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Abstract: Satellite-based remote sensing is important for monitoring the spatial distribution of water
resources. The water index is currently one of the most widely used water body extraction methods.
Based on Sentinel-2 remote sensing image, this study combines area-to-point regression kriging
interpolation, bilinear interpolation, and the Gram–Schmidt (GS) pan-sharpening method with the
water indices MNDWI, AWEIsh and WI2015 to compare different water body extraction methods. The
experimental results showed that all water indices have satisfactory extraction ability, with the kappa
coefficient as an accuracy threshold above 0.8. Moreover, the GS downscaling method combined
with the WI2015 yielded the best performance. This research demonstrates the efficacy of the WI2015

method to extract water bodies in urban areas and its ability to comprehensively describe river water
bodies. The findings indicate that high-resolution band information is particularly important for
improving low-resolution band downscaling results and can significantly minimize erroneous water
body extraction.

Keywords: water body extraction; pan-sharpening; area-to-point regression kriging

1. Introduction

Urban surface water bodies are important factors influencing the urban ecological
environment and exert a certain impact on urban public health and people′s quality of
life [1,2]. At the same time, urban water bodies play a key role in urban planning, regional
climate change, the heat island effect, and water resource utilization [3,4]. In recent years,
with adverse factors such as rapid urbanization, environmental degradation, and extreme
climate, the water body area in urban cities has been decreasing significantly [5]. Therefore,
the accurate and dynamic monitoring of urban surface water bodies has become essential
for water resource management and decision-making. As a large-scale and real-time
Earth observation technology, remote sensing has been widely used in surface feature
recognition and extraction. Accordingly, remote sensing provides feasible technical means
for the automatic and precise extraction of urban surface water bodies [6,7]. The growing
role of satellite remote sensing technology in water extraction applications is becoming
increasingly remarkable. To identify water body features, remote sensing images mainly use
spectral differences between water bodies and other ground objects in different wavelength
bands. The development of water body remote sensing methods has progressed through
several stages, from the initial manual visual interpretation technique to semi-automatic
extraction and classification techniques based on spectral features, and then further to
extraction methods which couple spectral features and spatial information [8–11]. Currently,
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automatic high-precision water body extraction methods based on deep learning represent
the gold standard [12–15].

Water index-based algorithms have become important for implementing rapid water
body mapping in large-scale regions. Water index- and threshold-based approaches have
been widely used to identify water bodies due to their unique spectral characteristics in
the visible and infrared regions. Both approaches have undergone significant evolution. In
1996, McFeeters [16] proposed the normalized difference water index (NDWI) using the
value of the green band minus the near-infrared (NIR) band, divided by the sum of the
two bands. Under this, water bodies have positive values, while non-water bodies have
negative values. Although NDWI can suppress and remove non-water features to a large
degree, it fails to efficiently suppress built-up land signals. Consequently, certain features
may actually comprise a mixture of water and built-up land noise. In 2006, based on the
NDWI, in 2006, Xu proposed a modified normalized difference water index (MNDWI),
replacing the NIR band with the shortwave-infrared (SWIR) band, which helped to remove
disturbances caused by built-up lands [17]. However, the optimal thresholds varied based
on location and time, and the method could not effectively remove shadow noise in some
areas. In 2014, Feyisa et al. proposed an automated water extraction index (AWEI) and
used different AWEI formats for scenes with shadows (AWEIsh) and without shadows
(AWEInsh) [18]. This technique was sufficiently separated and systematic so as to improve
the accuracy of water body mapping. Related scholars have used the natural logarithm
of each band of the Landsat 7 ETM + image as a proxy of the reflection coefficient and
interaction conditions, creating the water index WI2006. Subsequently, the water index
WI2015 is based on WI2006, using linear discriminant analysis classification (LDAC) to
determine the coefficient of the best segmentation training area category, further improving
water extraction accuracy [19].

Many researchers have used moderate resolution imaging spectroradiometer (MODIS) [20],
Landsat [21,22], and Sentinel [23,24] multispectral remote sensing images to achieve large-
scale water body extraction research based on various water indices, such as MNDWI. In
recent years, high-resolution remote sensing technology has achieved significant develop-
ment. However, these fine spatial solution images, such as Gaofen-2 Satellite (GF-2) and
Satellite Pour l′Observation de la Terre (SPOT), have no SWIR band, making it impossible to
use the water index method [25]. In contrast, Sentinel-2 provides publicly available images.
The Sentinel-2 mission has been organized by the Global Monitoring for Environment and
Security. Using a bi-satellite system, it acquires multispectral, high-resolution optical obser-
vations over global terrestrial surfaces with a high revisitation frequency, approximately
five days. Such a system is important for dynamic land cover mapping and updating.
Sentinel-2 carries a multispectral instrument with 13 spectral bands spanning the visible
spectrum (VIS) and NIR to SWIR. These spatial resolutions range from 10 to 60 m with a
290 km field of view on the ground [26]. With high-frequency and high-spectral resolution
imaging, Sentinel-2 allows intensively and continuously monitoring of the Earth’s surface.
Sentinel-2 multispectral instrument imagery includes 20 m resolution SWIR bands and
10 m resolution green and NIR bands, rendering water mapping based on water indices at
10 m resolution possible.

A useful way to improve the performance of water body mapping using Sentinel-2
imagery is to produce water indices results by downscaling the SWIR bands from 20 to
10 m. Trivially, the key challenge lies in accurately increasing the spatial resolution of the
SWIR band. Spatial interpolation (such as bilinear interpolation) and image fusion (such as
pan-sharpening) are the two most widely used methods to increase the spatial resolution of
remote sensing imagery [27]. The spatial interpolation method is directly applied to coarse
spatial resolution images without requiring additional datasets. In contrast, image fusion, such
as pan-sharpening, is premised on the availability of the fine spatial resolution panchromatic
(PAN) band of the same scene, aiming to downscale coarse multispectral imagery to the spatial
resolution of the PAN band. Pan-sharpening is widely applied to remote sensing images with
coarse multispectral bands and a fine spatial resolution PAN band [28].
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Nevertheless, most previous studies primarily evaluated the effect of band down-
scaling methods or water indices on remote sensing water body extraction. However,
combinations of typical band downscaling methods and frequently-used water indices
have not been synthetically compared and analyzed. From this perspective, this study aims
to compare the results of remote sensing water body extraction based on combinations of
different band downscaling methods and water indices. Specifically, the effects of three
types of factors on water body extraction were evaluated: (1) the extraction capability of the
water indices MNDWI, AWEIsh, and WI2015; (2) the effect of the SWIR band downscaling
results based on area-to-point regression kriging interpolation (ATPRK), bilinear interpo-
lation (BIL), and the Gram–Schmidt (GS) pan-sharpening method; and (3) the segment
precision between water/non-water bodies based on the marker-controlled watershed
(MCW) algorithm.

2. Materials and Methods
2.1. Study Area

This study is a preliminary exploration to evaluate combinations of several kinds
of downscaling methods and water indices in urban cities. Therefore, a typical urban
area in Guangzhou city has been chosen for this comparative experiment. The study area
covers the northeastern part of Haizhu District and the northernmost area of Panyu District,
Guangzhou, covering a total area of more than 100 km2 (Figure 1). This urban area mainly
includes large water bodies, such as the Haizhu Wetland National Park, Huangpuyong,
and Guanzhou waterways, as well as many small water bodies. The densely distributed
buildings and their shadows in urban areas tend to significantly interfere with the remote
sensing extraction of water bodies, causing poor accuracy.
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2.2. Methods

Figure 2 shows the workflow for the remote sensing extraction of water bodies. First,
the spatial resolutions of the Sentinel-2 SWIR bands were improved to 10 m through BIL,
ATPRK interpolation [29], and GS pan-sharpening. Then, the MNDWI, AWEIsh, and WI2015
water indices were calculated using the 10 m VIS, NIR, and SWIR bands. Next, masker
threshold training was performed for each water index image, and the marker-controlled
watershed algorithm was used to realize the segmentation and extraction of water bodies.
Finally, waterbody reference data were used to evaluate and compare different combina-
tions of band downscaling methods and water indices in terms of extraction accuracy.
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Figure 2. Workflow of the remote sensing water body extraction.

2.2.1. Water Indices

NDWI is the first water index proposed for water body remote sensing extraction,
based on the combination of the green band ρgreen and the NIR band ρNIR of remote sensing
images, and is calculated as follows:

NDWI =
ρgreen − ρNIR

ρgreen + ρNIR
(1)

NDWI mainly takes advantage of the strong absorption of water in the NIR band and
the absence of strong reflectivity from vegetation [16]. It is used to mine water information
from an image by suppressing vegetation and highlighting the water body, enhancing the
clarity of the resulting images. However, NDWI considers only vegetation factors, ignoring
the two key features of buildings and soil. When extracting water information through
NDWI, the reflectivity of the green band is much higher than that of the NIR band. As such,
the extraction results are often confused with soil and building information. When NDWI
was used to extract urban water bodies, there were water bodies with more shadows of
buildings, and the effect was poor.



Water 2022, 14, 2696 5 of 15

Based on NDWI, the MNDWI modified the band combination of the water index
and replaced the NIR band in NDWI with the SWIR band ρSWIR. The calculation formula
is as follows:

MNDWI =
ρGreen − ρSWIR
ρGreen + ρSWIR

(2)

The spectral characteristics of the building shadows in the green and NIR bands were
similar to those of water. Using the SWIR band to replace the NIR band, the contrast
between water bodies and building shadows was significantly enhanced, which greatly
improved the contrast between these two ground features, ultimately promoting accurate
extraction of water body information in cities and towns. Xu [17] conducted experiments
using remote sensing images containing different types of water bodies. The analysis
revealed that, relative to NDWI, MNDWI could better extract fine features of water bodies,
including the distribution of suspended sediments and water quality. Feyisa et al. [18]
conducted experiments on Landsat TM images and proposed AWEI for factors such as low
classification accuracy and relatively unfixed threshold selection in previous water body
information extraction. AWEInsh is suitable for settings without shadows, whereas AWEIsh
is designed to eliminate shadows and other ground objects easily confused with water
information in the AWEInsh extraction results. Therefore, AWEIsh is suitable for scenes
with more shadows; its formula is as follows:

AWEIsh = ρblue + 2.5ρGreen − 1.5(ρNIR + ρSWIR1)− 0.25ρSWIR2 (3)

WI2006 is a water index created using standard variables to analyze the emissivity
of the atmospheric surface. The natural logarithm of each band of the Landsat 7 ETM+
images was used to determine the reflection coefficient and interaction conditions. It has
been applied to the extraction research of eastern Australian wetlands. In 2015, based
on WI2006, Fisher et al. [19] created a new water index, WI2015, which uses LDAC as a
coefficient to determine the best segmentation training area category. The calculation
formula is as follows:

WI2015 = 1.7204 + 171ρGreen + 3ρRed − 70ρNIR − 45ρSWIR1 − 71ρSWIR2 (4)

2.2.2. Gram–Schmidt Pan-Sharpening

Spatial interpolation and pan-sharpening algorithms are typically used to achieve spa-
tial downscaling of low-resolution bands. The most widely used pan-sharpening algorithms
include the principal component analysis (PCA) [29], hue–saturation–value (HSV) [30],
high pass filter (HPF) [31], and GS techniques [32]. Specifically, GS exhibits the highest
spectral fidelity and can maintain the consistency of the band spectral characteristics before
and after pan-sharpening; that is, the high-resolution band data obtained by downscaling
retains the spectral characteristics of the original low-resolution band. Therefore, this study
uses the GS pan-sharpening algorithm to preserve the original Sentinel-2 SWIR spectral
information as much as possible.

There is a lack of panchromatic band information in Sentinel-2 images, whereas GS
pan-sharpening requires the incorporation of high-resolution band information, similar to
the PAN band. The resolutions of all four VIS/NIR multispectral bands of the Sentinel-2
image have been determined to be 10 m. However, the correlation between the bands tends
to lead to data redundancy. The classical PCA method is widely used for the dimensionality
reduction of multispectral remote sensing image band information since PCA can compress
VIS/NIR multispectral bands into a panchromatic-like band. By linearly transforming the
four VIS/NIR bands, mutually orthogonal spectral spaces are generated, in which the first
principal component (FPC) contains the most abundant information. Therefore, the FPC
can be regarded as a 10 m panchromatic-like band. Through fusion with the FPC using the
GS method, the spatial resolution of the SWIR band can be increased to 10 m.
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2.2.3. Area-to-Point Regression Kriging (ATPRK)

ATPRK was used to perform remote sensing image band fusion. ATPRK combines the
traditional regression kriging interpolation and quantitative remote sensing scale conver-
sion theory. First, one must assume that the band reflectivity Zl(xi) is a random variable of
the grid points xi (i = 1, . . . , M) in the low-resolution band l (l = 1, . . . , L), M is the number
of grid points. Zk(vj

)
is the random variable of the grid points vj (j = 1, . . . , MF2) in the

high-resolution band k (k = 1, . . . , K), and F is the ratio of the high- and low-resolution
values. According to the regression kriging theory, the spatial downscaling results of the
band l achieved by ATPRK in the high-resolution grid v are realized by the estimation and
addition of the trend term and residual term m̂l(v) and r̂l(v), respectively), as shown in the
following formula:

Ẑ
l
(v) = m̂l(v) + r̂l(v) (5)

At a specific high-resolution grid point v0, the estimated value m̂l(v0) of the trend
item was obtained by linear regression of the value Zk(v0) at the high-resolution band k:

m̂l(v0) =
K

∑
k=0

al
kZk(v0), Z0(v0) = 1 (6)

According to the assumption of scale invariance, the regression model above is consis-
tent with the regression model established by the value Zl(x) at the low-resolution band l
and the value Zk(x) at the upscaling band k:

Zl(x) =
K

∑
k=0

al
kZk(x) + rl(x), Z0(x) = 1, ∀x (7)

where rl(x) is the regression residual term at the corresponding band l, and the regression
coefficient al

k is estimated using least squares.
After performing regression analysis on the trend item, ATPRK interpolation can

be used to implement spatial downscaling of the residual item. The ATPRK interpola-
tion downscaling results maintain the original spectral band information. The estimated
value r̂l(v0) of the residual term at the corresponding high-resolution band l, is the linear
weighted average of the residual term rl(xi) of the low-resolution adjacent grid point:

r̂l(v0) =
N

∑
i=1

λirl(xi), s.t.
N

∑
i=1

λi = 1 (8)

where N is the number of adjacent grid points, and λi is the corresponding weight value
calculated by the following Kriging equations:

γl
cc(x1, x1) · · ·

...
. . .

γl
cc(x1, xN) 1

...
...

γl
cc(xN, x1) · · ·

1 · · ·
γl

cc(xN, xN) 1
1 0



λ1
...
λN
µ

 =


γl

fc(v0, x1)
...

γl
fc(v0, xN)

1

 (9)

where γl
cc
(
xi, xj

)
is the area-to-area variogram between the low-resolution grid points on

the band, γl
fc
(
v0, xj

)
is the area-to-point variogram between the high-resolution grid points

to be estimated and the low-resolution neighboring grid points, and µ is the Lagrangian
operator. s is assumed to be the distance between the centers of any two grid points. The



Water 2022, 14, 2696 7 of 15

variograms γl
cc(s) and γl

fc(s) can be calculated by a convolution between the point-to-point
variogram γl

ff(s) and the point spread function hl(s) (* is the convolution operator) [33]:

γl
fc(s) = γl

ff(s) ∗ hl(s)

γl
cc(s) = γl

ff(s) ∗ hl(s) ∗ hl(−s)
(10)

It is essential to determine the point-to-point variogram, calculate the low-resolution
residual variogram by fitting, and then perform deconvolution inference. Notably, the point
spread function selected in this project is a simple arithmetic average operation. Thus, the
area-to-area and area-to-point variograms are converted into the mean values of multiple
point-to-point variograms for calculation.

The estimated values of the trend item and residual item of the band at the high-
resolution grid point were calculated, and the sum of these two was the final spatial
downscaling result. The above calculation process was carried out for the low-resolution
bands individually. Finally, the resolution of all bands was unified through the fusion of
high-resolution and low-resolution bands.

2.2.4. Marker-Controlled Watershed Segmentation

Previous studies have shown that the MCW algorithm is particularly suitable for
waterbody segmentation [34]. Compared with algorithms that use a single threshold to
segment water/non-water bodies, such as maximum between-class variance, it performs
better at the edges of water bodies. The typical process of using the MCW algorithm to
conduct water body extraction includes three steps: (1) marking the water body/non-water
body area for each water index image (including MNDWI, AWEIsh, and WI2015), marking
the water body/non-water body area with high reliability; (2) gradient image generation:
by applying the Sobel operator to each water index image, calculate and generate the
corresponding gradient images, which are then used to determine the boundary and
markers between water and non-water bodies; (3) performing water body segmentation
based on water body/non-water area markers and gradient images. Here, the watershed
algorithm iteratively expands each marker until all unmarked pixels are marked as water
or non-water.

The last two steps of the MCW algorithm are relatively fixed, with no parameter
involved. However, the water body segmentation result is more sensitive to the water/non-
water area marking in the first step. Therefore, it was necessary to calibrate the marking
selection parameters. In this study, the threshold method was used to automatically
generate water/non-water markings, by combining the real distribution data of the water
bodies and a pair of mask thresholds determined for each water index. The left range of
the smaller threshold and the right range of the larger oner corresponds to the non-water
and water areas, respectively. Notably, the transition range between thresholds is divided
into water and non-water bodies by the watershed algorithm.

2.2.5. Accuracy Evaluation Indicators

Taking the waterbody reference data of high-resolution remote sensing images of the
study area as the standard, the accuracy of the water body results extracted from Sentinel-2
remote sensing images were evaluated. The following four accuracy evaluation indicators
were selected: the producer accuracy (PA), user accuracy (UA), overall accuracy (OA), and
kappa coefficient. The calculation methods were as follows:
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PA =
TP

TP + FN

UA =
TP

TP + FP

OA =
TP + TN

T

Kappa =
T× (TP + TN)−∑

T× T−∑

(11)

where TP is the number of water pixels that are correctly extracted, FN is the number of
water pixels that have not been extracted, FP is the number of water pixels that are incorrectly
extracted, TN is the number of non-water pixels that are correctly extracted, T is the total
number of image pixels, and ∑ = (TP+ FP)× (TP+ FN) + (FN+ TN)× (FP+ TN).

3. Results
3.1. Band Downscaling Quality

An important criterion for evaluating the quality of a fusion image is its ability to
maintain spectral characteristics (i.e., quality preservation). The 10 m band downscaling
results generated by the three methods were upscaled to 20 m and then compared with the
original 20 m band. Figure 3 shows the scatter plots comparing the upscaled results and
the original coarse SWIR bands for the ATPRK, BIL, and GS methods. Notably, the spectral
characteristics of each method remain unchanged over different coarse bands. Comparing
the quality assurance of different methods, the GS band obtained by upscaling showed the
least correlation with the original band. Compared with the GS method, the results of the
BIL method had a stronger correlation with the original data but evidently underestimated
the high-value area. A significant advantage of the ATPRK method for band fusion was its
quality preservation. The comparison results show that ATPRK achieves non-destructive
preservation of the original band spectrum information.
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3.2. Water Indices Results

Figure 4 shows the three types of water index results obtained using the BIL, ATPRK,
and GS downscaling methods. It is observed that by using the three water indices, the
contrast between water bodies and land areas are better highlighted, and the boundaries of
the water bodies are sufficiently clear. In the MNDWI image, the contrast between water
and land is particularly strong. Conversely, the range of water index values calculated
using the SWIR band by downscaling using the ATPRK method was wider than that of
the GS and BIL methods. A characteristic of kriging interpolation compared with other
interpolation methods was that its interpolation result might exceed the original data range.
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downscaling methods.

Figure 5 shows the histograms of MNDWI, AWEIsh, and WI2015 water indices using
ATPRK, BIL, and GS downscaling methods. All histograms have bimodal shapes, with
threshold ranges between water and non-water bodies located at the bottom. The his-
togram results reveal that the technique of using single threshold values to exactly segment
water/non-water bodies belongs to the category of theoretical cases for water index-based



Water 2022, 14, 2696 10 of 15

extraction methods. Comparatively, the AWEIsh results derived from the ATPRK, BIL, and
GS band downscaling methods all had narrow threshold ranges. Furthermore, for all three
water indices, the results derived from the ATPRK and BIL interpolation methods yielded
similar numerical ranges, which were wider than those from the GS method.
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3.3. Analysis of Water Body Commissions and Omissions

The MCW segmentation algorithm was used to segment each water index image
to accurately extract the water body area. By superimposing and comparing the water
extraction results with the reference data, misclassified and unidentified water body areas
were obtained, as shown in Figures 6 and 7, respectively.

In urban areas, the features most easily misclassified as water bodies are building
shadows. Here, we focus on two high building density regions within the study area,
which showed obvious shadows on the original image, characterized by similarly low-
reflectivity features as water bodies. It can be observed that the water bodies extracted
from the water index images were affected by the misclassification of building shadows to
a significant extent (e.g., the misclassification in the yellow box). The MNDWI, AWEIsh,
and WI2015 indices corresponding to the BIL method easily misclassified building shadows
as water bodies. This was due to the fact that although the BIL interpolation method
maintains the original spectral information of the low-resolution NIR band to a certain
extent, it does not introduce other high-resolution band information. Therefore, the effect of
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improving the spatial details is limited. In comparison, the water body extraction results of
the MNDWI_ATPRK and WI2015_GS combinations performed better; only a few building
shadows were mistakenly identified as water bodies. The results show that the integration
of high-resolution band information was particularly important for improving downscaling
results of low-resolution bands, which significantly reduced the probability of water body
identification. On the other hand, it is difficult to achieve the same effect by relying only on
simple spatial interpolation methods (such as the BIL interpolation).
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Many small water bodies in the study area were missed or poorly estimated by
the three water indices since the ATPRK interpolation, BIL interpolation, and GS pan-
sharpening methods unify the spatial resolution of all bands involved in the calculation
of the water index to 10 m. Therefore, it is naturally impossible to extract sub-pixel-level
small water bodies with a width of less than 10 m. Specifically, the MNDWI_GS and
AWEIsh_GS combinations yielded significant omission errors of a small stream shown in
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the red box of Figure 7, indicating that the GS pan-sharpening method may be unsuitable
for the extraction of small water bodies.
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3.4. Quantitative Evaluation of Water Body Extraction Accuracy

In addition to the qualitative and intuitive expression of the results of inaccurate ex-
tractions and omissions of water bodies, a variety of precision indicators such as UA were
used to quantitatively evaluate the water body extraction results of different downscaling
methods and water index combinations. Table 1 shows the accuracy verification indices of
water body extraction using the three water indices generated by different downscaling
methods. Overall, each combination achieved good water extraction results; several accu-
racy evaluation indicators, such as UA, were above 80%. The MNDWI against ATPRK had
the best UA accuracy (95.02%). The WI2015 for GS provided the best PA accuracy (89.10%),
OA accuracy (96.79%), and kappa coefficient (0.897). Overall, the WI2015 calculated using
GS downscaling band information yielded the best water extraction effect.
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Table 1. Quantitative evaluation of water body extraction results in different downscaling methods
and water indices combinations.

Water
Indices

Downscaling
Methods UA PA OA Kappa

MNDWI
ATPRK 95.02% 86.79% 96.45% 0.885

BIL 94.12% 84.84% 95.92% 0.867
GS 93.55% 87.56% 96.31% 0.882

AWEIsh

ATPRK 92.32% 87.81% 96.11% 0.876
BIL 91.51% 87.40% 95.87% 0.868
GS 93.80% 88.70% 96.57% 0.891

WI2015

ATPRK 93.65% 87.99% 96.41% 0.885
BIL 92.45% 88.54% 96.27% 0.881
GS 94.48% 89.10% 96.79% 0.897

The ATPRK method is designed to preserve the spectral information of observed im-
ages. However, the water mapping results of AWEIsh and WI2015 from ATPRK were poorer
than those from GS. The water mapping results are related to the ability of downscaling
methods to maintain spectral information. Still, they are also affected by other properties,
such as the preservation of spatial details. Similar results were found in a previous study [5].
Although the HPF downscaling method can better preserve the spectral information of
the original image, it cannot produce water body maps with higher accuracy than the
other methods.

The extraction effects of the three water indices in the study area were reflected by the
average accuracy indices of the water body extraction results corresponding to different
downscaling methods. MNDWI displayed the highest average UA accuracy (94.23%),
implying the least commission errors. WI2015 has the highest average PA value (88.54%),
meaning the lowest omission errors. Likewise, the OA and kappa coefficients returned
the best results for water bodies extracted by WI2015. Therefore, in this study, it can be
concluded that WI2015 performed best on the urban water bodies mapping, while MNDWI
and AWEIsh provided similar performances.

4. Conclusions

Based on Sentinel-2 remote sensing images, this study used BIL interpolation, ATPRK
interpolation, and panchromatic sharpening GS spatial downscaling methods to increase
the spatial resolution of the SWIR bands to 10 m and calculate the corresponding water
indices MNDWI, AWEIsh, and WI2015. The MCW water segmentation algorithm was used
to segment the water/non-water body area on each water index image and qualitatively
analyze the water body extraction, inaccurate extractions, and omission results. Finally,
combined with UA, PA, OA, and the kappa coefficient, a quantitative evaluation of the
water body extraction results by combining the different spatial downscaling methods with
water indices was conducted.

Our results indicate that the water index based on Sentinel-2 remote sensing images
can effectively extract water body information in urban areas, especially river water bodies.
The water body extraction accuracy of different water indices remained above 0.8. The
combination of the GS spatial downscaling method and the WI2015 water index yielded the
best water body extraction efficiency, with a kappa coefficient of 0.897. The effectiveness
and feasibility of using satellite remote sensing technology to monitor the distribution of
water bodies were verified.

Limited by the spatial resolution of Sentinel-2 images, the extraction results of each
water index did not have enough resolution to provide information on sub-pixel-level,
small water bodies with a width less than 10 m. Extracting small water bodies has long
been a challenge in remote sensing water body extraction research. In follow-up research,
we will implement high-resolution remote sensing images (such as GF-2 images) to com-
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paratively assess the extraction capabilities of various water indices for small water bodies
in urban areas.
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