separation Membranes

The method of preparation of adsorptive membranes plays a fundamental role in their
performance. Overall, there are two main methods to give a membrane adsorptive function.

The first is to entrap the adsorbent into/onto the membrane matrix during its prepara-
tion by mixing it with the other components. For example, in the case of polymer-based
membranes, the adsorbent is added to the polymer casting solution giving intrinsic asym-
metric membranes. Another possibility is to add the adsorbent to the solution, which forms
the thin film onto a porous asymmetric membrane (support), giving thin film composite
membranes. Both variants of this method are used in the many studies discussed in this
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review. A fine tuning of the adsorbent quantity is necessary. Usually, the ratio of adsorbent
in the membrane is low to avoid the formation of agglomerates and then of defects, which
could compromise the membrane performance. To overcome this drawback, adsorbents
were made more compatible with the hosting membrane matrix by their fine functionaliza-
tion as in the case of MOF nanofibers-based adsorbents [124] used to prepare mixed matrix
membranes (MMMs) discussed below in the related subparagraph.

The second method refers to the so-called “formed-in-place membrane” or “dynamic
membrane (DM)”. The two terms have been used interchangeably [125]. DM is a layer of
particles deposited via permeate drag on a conventional membrane, with the deposited
particles acting as a secondary membrane [126–129]. Based on whether the DM is composed
of feed constituents deposited during filtration or intentionally pre-deposited particles
with desired properties on the primary membrane [126], DMs can be divided into two
types, namely, (1) self-formed DMs, whereby the solid particles from wastewater form the
DM and aid in improving permeate quality [130]; and (2) pre-deposited DMs, formed via
deposition of materials such as metallic compounds (especially oxides), polymers, activated
carbon, soil-based compounds, and nanoparticles onto UF, MF, NF, or RO membranes
The first report on DMs was in 1966 by the Oakridge National Laboratory [131], whereby
hydrous zirconium [Zr(IV)] oxide served as a DM on a RO membrane for salt rejection.
Since then, numerous papers on DMs for various applications have been published [125].

The characteristics of some studies on adsorptive DMs applied in the field of heavy
metals removal are reported in Table 4.

Table 4. Characteristics of some studies on adsorptive DMs.

Entry # Adsorbent Membrane DM Type Heavy
Metals Remarks Ref.

1
Micro-sized granular

ferric hydroxide
(Fe(OH)3) (mGFH)

MF Pre-deposited As(V)
µGFH proved to be promising

as emerging pre-depositing
material for a DM filter

[132]

2

Micro-sized tetravalent
manganese feroxyhyte

(δ-Mn(IV) FeOOH)
(mTMF)

MF Pre-deposited As(V)
µTMF proved to be promising

as emerging pre-depositing
material for a DM filter.

[132]

3 Polydopamine (PDA)
nanoparticles UF Pre-deposited Pb(II), Cd(II), Cu(II)

Significant enhancement of
adsorption capacity is derived

from the three-dimensional
distribution of the adsorbent

PDA on the cross section of UF
membrane.

[133]

4
Hollow porous Zr(OH)x
nanospheres (HPZNs)

coated with PDA
UF Pre-deposited Pb(II)

Compared to the blend
membrane, the pre-deposited

DM showed 2.1-fold increase in
the effective treatment volume

for the treatment of
Pb(II)-contaminated water from
100 ppb to below 10 ppb (WHO

drinking water standard).

[134]

5 Graphene oxide/ PDA UF Pre-deposited Pb(II)
Outstanding Pb(II) rejection can

be attributed to chelation of
amino groups on the PDA layer.

[135]

6 UiO-66-NH2 UF Pre-deposited Cr(III)/Cr(VI)

Negligible leakage of the
adsorbent UiO-66-NH2 owing
to the successful cross-link of

PEI. The membrane can be
easily regenerated and reused.

[136]

The common advantage emphasized in the studies of the pre-deposited DMs listed in
Table 4 is that the polymer matrix does not cover the surface of adsorbents reducing the
number of effective adsorption active sites and thus decreasing the adsorption performance
as it occurs with blend membranes [137]. The advantage of this strategy is that the UF
membranes can be endowed with adsorption ability, while the inherent ultrafiltration
properties were well maintained. As shown in Figure 6, the pre-deposited DM membrane
(Table 4, entry 4) not only allows the removal of multiple pollutants from water, such as
colloidal gold and polyethylene glycol, as a conventional UF membrane, but also toxic
pollutants (Pb(II) as one example).
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Figure 6. Schematic representation of UF membrane designs: (A) Virgin polymer UF membrane and
a traditional blend membrane are both synthesized through a one-step casting method (I). A new
2-step method to form pre-deposited DM (Dual Function UF membrane) (II); (B) the purification
process for polluted water by pre-deposited DM. Reproduced with permission from [134], copyright
of the American Chemical Society.

2.1.2. Types of Adsorptive Membranes

Depending on the membrane materials, adsorptive membranes can be classified into
four main groups: bio-based/bio-inspired, functionalized polymer-based, inorganic, and
mixed matrix membranes (Scheme 1).
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Bio-Based Adsorptive Membranes

In this paragraph, membranes based on natural and renewable polymeric materials
such as cellulose are reviewed. Chitosan-based adsorptive membranes have been reviewed
by Salehi et al. [138] and therefore are not discussed in this review. Cellulose is the most
abundant natural and renewable polymeric material. Its biocompatibility, hydrophilicity,
and non-toxicity represent an interesting ecofriendly membrane material for metal ion
removal. Moreover, its potential functional ability allows the selective removal of various
metal ions [139,140]. Membranes based on cellulose capable of removing metal ions have
been prepared using various strategies. Wang et al. [141] (Table 5, entries 1, 2) prepared an
MF nanofibrous membrane where ultra-fine cellulose nanofibers (CNFs) (diameter 5 nm)
were infused into an electrospun polyacrylonitrile (PAN) nanofibrous scaffold deposited
onto a non-woven PET support (Figure 7).

Table 5. Performance of recent cellulose-based adsorptive membranes.

Entry # Type of Membrane Heavy Metal Ions
Optimum Conditions/

Experimental Conditions
Adsorption

Ref.
mg g−1

1 Microfiltration
nanofibrous (PVAm-CNF) Cr(VI) pH 4; initial conc. 50 ppm 100 [141]

2 Microfiltration
nanofibrous (CNF) Pb(II) pH 6; initial conc. 50 ppm 260 [141]

3
Fully bio-based

nanocellulose membrane
(CNCSL)

Cu(II) * pH 2.3; initial conc. 330 ppm 9.6 [142]

4
Fully bio-based

nanocellulose membrane
(CNCBE)

Cu(II) * pH 2.3; initial conc. 330 ppm 24 [142]

5

Fully bio-based
phosphorylated

Nanocellulose membrane
(PCNCSL)

Cu(II) * pH 2.3; initial conc. 330 ppm 79 [142]

6

Fully bio-based
nanocellulose membrane

(CNCBE)_acetone
treatment

Cu(II) * pH 2.3 Initial conc. 330 pm 33 [143]

7

Fully bio-based
nanocellulose membrane

(CNCSL)_acetone
treatment

Cu(II) * pH 2.3; Initial conc. 330 ppm 33 [144]

8
Regenerated cellulose

membrane grafted with
PDMAEMA

Cu(II) pH-; Initial conc. 25.6 ppm 41.9 [144]

9
Regenerated cellulose

membrane grafted with
PDMAEMA

Cu(II) pH-; Initial conc. 76.8 ppm 150 [144]

10
Regenerated cellulose

membrane grafted with
PDMAEMA

Cu(II) pH-; Initial conc. 128 ppm 225 [144]

* Not only Cu(II), but also Fe(III) and Ag(I) have been investigated in [142], but in the present review only heavy
metal ions, dangerous as reported in Table 2, were considered.
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adsorption capability and good permeation flux. CNFs were prepared according to the 
method of Isogai and co-workers [145], which a led to large surface area and significant 
amounts of C6 carboxylate groups on the fiber surface. The amidation process was used 
to introduce functional groups able to efficiently interact with the metal ions and adsorb 
them. The scheme of the chemical procedure, i.e., TEMPO (2,2,6,6-tetramethylpiperidine-
1-oxylradical) oxidation in water and subsequent amidation is given in Figure 8. After the 
TEMPO oxidation procedure at pH 10–11 (Figure 8), carboxylated CNFs with diameters 
of ca 5nm were obtained. Amino-modified cellulose nanofibers (mCNF) were prepared 
using EDC and NHS as catalysts and PVAm, PEI, or EA as grafting agents. The suspension 
of aminated CNFs was infused into the PAN nanofibrous layer by applying an external 
pressure of about 2 psi. Finally, the composite membrane was heated at 50 °C to initiate 
cross-linking reaction to immobilize the CNF network. Two different membrane types 
have been used for Cr(VI) and Pb(II) adsorption: a membrane based on CNFs amino-mod-
ified by PVAm (PVAm-CNF, Table 5, entry 1) and a membrane based on as-made CNFs 
without amino-modification (CNF, Table 5, entry 2). The adsorption maximum for the 
two metal ions was observed at different pHs: pH 4 and 7 for Cr(VI) and Pb(II), respec-
tively. The different pH depends on the different species involved in the adsorption pro-
cess. 

Figure 7. SEM images of electrospun PAN/PET membrane ((a) cross-section view), and PAN/PET
membrane infused with PVAm-CNF ((b) top view). TEM image (c) taken at a small section of the
cellulose network containing pores and individual polymer chains with a spaghetti-like configuration.
Reproduced with permission from [141], copyright of Elsevier B.V.

The nanofibrous structure assures high surface area per unit mass resulting in high
adsorption capability and good permeation flux. CNFs were prepared according to the
method of Isogai and co-workers [145], which a led to large surface area and significant
amounts of C6 carboxylate groups on the fiber surface. The amidation process was used
to introduce functional groups able to efficiently interact with the metal ions and adsorb
them. The scheme of the chemical procedure, i.e., TEMPO (2,2,6,6-tetramethylpiperidine-1-
oxylradical) oxidation in water and subsequent amidation is given in Figure 8. After the
TEMPO oxidation procedure at pH 10–11 (Figure 8), carboxylated CNFs with diameters
of ca 5nm were obtained. Amino-modified cellulose nanofibers (mCNF) were prepared
using EDC and NHS as catalysts and PVAm, PEI, or EA as grafting agents. The suspension
of aminated CNFs was infused into the PAN nanofibrous layer by applying an external
pressure of about 2 psi. Finally, the composite membrane was heated at 50 ◦C to initiate
cross-linking reaction to immobilize the CNF network. Two different membrane types have
been used for Cr(VI) and Pb(II) adsorption: a membrane based on CNFs amino-modified
by PVAm (PVAm-CNF, Table 5, entry 1) and a membrane based on as-made CNFs without
amino-modification (CNF, Table 5, entry 2). The adsorption maximum for the two metal
ions was observed at different pHs: pH 4 and 7 for Cr(VI) and Pb(II), respectively. The
different pH depends on the different species involved in the adsorption process.
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In particular, for Cr(VI), as the pH increased from 1 to 4, the main species is HCrO4
−,

which could be attracted by positively charged amino groups on the PVAm-CNF surface;
in the case of Pb(II), as the pH value increased from 2 to 6, the carboxylate groups on the
surface of CNF start to deprotonate increasing their ability to adsorb Pb(II) ions.

In the fully bio-based approach by Karim et al. [142], not only the selective layer
but also the support is made of cellulose: a thin layer of native and modified cellulose
nanocrystals was used as a functional entity on a support layer of a microsized cellulose
fibers (Figure 9).
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using vacuum-filtration process [142]. Used under CC BY 3.0.

The cellulose nanocrystals (CNCs) were prepared by two routes, both different from
that one used by Wang et al. [141] (Table 5, entries 1, 2): the first one by using sulfuric
acid hydrolysis (CNCSL) as reported in previous work by Karim et al. [146]; the second
by bioethanol pilot plant process in dilute acid (CNCBE) [147]. The CNCsSL were enzy-
matically functionalized with phosphoryl groups (PCNCSL) according to Božič et al. [148].
Both CNCsSL and CNCsBE show typical cellulose nanocrystal structures with diameters in
the range of 5–10 nm.

The heavy metal removal process is the result of the high surface area of these nano-
materials based on nanocellulose and the nature and density of functional groups on the
nanocellulose surface with the order PCNCSL > CNCBE > CNCSL (Table 5, entries 3–5).
PCNCSL was highly effective for Cu(II) removal compared to CNCSL and CNCBE due to
the presence of the two negative charges of phosphate groups (PO4

2−) (Figure 10).
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In a subsequent paper [143], the same research group explored the effect of processing
routes on the structure and performance of the nanocellulose membranes, i.e., CNCSL and
CNCBE. In particular, acetone treatment prior to air drying was employed to tailor the
surface area and porosity (Figure 11).
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Figure 11. Schematic representation of membranes processing by Karim et al. [144]. Reproduced
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Even though the acetone treatment introduces higher porosity and a higher surface
area, the observed adsorption capability was lower than that of PCNCSL explored in the
previous study, i.e. [142]: 33 mg g−1 (Table 5, entry 6) vs. 79 mg g−1 (Table 5, entry 5).
However, the authors of [143] claimed as the main advantage of the acetone treatment,
irrespective of the relatively lower adsorption capability, the higher mechanical stability of
the membranes compared to those described in [142].

The approach proposed by Algarra et al. [149] and Jiang et al. [144] is different: no
single cellulose nanocrystals are assembled in a membrane as reported above, but suitable
groups to form complexes with heavy metal ions were introduced into a commercial
regenerated cellulose membrane.

In particular, Algarra et al. [149] impregnated a regenerated cellulose support with a
diaminobutane-based poly(propyleneimine) dendrimer functionalized with sixteen thiol
groups (DAB-3-(SH)16 to enhance the complexation of Hg(II), Cd(II), and Pb(II) (Figure 12).

However, the authors in [149] did not report concentration data for the adsorbed
metal ions, rather they only observed the time evolution of the concentration ratio for each
different membrane and metal ion studied. A decrease in diffusive permeability through
the membrane loaded with the dendrimer compared to the original sample of regenerated
cellulose membrane was observed for all the electrolytes, but with different percentages:
CdCl2 (~20%) and HgCl2 and PbCl2 (~45%).

In the study by Jiang et al. [144], a regenerated cellulose membrane was functionalized
with poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) via an atom transfer radi-
cal polymerization method to remove Cu2+ ions from an aqueous solution. The PDMAEMA
grafting degree, which can be controlled by a variation in grafting time, influences the Cu2+

ion adsorption: adsorption results indicated that the adsorption capacity increased as the
grafting time changed from 5 to 50 min. Moreover, the effect of initial Cu2+ concentration
on the adsorption capacity has been also studied. The adsorption capacity increased from
41.94 to 225.36 mg g-1 (Table 5, entries 8–10) with an increase in initial Cu2+ concentration
from 25.6 to 128 mg L−1.
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Bio-Inspired Adsorptive Membranes

Nature gives examples of membranes with higher separation rates than man-made
equivalents. In this respect, aquaporin-based biomimetic membranes fabricated by com-
bining the aquaporin protein (embedded within amphiphilic molecules, such as lipids)
with a polymer support structure have attracted great interest [150]. The role of aquaporins
has been replicated with artificial channels such as carbon nanotubes (CNTs) (~1 nm),
self-assembled block copolymers, and membranes designed with coordination chemistry
and subnanometer pores.

Subnanometer biological ion channels are well known for their outstanding selectiv-
ity [151,152]. A remarkable example is given by the potassium ions channel, which shows
an unusual selectivity allowing the passage of larger K+ ions (1.3 Å) over smaller Na+ ions
(1.0 Å) due to different paths and interactions in the pore of the potassium channel [153].

Interesting studies are reported in the literature regarding the design of engineered
artificial pores for metal ions separations.

Wen et al. [154] reported on polyethylene terephthalate (PET) membranes with syn-
thetic subnanometer pores obtained via irradiation with swift heavy ions and subsequent
UV illumination. The track in PET membranes is a nanostructure with a core of 0.3 nm
radius. The observed selectivity of metal ions transport, i.e., Li+ > Na+ > K+ > Cs+ >> Mg2+

> Ca2+ > Ba2+, gives strong evidence that the ionic transport proceeds through subnanome-
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ter pores. Molecular dynamics simulations reproduced the ionic transport selectivity and
showed that it is associated with the dehydration of ions. Dehydration effects represent a
key factor in the transport through subnanometer biological ion channels [155] and are also
the basis of ultrafast and selective ion transport in other subnanostructured membranes,
i.e., ZIF-8 membranes prepared and investigated by Zhang et al. for the selective transport
of alkali metal ions (Li+/Rb+) [156].

Two recent studies are strictly focused on coordinative interactions between the metal
ions and membrane matrix, i.e., host–guest interactions. The first by Warnock et al. [122]
involved incorporating 12-crown-4 ether in polynorbornene networks to give outstanding
performance membranes with water content tunable over a relevant range to promote the
selective transport of Li+ over Na+ and Mg2+. Crown ethers are a class of ligands known to
bind various cations depending on the relative size of their cavity and the size of the target
ion [157]. In polymeric membranes without any polymer-ion specific interactions, the
diffusivity selectivity depends on the solvated size of each ion in the membrane; therefore,
even though the ionic radius of Li+ is smaller than that of Na+, its hydrated radius is larger,
i.e., 3.8Å (Li+) vs. 3.68Å (Na+), leading to a diffusivity selectivity that favors Na+ over Li+.
Warnock et al. [122] reversed this trend observing Li+/Na+ selectivity due to the significant
ion–pore wall interactions between Na+ and 12-crown-4 ether, which hinders the diffusion
of Na+ relative to Li+.

The second study by DuChanois et al. [158] is about polyelectrolyte multilayer mem-
branes with iminodiacetate (IDA) functional groups able to coordinate strongly Cu2+

(higher binding energy) compared to Ni2+, Co2+, and Mg2+ (lower binding energy). There-
fore, Cu2+ ions permeate more selectively through the membrane than ions with lower
binding energy.

The manufacture of self-assembled block copolymers-based materials is another bio-
inspired synthetic membrane production strategy suited to scale-up and easily applied to
conventional porous supports [159].

Self-assembly of block copolymers occurs due to inherent differences between the
constituent blocks, leading to phase separation. The selection of appropriate conditions
(concentration, solvent, drying times, etc.) can dictate this separation, resulting in var-
ious structures, including hexagonally packed cylindrical phases [160,161]. Weidman
et al. [117] used a polyisoprene-b-polystyrene-b-poly(N,N-dimethylacrylamide) (PI-PS-
PDMA) triblock polymer as a precursor for the formation of a copper-selective adsorber.
The adsorptive membranes were fabricated from self-assembled block polymers using the
self-assembly and non-solvent induced phase casting (NIPS) method [162–164]. Then, the
conversion of the PDMA block of the resulting membrane to a poly(acrylic acid) (PAA)
moiety results in pore walls that can adsorb copper ions reversibly. As such, the nanoporous
membranes have a relatively high copper binding capacity of 260 mg g−1 membrane (see
for comparison the data reported in Table 5). Moreover, the PAA moieties can be further
functionalized, creating high capacity adsorbers tailored for the separation of specific
similarly sized and similarly charged solute molecules [165].

The strategy of blending block copolymers with another polymer allows the tune
sieving and adsorption properties of so-called tunable sieving and adsorption (TSA)
membranes. This strategy has been explored by Yao et al. [166], Kausar [167], and
Zhang et al. [168]. In more detail, Yao et al. [166] fabricated TSA membranes via non-
solvent-induced phase separation by blending amphiphilic block copolymers P(MMA-
b-DMAEMA) and polyvinylidene fluoride (PVDF). The two blocks of the amphiphilic
copolymers were selected for their specific properties: PMMA has been proved as a proper
hydrophobic component due to good compatibility with PVDF; and DMAEMA is a tertiary
amine-containing monomer frequently used to synthesize hydrophilic and multifunctional
polymers. The adsorption capacity of the TSA membranes was tested with Cr(VI) solu-
tions at different pH values. Pure PVDF membrane does not adsorb Cr(VI) ions, while
the P(MMA-b-DMAEMA)-containing PVDF membranes show excellent pH-dependent
adsorption properties. In particular, the membrane blended with the longer PDMAEMA
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block-containing copolymer achieved a higher equilibrium adsorption amount of Cr (VI)
ions due to the higher content of PDMAEMA, which, with its chains hanging on the
membrane surface and pore walls, facilitates the ions adsorption more or less depending
on pH. The mechanism of the pH-dependent Cr(VI) adsorption capacity is illustrated in
Figures 13 and 14.
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Figure 13. Schematization of the mechanism of adsorption of TSA membranes: the membrane sieving
ability depends on the pH. At low pH, the amine groups are protonated and therefore able to attract
the negative molecular ions of chromium; at high pH, the amine groups are neutral allowing the ion
passage through the membrane and then avoiding their adsorption. Reproduced with permission
from [166], copyright of Elsevier B.V.

Water 2022, 14, x FOR PEER REVIEW 20 of 43 
 

 

 
Figure 14. Illustration of ionization state of hanging PDMAEMA chains on membrane surface, and 
Cr(VI) ion existence forms in solution at various pH values and corresponding electrostatic attrac-
tion and adsorption. Reproduced with permission from [166], copyright of Elsevier B.V. 

In the study by Kausar [167] the membrane blend is based on two block copolymers: 
the block copolymer of polyethylene-block-poly(ethylene glycol) (PE-b-PEG) and poly-
caprolactone (PCL) and the block copolymer of polystyrene and methyl methacrylate (PS-
b-MMA). Gold/polystyrene nanoparticles were loaded in the self-assembled membranes 
to enhance metal ions adsorption. The adsorption efficiency by the self-assembled mem-
brane containing 1 wt% of gold/polystyrene nanoparticles was outstanding for Pb(II) and 
Hg(II) ions (100% ions removal), even though not enough specifications regarding the test 
conditions, such as pH, were given.  

Zhang et al. [168] fabricated a polysulfone (PSf) block polymer composite membrane 
template that can be further tailored to enhance binding affinity and expand sorbent func-
tionality. A PAA-lined membrane with a fully interconnected bicontinuous network con-
sisting of pores ∼1 μm in diameter was prepared through the use of surface-segregation 
and vapor-induced phase separation (SVIPS) methodology (Figure 15).  

 
Figure 15. Schematic of the surface-segregation and vapor-induced phase separation (SVIPS) mem-
brane fabrication process: (a) The polymer solution was prepared by dissolving the PSf and PS-b-
PAA in 2-pyrrolidone. (b) The polymer solution was drawn into a uniform thin film on a glass sub-
strate. (c) The casting solution thin film was exposed in a humid environment (with a relative 

Figure 14. Illustration of ionization state of hanging PDMAEMA chains on membrane surface, and
Cr(VI) ion existence forms in solution at various pH values and corresponding electrostatic attraction
and adsorption. Reproduced with permission from [166], copyright of Elsevier B.V.

The different protonation degrees of tertiary amine groups of PDMAEMA chains and
the various forms of Cr(VI) ions existence are the basis of the pH-dependent adsorption
performance of the blend membranes. The adsorption at pH 3.5 is 12.4 times higher than
that one at pH 9.7 (Figure 14).
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In the study by Kausar [167] the membrane blend is based on two block copolymers:
the block copolymer of polyethylene-block-poly(ethylene glycol) (PE-b-PEG) and poly-
caprolactone (PCL) and the block copolymer of polystyrene and methyl methacrylate
(PS-b-MMA). Gold/polystyrene nanoparticles were loaded in the self-assembled mem-
branes to enhance metal ions adsorption. The adsorption efficiency by the self-assembled
membrane containing 1 wt% of gold/polystyrene nanoparticles was outstanding for Pb(II)
and Hg(II) ions (100% ions removal), even though not enough specifications regarding the
test conditions, such as pH, were given.

Zhang et al. [168] fabricated a polysulfone (PSf) block polymer composite membrane
template that can be further tailored to enhance binding affinity and expand sorbent
functionality. A PAA-lined membrane with a fully interconnected bicontinuous network
consisting of pores∼1 µm in diameter was prepared through the use of surface-segregation
and vapor-induced phase separation (SVIPS) methodology (Figure 15).
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Figure 15. Schematic of the surface-segregation and vapor-induced phase separation (SVIPS) mem-
brane fabrication process: (a) The polymer solution was prepared by dissolving the PSf and PS-b-PAA
in 2-pyrrolidone. (b) The polymer solution was drawn into a uniform thin film on a glass substrate.
(c) The casting solution thin film was exposed in a humid environment (with a relative humidity
∼95%) for a predetermined amount of time. The intrusion of water vapor from the humid air into
the casting solution contributes to the formation of a uniform cross-sectional architecture comprised
of spongy cells. (d) The film was subsequently plunged into a nonsolvent water bath that caused
the hydrophobic polymers to precipitate and vitrify the membrane nanostructure. Simultaneously,
due to their hydrophilic nature, the PAA brushes preferentially segregate toward the surface of the
pore wall. (e) The composite membrane was annealed in a bath of DI water at 80 ◦C to allow the PAA
brushes to extend toward the center of the pore. Reproduced from [168], used under CC-BY 4.0.

Then, the pore wall was chemically functionalized to attach binding sites for the
adsorption of metal ions. The reaction scheme of Figure 16 outlines the coupling reactions
utilized to tailor the chemistry of the PAA-lined PSf template for application as a heavy
metal adsorber. The PAA brushes of the parent membrane exhibit modest metal binding
capacities as a result of ion-exchange mechanisms. The first reaction attached branched
poly-(ethylenimine) (PEI), a chemical linker that expands the number of sites available for
further modification and heavy metal capture, to the pore wall. The PEI possesses its own
innate metal coordinating capabilities through amine electron donation. PEI was covalently
linked to the PAA block through a carbodiimide coupling reaction that was executed by
immersing the membrane into an aqueous solution containing branched PEI (Mn ≈ 60 kg
mol−1), 1-ethyl-3-(3-(dimethylamino)propyl) carbodiimide hydrochloride (EDC·HCl), and
hydroxybenzotriazole (HOBt) at room temperature for 4 days.
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PAA-lined pore to a terpyridine-lined pore through an intermediate polyethylenimine-lined (PEI-
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The second reaction anchors the strong heavy metal coordinating group 6-(2,2′:6′,2′′-
terpyridin-4′-yloxy) hexanoic acid (TerP) to the primary amines of the PEI following a
similar carbodiimide coupling mechanism as that utilized in the first functionalization step.

The TSA membranes by Zhang et al. [168] are well-suited to capture metal ions
from contaminated feed solutions under dynamic flow conditions. Breakthrough curves
(Figure 17) were obtained by stacking three membranes in a stirred cell and passing heavy
metal contaminated feed solutions through the stack at a volumetric flux (i.e., superficial
velocity) of ∼200 L m−2 h−1.
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Under these conditions, the average residence time of solution within the stack was
∼5 s. Still, due to the rapid uptake kinetics, this was a sufficient period of time to reduce
the concentration of metal ions from 1 ppm in the contaminated feed solutions to the single-
digit ppb level in the permeate solutions. Figure 17 shows that no dramatic breakthrough
was observed for a ternary feed solution containing a mixture of Cd2+ (orange star), Pb2+



Water 2022, 14, 2718 22 of 43

(purple circle), and Hg2+ (red rhombus) metal ions. A binary mixture of 1 ppm of Cd2+

(green triangle) and 1 ppm of Cu2+ (blue square) in the feed solution demonstrates a
Cd2+ breakthrough starting at ∼25 mL, while efficiently removing the incoming Cu2+.
Photographs of the colorless feed solution from this experiment as well as the surface of the
membrane taken after the breakthrough experiment demonstrate the ability of membrane
stacks to effectively capture and concentrate metal ions under dynamic flow conditions.

Inorganic Adsorptive Membranes

In the literature, various examples of inorganic membranes used for the removal of
heavy metals, e.g., NaA zeolite [169] MCM-41 [170,171], MCM-48 [171,172], and FAU [173],
are reported. However, in such studies, the metal ions, in most cases chromate anions,
are rejected on the basis of the solution pH, and therefore the term adsorptive membrane
is not quite appropriate. An adsorptive membrane should offer abundant binding sites
for the adsorption of heavy metals. In this context, graphene oxide (GO) possesses large
quantities of epoxy, hydroxyl, and carboxyl groups on its basal planes and edges that can
bind metal ions via the chelation mechanism and/or electrostatic interaction [174–177]. GO
membranes used in water need to be stabilized because of electrostatic repulsion between
negatively charged GO flakes [178–181]. Several approaches based on the covalent bonding
of GO using various cross-linking reagents have been developed in order to synthesize
stable GO membranes [178,181–184].

One of such procedures based on cross-linking agents worthy of attention is that
by Hu and Mi [178]. A GO membrane was made via layer-by-layer deposition of GO
nanosheets, which were cross-linked by 1,3,5-benzenetricarbonyl trichloride (TMC) onto
a polydopamine (PDA)-coated PSf support (Figure 18). The cross-linking not only pro-
vided the stacked GO nanosheets with the necessary stability to overcome their inherent
dispensability in the water environment, but also tuned finely the charges, functionality,
and spacing of the GO nanosheets. Water can flow through the nanochannels between GO
layers while unwanted solutes are rejected by size exclusion and charge effects.
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Figure 18. Schematic illustration of a step-by-step procedure to synthesize the GO membrane, the
mechanism of reactions between PDA and TMC, and the mechanism of reactions between GO and
TMC. Reproduced with permission from [178], copyright of American Chemical Society.

Wang et al. [181] and Li et al. [184] used a similar approach to produce adsorptive
membranes for heavy metals from aqueous solutions (Table 5, entries 1, 2, respectively). In
particular, in [182], a GO-PDA-(β-cyclodextrin) (GO-PD-βCD) ultrafiltration membrane
was fabricated by using the method of drop-coating combined with vacuum filtration. The
membrane adsorption capacity was 101.6 mg g−1 at a solution pH of 6 (Table 6, entry 1). Its
performance could almost be completely recovered after a simple clean and regeneration
process [182].
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Table 6. Some examples of GO nanosheets assembled as adsorptive membranes.

Entry # Cross-Linking Agent/Stabilizer Heavy Metal Ion Maximum Adsorption Capacity (mg g−1) Ref.

1 PDA-βCD
(cross-linking agent) Pb(II) 102 [181]

2 PDA-PEI
(cross-linking agent) U(VI) 531 [184]

3 PVA
(cross-linking agent) Co(II), Ni(II), Cd(II) 73, 62, 84 [185]

4 Cellulose
(cross-linking agent)

Co(II), Ni(II), Cu(II),
Zn(II), Cd(II), Pb(II) 16, 14, 27, 17, 27, 108 [186]

5 CNTs
(stabilizer)

Co(II), Ni(II), Cu(II),
Zn(II), Cd(II), Pb(II) 37, 40, 50, 42, 48, 98 [187]

In [153], PDA induced the grafting of polyethylene imine (PEI) between GO interlayers
to form an adsorptive membrane (GO-PDA-PEI) for capturing U(VI). The as-prepared
membrane has a hexavalent uranium (U(VI)) adsorption capacity of 530.6 mg g−1 (Table 6,
entry 2), which is 177% higher than that of pristine GO. In the other two studies listed in
Table 6 (entries 3, 4), polymers with hydroxyl groups (-OH) such as polyvinyl alcohol (PVA)
and cellulose were used to stabilize GO sheets assembled as a membrane.

In particular, Tan et al. [185] noted that if the appropriate amount of PVA attaches
to the interlamination of GO membranes, it can effectively prevent their aggregation due
to the effective support of PVA, which should enhance the adsorption capacity of the
GO membranes. In contrast, if an excessive amount of PVA is used, it could make not
available a large number of adsorption sites, therefore reducing the adsorption capacity of
GO membranes. Based on these considerations mentioned, highly ordered GO membranes
with PVA were prepared by vacuum filtration-induced directional flow for the purpose
of removing heavy metal ions from aqueous solutions. In the GO membranes, GO sheets
form a lamellar layer, and PVA acts as a physical cross-linking agent and support pillar
(Figure 19).
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The maximum adsorption capacities of the GO membranes for Cu2+, Cd2+, and Ni2+

were approximately 72.6, 83.8, and 62.3 mg g−1, respectively (Table 6, entry 3). The
maximum adsorption capacity values of the same heavy metals by using graphene ox-
ide/cellulose membranes in [150] (Table 6, entry 4) are 26.6, 26.8, and 15.5 mg g−1. In
this study, the amount of GO compared to that of cellulose is lower than that used in
the work by Tan et al. [185] (Table 6, entry 3), and the adsorption values observed are
consequently lower.

Musielak et al. [187] (Table 6, entry 5) used a different strategy to produce stable
GO-based membranes. Intercalation of CNTs creates nanochannels, which vastly enhance
the permeation of GO by water. CNTs and GO can be covalently bonded using different
cross-linking agents [188–190] or stabilized via electrostatic interaction using polyelec-
trolytes [191]. However, GO membranes can be prepared by noncovalent interaction using
oxidized CNTs as reported by Musielak et al. [187]. Excellent durability was observed for
GO/CNTs membranes (0.44 mg cm−2 GO and 0.055 mg cm−2 CNTs) at different pH values
making them suitable for effective adsorption of metal ions both under flow conditions and
vigorous shaking. Although CNTs stabilized the membranes significantly, they strongly
influence the adsorption of metal ions on the GO nanosheets. Even a small number of CNTs
significantly reduces the adsorption capacities of the GO membranes. This effect can result
from the creation of micro- and nanochannels formed from the entangled CNTs. (Figure 20).
Thus, the solution flows not only between the GO flakes but also through the micro- and
nanochannels. The kinetic data, adsorption isotherms, competitive adsorption experiment,
and XPS indicate that adsorption is monolayer coverage and is controlled by chemisorption.
The maximum adsorption capacity of the GO/CNT membranes for Co2+, Ni2+, Cu2+, Zn2+,
Cd2+, and Pb2+ at pH of 5 are 37, 40, 50, 42, 48, and 98 mg g−1, respectively (Table 6, entry 5),
values, which compared to those of other studies listed in Table 6, can be considered
as sufficient.
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Functionalized Polymers-Based Adsorptive Membranes

Membrane-based water purification systems are known as effective platforms instead
of traditional packed bed adsorption processes to filtrate wastewater, biopharmaceutical
by-products, hazardous chemical compounds, and heavy metal ions [191–194]. Further-
more, membranes based on functionalized polymers are great alternatives instead of
non-functionalized ones because of their boosted removal rate of pollutants and heavy
metal ions from wastewater. These adsorptive membranes contain specific active func-
tional groups on their surfaces that bind with target pollutants or metal ions through
either surface complexation or ion exchange process, even by pore sizes larger than the
average size of target pollutants or metal ions [117,144,195,196]. Thereby, functionalization
of the polymeric part of adsorptive membranes could improve their capability for the
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effective removal of metal ions or pollutants from wastewaters by either dynamic or static
adsorption processes.

PAN is a promising polymer for the production of UF and MF membranes due to
its high mechanical robustness, ideal solvent stability, and cost-effectiveness [197]. The
nitrile, i.e., -CN, group of PAN, could be easily modified through the hydrolysis and
(3 + 2) cycloaddition reaction at increased temperature toward effectively removing heavy
metal ions from wastewaters [197,198]. Likewise, the tetrazole functional groups could
be grafted on the resin via the (3 + 2) cycloaddition reaction at 40 ◦C, which boosts the
resin’s capability toward adsorption of heavy metal ions in quantities much higher than
the non-functionalized resin [199].

Fouling is a severe problem for membrane separation approaches, which can be
declined or prevented via employing surface modification techniques, i.e., functionalization.
Fouling is known as the accumulation of substances on the surface of the membrane or
in the pores of the membrane that could significantly deteriorate the proper performance
of membranes. Furthermore, the interaction between the solution’s components and the
membrane’s surface is a governing parameter for extending the fouling of the membrane.
For instance, in UF of aquatic media containing proteins, fouling could occur due to the
protein’s adsorption, aggregation, and denaturation at the membrane–liquid interface.
In this case, an increase in the membrane’s hydrophilicity could prevent or decline the
adsorption of proteins by the membrane due to the adsorption of a higher amount of
water by the hydrophilic surface [200,201]. Correspondingly, along with hydrophilicity, the
surface modification process also plays a crucial role in membranes’ anti-fouling capability.
In this regard, both the osmotic effect and steric hindrance of the grafted polymeric branches
improves the resistance of the membrane against the fouling [201–204]. Therefore, various
kinds of approaches can be considered for preventing fouling, among which grafting
diverse types of hydrophilic functional groups of polymers to the surface of the membrane
and generating a blend of various polymers to improve the hydrophilicity of the final
structure can be mentioned. In addition, a change in the charge density of the polymeric
membrane could also be beneficial to improve the performance of the membrane and avoid
fouling [205].

Surface functionalization has become a crucial matter for increasing the adsorptive
performance of polymeric membranes. The surface functionalization or modification of
membranes could minimize undesired reaction/interaction, and also lead to the selective
separation of target pollutants and generation of novel purification functions [203]. This
beneficial effect could be added to membranes via the introduction of tailored interactions,
viz., responsiveness, catalytic properties, and affinity, to the surface of the polymeric
membrane via practical approaches. In addition, novel polymeric membranes based
on enantiomers, isomers, and specific kinds of biomolecules could provide a selective
adsorption process that can be activated through external stimulus [206].

Kumar et al. [207] developed an integrated polymeric platform consisting of PAN
and polyvinyltetrazole through the NIPS technique. The process is conducted via a
(3 + 2) cycloaddition reaction at 60 ◦C. A schematic of this process can be seen in Figure 21a.
The results showed that the polyvinyltetrazole segments alter the hydrophilic nature and
pore sizes of the resulting membrane. In addition, the polyvinyltetrazole site improved the
negative charges of the membrane and served as a perfect binding site for the adsorption
of chromium in aquatic solutions. The membrane showed static adsorption of 10 ppm at a
pH of 5 along with a 44.3 mg g−1 adsorption rate via the Freundlich isotherm.
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In another study, Pei et al. [208] developed a PSf-graft−4-aminobenzo-15-crown-
5-ether (PSf-g-AB15C5)-based membrane via a single-pot polymerization process and
membrane preparation technique for adsorption of lithium isotope from aquatic media
(Figure 21b). A one-pot technique is developed that does not require separation or purifi-
cation. Correspondingly, the PSf-g-AB15C5 is prepared via grafting with AB15C5 along
with chloromethylated Psf (CMPSf) (Figure 21c). The morphology of the as-prepared
membrane changed from macrovoid to sponge-like upon a further increase in the viscosity
of the reaction, which is mainly a result of the grafting and self-crosslinking process of
PSf-g-AB15C5 polymers. Furthermore, the as-developed membrane showed remarkable
mechanical robustness (2.12–3.72 MPa) and ideal porosity toward the adsorption of lithium
isotope. Moreover, the immobilization of crown ether onto the surface of the membrane
(0.521 mmol g−1) could boost the reaction with the Li+ ions and lead to a perfect equilib-
rium separation factor of 6Li+/7Li+ up to 1.055. The obtained results showed that such a
membrane could be used as an ideal green platform for the separation or adsorption of
lithium isotopes from aquatic substrates.

Wu et al. [209] developed a thiol-functionalized mesoporous PVA/SiO2 nanofiber via
electrospinning. The as-developed membranes contain mercapto groups generated via
polycondensation hydrolysis, which exhibited a specific surface area of 290 m2 g−1. The
PVA/SiO2 membrane showed an absorption rate of 489.12 mg g−1 toward the adsorp-
tion of Cu(II) ions from aquatic media at 303 K. The mentioned work further highlighted
the potential of polymer functionalization toward improving the adsorption capacity of
hybrid polymeric membranes. In Figure 22a, a schematic of the adsorption kinetic of
Cu(II) ions by the mesoporous PVA/SiO2 membrane is given. In another interesting study,
Yao et al. [210] developed a membrane modified with H5(PV2Mo10O40) polyoxometa-
lates (POMs) in order to boost membrane adsorption capacity and catalytic performance.
The POM-modified membrane exhibited 100% rejection at the pressure of a 0.5 bar with
19 L m−2 h bar water permeability toward removing reactive black 5 (RB5) dye from aque-
ous media. In Figure 22b, the preparation procedure steps of the POM-modified membrane
are reported.
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Figure 22. (a) Adsorption of Cu(II) via the PVA-SiO2 nanofiber [202], and (b) production of POM-
based membrane [210]. Reproduced with permission from [210], copyright of Elsevier.

The study by Zhang et al. [211] is relevant for the role played by functionalization
toward increasing the static binding performance, even though the adsorptive membranes
were used for protein separation. The developed membranes are made of cellulose acetate
(CA) and prepared by the electrospinning technique. The as-developed nanofibers showed
diameters ranging from nanometers to micrometers along with pore sizes ranging from
sub-microns to microns. The cellulose nanofibers were hydrolyzed and deacetylated
to produce a regenerated cellulose membrane. The surface of the membrane was also
functionalized with diethylaminoethyl as an anion exchange ligand. The as-developed
membrane could adsorb bovine albumin at the capacity of 40 mg g−1, which is much
higher than commercially available membranes; a view of these membranes can be seen in
Figure 23a–f.
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Figure 23. SEM images of (a,b) regenerated cellulose micro-fiber, (c,d) bleached cotton fiber, and
commercially available cellulose membrane, (e) prior and (f) after surface functionalization with
diethylaminoethyl [211]; (g) reaction of the regenerated cellulose membrane with PAA and PGMA;
SEM images of the cellulose membrane (h) before and (i) after annealing, (j) after hydrolysis, (k) after
immersing in the chloroform, (l) after modification by the poly(glycidyl methacrylate), and (m) after
modification with the poly(acrylic acid) [115]. Reproduced with permission from [211] and [115],
copyright of Elsevier.
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In another study, Chitpong and Husson [115] developed a functionalized cellulose
membrane with polyacid to remove heavy metal ions from wastewater. Accordingly, cellu-
lose nanofibers were first developed via the electrospinning approach, stretched via the
thermo-mechanical process, and thence transformed into the cellulose nanofiber mat. Af-
terward, the poly(acrylic acid) is grafted on the surface of the modified cellulose membrane
with poly(glycidyl methacrylate) (Figure 23g). Finally, the as-developed functionalized
cellulose membranes were used to remove Cd(II) ions from aquatic media. The results
showed that the membrane’s permeability was highly dependent on the molecular weight
of the poly(acrylic acid). The optimum membrane adsorbed about 160 mg g−1 of Cd(II) ions,
much higher than traditional cellulose membranes. A view of the developed membranes
and their morphology after functionalization can be seen in Figure 23h–m.

Yang et al. [212] developed a super hydrophilic PAN membrane with an electrospin-
ning approach, functionalized with PDA toward adsorption of Cr(VI) from wastewater
(Figure 24a–c). Decoration of the PAN nanofibers with PDA could considerably increase the
hydrophilicity of the membrane, avoid fouling and boost its adsorption performance. As a
result, the as-developed membrane showed an adsorption capacity of 61.65 mg g−1 toward
the adsorption of Cr(VI) ions. This proper performance is achieved after the functional-
ization of PAN with PDA due to the generation of active amino and hydroxyl functional
groups onto the PAN-based membrane’s surface.

These results highlighted the superior role of functionalization toward boosting the ca-
pability of polymeric membranes for the separation and adsorption of metal ions. In Table 7,
other relevant case studies of adsorptive membranes for heavy metals and metalloids
are reported.

Table 7. A view of recently developed membranes and their adsorption capacity.

Membrane Materials Target Pollutant Adsorption Capacity (mg g−1) Ref.

Chitosan-PVA
Cu(II)
Ni(II)
Cd(II)

98.65
116.89
124.23

[213]

Chitosan-cellulose
As(V)
Pb(II)
Cu(II)

39.4
57.3

112.6
[214]

Chitosan-polyethylene oxide
Ni(II)
Cu(II)
Ca(II)
Pb(II)

357.1
310.2
248.1
237.2

[215]

Chitosan-poly (L-lactic acid) Cu(II) 111.66 [216]

Chitosan-poly(ethylene oxide)
Cu(II)
Zn(II)
Pb(II)

120
117
108

[217]

Chitosan-PVA Cu(II) 90.3 [218]

Chitosan-poly(ethylene oxide) Ni(II) 227.27 [219]

Chitosan-poly(ethylene oxide) Cr(VI) 208 [220]

Polyacrylic acid-sodium alginate Cu(II) 591.7 [221]

Chitosan-sodium polyacrylate Cr(VI) 78.92 [222]

Polyacrylic acid-PVA Pb(II)
Cd(II)

159
102 [223]

Chitosan-CA Cd(II) 110.48 [224]

Polyacrylic acid-PVA Pb(II) 288 [225]

Polyethyleneimine-PVA Cr(VI) 150 [226]

Polyethyleneimine-PDA Cu(II) 33.59 [227]

Poly(ether sulfones)-poly(ethyleneimine)
Cu(II)
Cd(II)
Pb(II)

161.29
357.14
94.34

[228]

Polyethyleneimine-PVA
Cu(II)
Cd(II)
Pb(II)

67.16
116.94
90.03

[229]

Polyaniline-polystyrene

Pb(II)
Cu(II)
Hg(II)
Cd(II)
Cr(VI)

312
171
148
124
58

[230]
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Table 7. Cont.

Membrane Materials Target Pollutant Adsorption Capacity (mg g−1) Ref.

Polyethersulfone-poly (dimethyl amine)
ethyl methacrylate Cu(II) 161.3 [231]

CA-polymethacrylic acid Pb(II) 146.21 [232]

β-cyclodextrin-polyacrylate Cu(II)
Fe(II)

82
219.5 [233]

Polyindole Cu(II) 121.95 [234]

PAN—polypyrrole Cr(VI) 74.91 [235]

Poly(ethylene oxide) Cu(II) 15.6 [236]

PDA-PVDF-polypyrrole Cr(VI) 126.7 [237]

Polyindole Cd(II) 140.36 [238]

PVDF-PDA Cu(II) 26.7 [239]

PAN-Chitosan-Regenerated cellulose Pb(II) 500.95 [240]

PAN-polyvinylpyrrolidone Pb(II) 1520 [241]

Deacetylated cellulose-pyromellitic
dianhydride Pb(II) 326.80 [242]

Chitosan-poly(glycidyl
methacrylate)-polyethylenimine

Cr(VI)
Cu(II)
Co(II)

138.96
69.27
68.31

[243]

CA-polyvinylpyrrolidone
Pb(II)
Cu(II)
Cd(II)

30.96
19.63
34.70

[244]

Cellulose nanofiber-PAN Cr(VI)
Pb(II)

87.5
137.7 [245]

Chitosan-poly(ethylene oxide) Cd(II) 232.55 [246]

PAN-CA
Fe(III)
Cu(II)
Cd(II)

418.32
272.64
126.56

[247]

Polyurethane-phytic acid Pb(II) 136.52 [248]

Poly(ether sulfone)-poly(3,4-ethylene
dioxythiophene)

Pb(II)
Cd(II)
Cr(VI)

656.42
315.55
418.86

[249]

Mixed Matrix Adsorptive Membranes

Mixed matrix membranes (MMMs) are obtained by dispersing fillers into polymeric
matrices to overcome the limitation of single polymeric and inorganic membranes. MMMs
have many advantages, such as high porosity, and thermal and chemical strength, making
them an excellent candidate for water purification, especially for removing heavy met-
als [250]. MMMs with incorporated nanofillers into an inorganic oxide or polymeric matrix,
represent an interesting case of adsorptive membranes. Nowadays, the use of MMMs in
removing heavy metals from wastewater has received much attention [251–253]. MMMs
merge the adsorptive features of the fillers with the processability of the polymers. For
example, the use of zeolites as fillers increases the hydrophilicity property of membranes
resulting in an increase in water permeability.

Other important fillers are nanosilver, carbon nanotubes, and photocatalytic nanoma-
terials such as bimetallic nanoparticles and TiO2 to increase fouling resistance. Metal oxide
such as Al2O3 also increases thermal and mechanical stability [254]. Another approach high-
lights bionanocomposite membranes with surface-immobilized selective proteins [255,256].
GO-based membranes are covalently combined with bovine serum albumin (BSA) for metal
ions detection [255]. In this system, BSA acts as a transporter protein in the membrane
and endows the membrane with selective recognition of Co2+, Cu2+, AuCl4−, and Fe2+.
Combining the metal-binding ability of BSA and the large surface area of GO, the MMM m
can be used as a water purification strategy to selectively absorb a large amount of AuCl4−

from HAuCl4 solution.
The removal rate of heavy metals by MMMs is related to the binding of adsorbents

to adsorbate. The compounds that possess functional groups such as carboxyl, phenolic,
lactone, and hydroxyl are very influential in heavy metal removal. Some examples of
MMMs are listed in Table 8.
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Table 8. Characteristics of some adsorptive MMMs for heavy metal and metalloid removal.

MMM
(Filler/Polymer Matrix) Removed Heavy Metal Reported Removal Efficiency Membrane Filtration Area

(cm2) Ref.

Hydrous ferric oxide NPs a/PSf Pb(II) 13.2 mg g−1 - [257]

Zeolite/PSf Ni(II) 122 mg g−1 13.4 [258]

GO/PSf
Pb(II)
Cu(II)
Cd(II)
Cr(II)

79 mg g−1

75 mg g−1

68 mg g−1

154 mg g−1

4 [259–268]

SnNPs b/PVDF

Pb(II)
Cu(II)
Zn(II)
Cd(II)
Ni(II)

93.9%
92.8%
82.3%
70.7%
63.9%

29.20 [252]

HBE-MMTc/PES
Cu(II)
Zn(II)
Cd(II)
Ni(II)

46.8%
66.9%
39.1%
68.8%

- [260]

HMO d/PES Pb(II) 204.1 mg g−1 12.56 [261]

Fe-Mn binary Oxide/PES As(III) 87.5% 12.56 [262]

Chitosan beads/EVAL Cu(II) 225 mg g−1 - [263]

α-ZrP e/PVDF

Pb(II)
Cu(II)
Zn(II)
Cd(II)
Ni(II)

91.2%
93.1%
44.2%
42.8%
44.4%

1 [264]

GMF f/PES As(V) 75.5 mg g−1 42 [265]

Zn:-Al2O3
g/PSf Pb(II) 98% - [266]

Amine modified TiO2/CA Cr(VI) 99.6% - [267]

GO/PES Cu(II)
Zn(II)

Cu(II): 72%
Zn(II): 87% 3.73 [269]

a NPs = nanoparticles; b SnNPs = Sn nanoparticles; c HBE-MMT = Hyperbranched epoxy-montmorillonite;
d HMO = hydrous manganese dioxide; e α-ZrP = α-zirconium phosphate; f GMF = Graphene oxide-manganese
ferrite; g Zn:Al2O3 = Zinc-doped Aluminium Oxide.

The removal of heavy metals by MMMs is based on some mechanisms such as electro-
static attractions and adsorption, impact of size, and Donnan exclusion. Generally, a high
affinity with heavy metal ions is necessary to adsorb the ions by MMMs. A critical point is
the pH of the feed, which is effective on the charge of the membrane surface and heavy
metal ions, the ion exchange capacity between the MMM and metal ions, and adsorption
capacity [253,270–272]. The other influential issue is the stability of MMMs nanomaterials
in a different pH range to have a long-term performance during the adsorption [270]. The
commonly used polymers for the production of MMMs include CA, PVDF, polyethersul-
fone (PES), PSf, and PAN. PVDF is an attractive polymer for water treatment applications
due to its high mechanical strength and excellent resistance to corrosive chemicals such as
bases, acids, and oxidants [273]. Ibrahim et al. [252] investigated the use of SnO2 entrapped
in a PVDF matrix to give MMMs able to remove Pb(II), Cu(II), Zn(II), Cd(II), and Ni(II)
(Figure 24a). The maximum removal of Pb(II), Cu(II), Zn(II), Cd(II), and Ni(II) was achieved
by the PVDF MMM entrapping 0.25 wt% of SnO2 with around 93.9 ± 1.7, 92.8 ± 1.3,
82.3 ± 2.0, 70.7 ± 1.1, and 63.9 ± 1.5%, respectively, compared to 93.5 ± 1.3, 92.9 ± 1.7,
68.3 ± 2.1, 50.3 ± 1.8, and 50.3 ± 1.4% in the pristine PVDF membrane. Even though metal
ions removal increased compared to neat PVDF membrane for Zn(II), Cd(II), and Ni(II) due
to their affinity with SnO2 [220], the low hydrophilicity of MMMs owing to the intrinsic
hydrophobicity of the PVDF host matrix and relatively low loading of the hydrophilic
filler (0.25 wt%), necessary to avoid the formation of defects in the membrane films, could
explain the insignificant adsorption observed.
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existing as nanoscale powders as for other MOFs, is pretty small, and cannot be readily 
separated and recycled after the sorption process [276], so its use as filler in adsorptive 
MMMs can overcome this drawback. At pH 4.7, the maximum arsenate adsorption capac-
ity of PVDF-based MMM prepared by Wan et al. [272] was 267 mg g−1. 

MOFs represent a very interesting class of fillers for the preparation of MMMs be-
cause of the unique features of their nanostructure with high thermal and chemical re-
sistance tunable pores [277], high surface area, and metal binding capacities, which can 
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valence Zr4+ and Fe3+ metal ions [282], and electrospun nanofibers have been combined to 
give nanofibrous MOF membranes (NMOMs), with the aim of improving the perfor-
mance of MOFs for the removal of heavy metals [124,283].  

Compared to the conventional method of preparing MMMs, electrospinning has a 
very low cost and a simple technique is employed in preparing membranes that have rel-
atively high fluxes, porosity, and mechanical strength. This process requires very little 
polymer and little post treatment of membrane, thus making this a more environmentally 
friendly technique [284]. NMOMs offer improved molecular transport and easier access 

Figure 24. (A): Illustration of the interaction between PVDF and SnO2 filler materials [253];
(B): schematic of fabrication of hollow fiber MMM incorporated with UiO-66 filler materials [273].
Reproduced with permission from [252] and [272], copyright of Elsevier.

Wan et al. [272] prepared PVDF-based MMMs using high valence Zr4+-based MOF,
i.e., UiO-66, with a loading up to 6 wt%. The measurement of water contact angle showed
a significant decrease as more UiO-66 particles were embedded into the PVDF matrix, i.e.,
from 75◦ to 46◦ for pure PVDF membranes and 6 wt% MMM, respectively, indicating a
reduction in hydrophobicity of the pristine membrane material. UiO-66 not only improved
the hydrophilicity of the PVDF membranes, but also their adsorption capacity due to an
extraordinarily high arsenate adsorption capacity of 303 mg g−1, ranked among the highest
reported in the literature [274]. As shown in Figure 24b, favorable sites for As(III) sorption
in the Zr-O-C bond of UiO-66 hollow fiber membranes are oxygen atoms due to binding
energy calculations [272].

The high stability of UiO-66 in the presence of a strong acid, e.g., HCl, and a strong
base, e.g., NaOH, makes it suitable for applications within a wide pH range of 1 to 10 [275].
Despite the excellent performances of MOF UiO-66 for arsenate sorption, its size, existing
as nanoscale powders as for other MOFs, is pretty small, and cannot be readily separated
and recycled after the sorption process [276], so its use as filler in adsorptive MMMs
can overcome this drawback. At pH 4.7, the maximum arsenate adsorption capacity of
PVDF-based MMM prepared by Wan et al. [272] was 267 mg g−1.

MOFs represent a very interesting class of fillers for the preparation of MMMs because
of the unique features of their nanostructure with high thermal and chemical resistance
tunable pores [277], high surface area, and metal binding capacities, which can improve
the mass transfer in the sorption process [278,279]. The large surface of MOFs per unit



Water 2022, 14, 2718 32 of 43

volume is vital in removing heavy metals in low concentrations [272,274,275,280,281]. In
recent years, water-stable MOFs, such as those based on the high valence Zr4+ and Fe3+

metal ions [282], and electrospun nanofibers have been combined to give nanofibrous
MOF membranes (NMOMs), with the aim of improving the performance of MOFs for the
removal of heavy metals [124,283].

Compared to the conventional method of preparing MMMs, electrospinning has a
very low cost and a simple technique is employed in preparing membranes that have
relatively high fluxes, porosity, and mechanical strength. This process requires very little
polymer and little post treatment of membrane, thus making this a more environmentally
friendly technique [284]. NMOMs offer improved molecular transport and easier access
to the active sites of MOFs [124]. Since the first study by Efome et al. [285] on NMOMs
to separate Pb(II) and Hg(II), the excellent filtration performance and re-generability of
the membrane coupled with the choice of an Fe(III)-based hydrostable MOF indicated the
potentialities of such new types of adsorptive membranes for the removal of heavy metals.

3. Concluding Remarks

Heavy metal pollution of water sources is one of the most important environmental
problems that the world has to face. A wide range of technologies has been developed for
heavy metal removal. From the literature survey reported in this review, it emerges that
adsorptive membrane technology represents an effective and viable method combining
the advantages of the adsorption process with those of membrane technology. On the
basis of methods used to prepare adsorptive membranes, pre-deposited DM offers many
advantages compared to the traditional blend strategy making effective adsorption active
sites more available and thus increasing the adsorption performance. Regarding the
materials featuring adsorptive membranes, they can be classified into five classes, i.e., bio-
based and bio-inspired, inorganic, functionalized, and MMMs. Independently from their
differences, each type of these five categories has been designed with the goal to improve
the efficiency and selectivity of metal ion removal, which represents the true challenge
for this application. Adsorptive membranes featuring coordinative interactions between
the heavy metal ions and membrane matrix interactions, i.e., host–guest (bio-inspired
membranes) and highly ordered porous structure, which can facilitate the diffusion of metal
ions, showed substantial adsorption capacities. Such advanced adsorptive membranes are
based on the incorporation of CNTs, MOF, PAFs, and COFs or are chelating membranes.

However, the literature survey on the topic showed that only results at the laboratory
level are available suggesting that the technology readiness level (TRL) of adsorptive mem-
branes is still in its early stages. Feasibility studies to approach TRL 3–4 “transformational
new membranes” are highly required for the interesting cases of adsorptive membranes
such as those functionalized with highly selective groups for metal ions to speed up the
commercialization process. How to jump to TRL 3–4 levels?

Chemical stability, long-term stability, and reusability need still to be investigated.
Such critical information is missing from many papers.

For conventional adsorptive membranes, i.e., those obtained by a simple mixing of
adsorbents and membrane materials and then shaped as membrane, if from one side, a
high surface area is necessary for the adsorption, then from the other side, high adsorbent
loading results in leaching due to their instability in the membrane matrix. For the design
of advanced adsorptive membranes such as bio-inspired membranes, is highly necessary to
study the separation performance as well as stability and reusability under various driving
forces such as pressure (UF, NF) or the electric potential (ED) gradient.
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