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Abstract: Water supply is strategic for the development of society. The water distribution in nature
follows patterns linked to geographic and territorial issues. Climate fluctuations aggravate shortage
problems in semi-arid regions. This study aims to develop a systematic review of research on water
scarcity in semi-arid areas through bibliometric methods that allow the analysis of its structure,
performance, evolution, and future trends. The methodology considers three phases: (i) literature
review, (ii) data cleaning and processing, and (iii) analysis of the research field and future trends.
The intellectual structure of water scarcity in semi-arid zones covers 2206 documents with the
collaboration of sixty-one countries, distributed in studies carried out in 54 years (1967 to 2021). This
field of research has been growing, especially since the 21st century (93.1% of the documents). The
countries that study the issue the most are those with high population rates and large consumption
patterns, such as the United States and China. There are two central areas of interest led by the
terms "water scarcity" and "water stress" due to the intensive use of the resource for agriculture and
the management of the water–energy–climate nexus. Thus, the most significant journals studied
relate remote sensing to resource management, and the most cited are related to agriculture. This
research made it possible to consider future topics such as the study of anthropogenic effects and
climate change, the accuracy and applicability of models, and future trends in conventional and
unconventional agriculture and resources.

Keywords: water scarcity; water stress; semi-arid zone; bibliometric analysis; intellectual structure

1. Introduction

Water scarcity is a high-impact global risk [1]. Over the last 100 years, water use has
accelerated, with the current growth rate being 1% per year [2]. Water scarcity refers to
the relationship between the supply of water resources and demand [3,4]. Thus, when
discussing scarcity, we also discuss water’s uneven temporal and spatial variations [5–7].
Regions with scarcity correspond to a third of the population of developing countries, or a
quarter of the world population [8,9].

Population growth, economic development, and consumption patterns intensify the
problem of scarcity [9,10]. Added to this is the contamination of groundwater due to
agricultural load, wastewater and salinization [11–14]. Furthermore, climate change can
also affect demand and precipitation [2,15–17]. These problems lead to the search for
solutions to conserve the quality and quantity of water, especially in semi-arid areas [18],
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such as the management, conservation and monitoring of groundwater [19,20]; wastewater
treatment for pollution reduction, sustainable use and human development [2,21,22]; land
use management [23]; and technologies for capturing and reserving water [13].

In semi-arid regions, water scarcity is aggravated, threatening food production, ecosys-
tems and health [8,24–26]. A rapid expansion of semi-arid areas of the northern Mediter-
ranean, southern Africa, and North and South America is expected [27]. Therefore, un-
derstanding the consequences of hot weather and semi-arid conditions is essential to
generating development strategies. The semi-arid climate refers to the fluctuations between
the dry and rainy seasons [28]. The countries with the most severe development problems
are those where climate affects access to water [15,29].

Access to water to satisfy the basic needs of humanity is a fundamental condition for
survival and the first step towards sustainable water use [30,31]. However, globally, water
is trading on the market [32], and water resources are increasingly scarce, which causes
socio-hydrological impacts on water distribution processes [33,34]. Therefore, it is essential
to understand how these water–human systems evolve in the face of water scarcity [35,36]
through participatory and sustainability criteria [37–40].

The studies mentioned in this article have addressed the issue of water scarcity from
different perspectives, such as future scarcity, scarcity modelling and especially its interaction
with climate change, food security, management policies and economics [8,17,23,28,31,41].
Nevertheless, due to the seriousness of this problem, it is necessary to explore the intellec-
tual structure of water scarcity in semi-arid zones [42]. Therefore, a bibliometric study in
this field would be an additional contribution to existing research on the subject.

This study analyses the scientific literature on water scarcity using bibliometric tech-
niques to comprehensively assess the structures and development of the field [43,44]. The
analysis of water scarcity is essential to identify current and future research areas, given
the growing and aggravating need to supply, especially in semi-arid regions.

This article aims to explore: what has been the development of research trends on water
scarcity in semi-arid areas? Which are the most productive and influential contributors
(countries and journals) in the field of water scarcity in semi-arid zones? What are the most
influential publications in this field? What are the areas of interest associated with this
intellectual structure? Therefore, the aim is to develop a systematic review of research on
water scarcity in semi-arid areas using bibliometric methods that allow the analysis of its
structure, performance, evolution, and future trends in this field of study.

2. Materials and Methods

The research structure presents two phases, as detailed in Figure 1. The first phase
corresponds to a literary review of the subject, cleaning and processing of information
downloaded from the chosen databases. The second phase uses bibliometric techniques
in conjunction with science mapping in VOSviewer (software version 1.6.18). Finally, this
phase presents the analysis and interpretation of the data, the conclusions, and the future
lines of research.

2.1. Phase I: Information Analysis and Processing

The systematic review is a methodology that allows for exploring areas of research
through data collection and synthesis criteria that must be reproducible [45,46]. This
procedure is like the one presented in the bibliometric analysis. One of these bibliometric
studies pioneers is Derek J. de Solla Price, who considers that the network of articles creates
patterns of research trends [47].

Bibliometric analysis is a quantitative method synthesising finding from the research
area and representing them spatially [48,49]. This method covers various areas of knowl-
edge such as environmental sciences [19,50–52], social sciences [53], geosciences [54] or
interdisciplinary fields [55].

This phase encompasses two steps:
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Figure 1. Outline of the research methodology.

2.1.1. Search Principles and Database Criteria

The application of the bibliometric method requires the choice of a database. The
most-recognised multidisciplinary databases are WoS and Scopus [56,57]. Both databases
rank journals by their productivity and the total number of citations to obtain an impact
value, thereby acquiring journal activity, coverage and influence [58].

In this study we employed the Scopus database, the most widely used academic
database due to its broad coverage of titles, journals and areas of knowledge [59,60]. This
database is critical and robust due to its coverage and impact [61,62]. In addition, Scopus
has more research in the field of earth sciences than other databases [54] and has a broad
coverage of journals favouring the natural sciences, biomedical and engineering [63].

The bibliographical research allowed to establish the search terms for scarcity by
supply and demand. However, the search does not cover drought since it is considered a
natural and transitory event [64]. Instead, the search considers the terms: water scarcity,
water shortage, water stress, water crisis [7,64–66], lack of water, dearth of water, or water
penury [28,67–69] and the possible variations of the semi-arid.

The database download made in Scopus, dated January 2022, had the following search
formula: ((TITLE-ABS-KEY (“water shortage*”) OR TITLE-ABS-KEY (“water stress”) OR
TITLE-ABS-KEY (“water crisis”) OR TITLE-ABS-KEY (“lack of water”) OR TITLE-ABS-KEY
(“dearth of water”) OR TITLE-ABS-KEY (“water penur*”) OR TITLE-ABS-KEY (“water
scarcit*”) AND NOT TITLE-ABS-KEY (drought*))) AND ((TITLE-ABS-KEY (“semiarid”)
OR TITLE-ABS-KEY (“semi-arid”) OR TITLE-ABS-KEY (“semi arid”))), obtaining a total of
2395 documents.
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This equation comprises inclusion and exclusion criteria. First, the search included
English, the most frequent language [57], covering 93.1% of the documents. Additionally,
the study covers all types of documents for better research results [70]. Finally, the search
established exclusion criteria for the year 2022 because it is the current year. With this, the
final search decreases to 2210 papers for 54 years (1967 to 2021).

2.1.2. Data Processing Software

The result of the Scopus search is a database of 2210 documents exported in CSV
(Comma Separated Value) file format. The download includes citations, bibliographical
information, abstract and keywords fields, and references. The data analysis included three
software: Microsoft Excel, VOSviewer and ArcGIS.

i. Microsoft Excel (software version 2207 Build 16.0.15427.20182, Microsoft Corpora-
tion, Redmond, WA, USA) allowed executing a pre-processing of the data, in which
programming errors, erroneous records and documents discordant with the theme
are corrected or eliminated [71,72]. Under these considerations, the pre-processing
obtained 2206 papers. This software also allowed performance analysis of scientific
production by reviewing authors, subject area, years, and countries [43].

ii. VOSviewer (software version 1.6.18, Leiden University’s Centre for Science and Tech-
nology Studies (CWTS), Amsterdam, The Netherlands) is free software that allows
processing information to obtain bibliometric networks maps based on bibliographic
information downloaded from database (e.g., Web of Science, Scopus) or data re-
trieved through the Application Programming Interface (API) (e.g., Crossref). The
software is used to establish relationship maps between different units of analysis
(author, document, journal, country, keywords, institutions) using bibliometric tech-
niques (bibliographic coupling, co-author, co-citation, co-word) [73]. This software
categorises the themes to graphically represent the lines of research [74–76]. Its use
covers various research areas such as management [77–80], medicine [81,82], environ-
mental sciences [83–85] and the field of earth sciences [43,86,87].

iii. ArcGIS (software version 10.5, ESRI, Redlands, CA, USA) is a visualisation tool that
allows scientific publications to be geographically located [88]. As a result, the high
numbers of publications show the most active countries in the field of research [89].

iv. Bibliometrix R-Tool (software version 3.2.1, software developed by University of
Naples, Naples, Italy): It is an open-source software developed in R language, which
allows qualitative research of data and its visualization in the structures of con-
ceptual, intellectual and social knowledge [90–92]. The software has been used
in various bibliometric studies related to earth sciences, environmental sciences
and management [93–96].

2.2. Phase II: Research Field Analysis

The analysis of the research field comprises two approaches [97]:

i. The performance analysis is a descriptive method that evaluates the productivity and
impact of a research area of interest [98]. Performance analysis was used to study
the scientific production and evolution of the research on water scarcity in semi-arid
zones, using base indicators of publications such as number of documents, countries’
contributions, institutions, journals and authors.

ii. Scientific mapping allows spatial representation of how the different units of biblio-
metric analysis (e.g., documents, authors, keywords) are related to each other [99]. In
this research, we used co-citation (journal) and co-occurrence (author’s keywords)
analysis [60]. Co-citation analysis allows connecting documents, authors or jour-
nals, based on joint appearances in the reference list [37,48]. On the other hand,
co-occurrence analysis connects keywords when they appears in the title, abstract,
list of keywords or author-generated keyword lists [100]. Both analyses are used
to evaluate and obtain an overview of the structure and evolution of research top-
ics [101]. The mapping used a threshold of 40 citations to produce ordered maps [102].
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Journal co-citation allows analysing of the most-cited journals, and the keywords
co-occurrence analyses the themes associated with the field of study. This keyword
co-occurrence analysis helps to establish future research lines.

3. Results
3.1. Performance Analysis
3.1.1. Scientific Production

Scientific production covers 2206 documents in 54 years (1967 to 2021), divided into
three periods according to the behaviour of the curve—the first period is for introduction,
the second for development and maturity (Figure 2).
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1. Period I (1967–1996)—Introduction.

In this period, 83 investigations were published, representing 3.71% of the scientific
production of this field of study, with 2470 citations. The first investigations focused on
plants’ water requirements for agricultural production efficiency—groundwater manage-
ment for the supply industrial sector and human consumption [103]. Techniques for the op-
timal use of water resources, such as irrigation, runoff or desalination, are examined [104–106].
Additionally, in conditions of hydric stress, the species’ adaptability [107].

Other researchers analyzed the influence of water scarcity on trophic interactions [108],
productivity [109], as well as crop yield and biomass [110]. Influence, which implies the
analysis of the optimal use of water resources, especially in agriculture [111]; and in the
study of the adaptation processes of plants to periods of scarcity in semi-arid and arid lands,
such as fructan production [112], the gradual fall of plant leaves [113], efficient irrigation
and optimal use of fertilizers [114], adaptation to saltwater consumption [115,116], patterns
of water consumption between pastures and shrubs [117], reversible photoprotective
mechanisms [118].
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2. Period II (1997–2014)—Development.

This period is characterized by greater research development with 909 publications,
representing 41.11% of the total. These publications concentrate the majority of citations in
this field of study (70.09%). In this period, there is a growing interest in climate change adap-
tation, satellite mapping, modelling, water management and agriculture. Some research
addresses climate change and its effects on ecosystems and species [119], grasslands [120],
steppe [121], land use [122,123] and agricultural soils [124], as well as the effects of climate
change on water resources [125,126], water stress [127], soil water availability [120], evap-
otranspiration [128], runoff farming [129]. Other researchers address the use of satellite
mapping to map the use of water resources [130], evapotranspiration [131,132], vegetation
dryness [133] and groundwater [134].

In this period, some relevant studies are presented on mechanisms and technologies
that seek to improve water use efficiency in agriculture [135], given the food production
projections [136]. One of the most important studies in this field is the satellite mapping
of evapotranspiration in agriculture [131]. In addition, research studies the influence of
mountainous areas on the supply of water resources [137], environmental degradation
as an aggravating factor of water scarcity [138], and the places where arid lands expand
and increase [27].

3. Period III (2015–2021)—Maturity.

Finally, the third-period analysis shows a growing interest on the part of the scientific
community in the subject of study, due to the increase in publications, with a total of
1214 (55.18%) and 12,937 citations (Figure 2). The average annual production exceeds
170 documents, registering a peak in 2021 (266 documents). Evidence corroborates that this
field of study is booming. Some studies cover the selection of suitable vegetation for refor-
estation [139] and replanting species’ positive and negative effects [140]. Furthermore, food
sustainability strategies improve crop yields under stress conditions [141,142]. Solutions
and best practices in water resource management [143] adopt measures such as wastewater
management for the circular economy [144]. Likewise, water use models and basin monitor-
ing allow knowing their fluctuations [145] and vulnerability and promote the sustainable
use of freshwater [20,146,147]). In this period, some topics observed in the previous period
continue to be investigated, as well as new additions, such as water stress [148–152], water
scarcity [153–157], water use efficiency [158–162], irrigation deficit [158–164], evapotranspi-
ration [165–167], climate change [168–170] and remote sensing [158,171–174].

To assess whether the scientific production in water scarcity in semi-arid zones fits the
Price’s Law of exponential scientific growth [175], it has been tested with regression models
to obtain the model with the best adjustment to data. The increase in production adjusts
to an exponential curve (according to the equation y = 0.845e0.1203x, Figure 2) given that
the value of R2 (coefficient of determination) is 0.9875, according to Price’s law [175]. The
value of the coefficient close to one guarantees that the field of research is growing [176].

3.1.2. Language and Type of Documents

About the documents analysed, the thematic area of most significant interest is agricul-
ture and biological sciences (31.1%) since sustainable agriculture is one of the most critical
challenges facing water scarcity [177,178]. The following fields are environmental sciences
(29.5%) and earth and planetary sciences (12.9%). The publications comprise 10 languages,
where 93.1% are written in English and 3.4% in Chinese [179,180]. The predominance
of English is because it is a language that facilitates international collaborations among
researchers [135,181]. Other minor languages are Portuguese, Spanish, French, Persian, Ger-
man, Italian, Japanese, and Russian. Regarding the type of documents, 83.8% correspond
to scientific articles. Figure 3 shows other documents used in this knowledge structure,
where a smaller group of documents (0.5%) corresponds to books, notes, erratum, and
short surveys.
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3.1.3. Contribution by Countries

The review of scientific production by country allows knowing the regions/countries
with the highest number of scientific publications related to the research field using the
affiliation location of the authors [182,183]. The study covers 61 countries, with the most
significant contribution coming from developed countries compared to developing coun-
tries. The map in Figure 4 presents a colour classification of production by country. ArcGIS
10.5 software generated this map.

Water 2022, 14, x FOR PEER REVIEW 8 of 27 
 

 

water stress mitigation, and efficient water use [213,214]. The most-cited research from 
China has collaboration with France [140]. 

 
Figure 4. Distribution of scientific production by country. 

3.1.4. Most-Cited Documents 
Citations of publications allow the evaluation and identification of studies in the field 

[37]. The scientific production analysed covers 2206 documents with 51,518 citations. Ta-
ble 1 presents the 10 most-cited documents. These documents represent 10.8% (5585) of 
the total citations. The studies investigate global satellite mapping [27,131,137], effects of 
climate change [119,138,140] and especially agriculture [120,135,136,215]. Of these inves-
tigations, four are from journals from the United Kingdom [119,120,140,215], three are 
journals from the Netherlands [135,136,138], and three were from the United States 
[131,137] and one from Germany [27]. 

Table 1. Most cited documents. 

Rank Autor Article Journal CIT 1 

1 
Allen R.G., et al 

[131] 
Satellite-based energy balance for mapping evapotranspira-

tion with internalized calibration (METRIC) - Model 
Journal of Irrigation and 

Drainage Engineering 
1095 

2 Feng X., et al [140] Revegetation in China's Loess Plateau is approaching sus-
tainable water resource limits 

Nature Climate Change 663 

3 
Viviroli D., et al 

[137] 
Mountains of the world, water towers for humanity: Typol-

ogy, mapping, and global significance Water Resources Research 617 

4 Deng X.-P., et al 
[135] 

Improving agricultural water use efficiency in arid and 
semiarid areas of China 

Agricultural Water Manage-
ment 

573 

5 Hughes L. [119] Climate change and Australia: Trends, projections, and im-
pacts 

Austral Ecology 538 

6 Feng S., Fu Q. [27] Expansion of global drylands under a warming climate 
Atmospheric Chemistry and 

Physics 458 

7 
Wand S.J.E., et al 

[215] 

Responses of wild C4 and C3 grass (Poaceae) species to ele-
vated atmospheric CO2 concentration: A meta-analytic test 

of current theories and perceptions 
Global Change Biology 455 

Figure 4. Distribution of scientific production by country.

The results indicate that the United States and China have the most considerable
contribution, followed by Spain, Iran, Brazil, India, and Australia, in hierarchical order. The
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top-three contributing countries also have the highest citation rates, followed by Australia
and France. Research indicates projected scarcity conditions for 2050 in southern Mexico,
southern and midwestern United States, northern Africa and China, eastern and central
Asia, the Middle East, and north-western Brazil [184,185]. These aggravating conditions
estimate social impacts that require immediate actions [27].

The collaboration between the first three countries (United States, China and Spain)
established an evolutionary review of irrigation techniques for sustainable agriculture [186].
The United States and China present the most significant collaboration with 74 documents.
The most-cited cooperation is a study that determines the expansion of drylands [27]. In
addition to the analysis of efficient reforestation in China [138], they collaborate in research
on models for decision-making [145,171,187,188], especially in agricultural issues such as
water absorption and optimal irrigation in plants [189–195].

The United States collaborates on 18 documents with Spain, the most-cited research
being the treatment and use of wastewater [196]. In addition, these countries investigate
the effects of climate change in the Mediterranean [197] and the interaction between plants
and irrigation [198–203]. Furthermore, the United States and Iran study the effects of
water stress on plants [148,204,205] and collaborate with Brazil to investigate adaptation
strategies to water demands [206,207]. Finally, the collaboration with Japan on satellite
mapping of evapotranspiration is its most-cited research [131].

China and Spain investigate soil moisture and plant restoration [208]. In addition,
China has collaborations with other Asian countries, such as India and Pakistan, where it
researches management strategies for agriculture [162,209,210], climate change [211,212],
water stress mitigation, and efficient water use [213,214]. The most-cited research from
China has collaboration with France [140].

3.1.4. Most-Cited Documents

Citations of publications allow the evaluation and identification of studies in the
field [37]. The scientific production analysed covers 2206 documents with 51,518 cita-
tions. Table 1 presents the 10 most-cited documents. These documents represent 10.8%
(5585) of the total citations. The studies investigate global satellite mapping [27,131,137],
effects of climate change [119,138,140] and especially agriculture [120,135,136,215]. Of
these investigations, four are from journals from the United Kingdom [119,120,140,215],
three are journals from the Netherlands [135,136,138], and three were from the United
States [131,137] and one from Germany [27].

Table 1. Most cited documents.

Rank Autor Article Journal CIT 1

1 Allen R.G., et al [131] Satellite-based energy balance for mapping evapotranspiration
with internalized calibration (METRIC)-Model

Journal of Irrigation and
Drainage Engineering 1095

2 Feng X., et al [140] Revegetation in China’s Loess Plateau is approaching sustainable
water resource limits Nature Climate Change 663

3 Viviroli D., et al [137] Mountains of the world, water towers for humanity: Typology,
mapping, and global significance Water Resources Research 617

4 Deng X.-P., et al [135] Improving agricultural water use efficiency in arid and semiarid
areas of China

Agricultural Water
Management 573

5 Hughes L. [119] Climate change and Australia: Trends, projections, and impacts Austral Ecology 538

6 Feng S., Fu Q. [27] Expansion of global drylands under a warming climate Atmospheric Chemistry
and Physics 458

7 Wand S.J.E., et al [215]
Responses of wild C4 and C3 grass (Poaceae) species to elevated
atmospheric CO2 concentration: A meta-analytic test of current

theories and perceptions
Global Change Biology 455

8 Liu W., et al [120]
Predominant role of water in regulating soil and microbial

respiration and their responses to climate change in a semiarid
grassland

Global Change Biology 412

9 Cao S., et al [138] Excessive reliance on afforestation in China’s arid and semi-arid
regions: Lessons in ecological restoration Earth-Science Reviews 387

10 Wallace J.S. [136] Increasing agricultural water use efficiency to meet future food
production

Agriculture, Ecosystems
and Environment 387

1 CIT: Citations.
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3.2. Bibliometric Mapping Analysis

The VOSviewer software allows mapping the structure of the investigation. This
software applies the visualization of similarities (VOS) to calculating a matrix to create
two-dimensional bibliometric maps [216,217]. The force of attraction between the nodes is
proportional to their similarity [97].

3.2.1. Co-Occurrence of Author Keywords

Co-occurrence analysis identifies the frequency of words that the author classifies as
keywords for the article. This analysis determines the research areas and themes of the
intellectual structure of a field of study [43,218,219]. Using the VOSviewer 1.6.18 software
allowed the creation of the network of co-occurrences of author keywords. This network
encompasses 5,424 keywords, with 90 of these keywords matching at least 10 times. These
90 words (nodes) represent relevant topics. The clusters are the nodes set, representing
the research lines or topics. Figure 5 presents the semantic map with 90 nodes (author
keywords) and 7 clusters (colour groups).

Cluster 1 (red colour) “water scarcity management” comprises 34 items with 1061 occur-
rences, where the terms water scarcity and irrigation stand out. This cluster’s articles present in-
formation on productivity improvements and water use management [187,220,221], especially
for irrigation efficiency, pollution reduction, recycling and water-saving [144,187,222–226].
There is also evidence of human pressure due to water demand in the face of climatic ef-
fects [197,227–229] and its relationship with land use for water and food security [230–233].

Cluster 2 (green colour) “water use in crops” presents 14 items with 461 occurrences,
where the most frequently used terms are water use efficiency and deficit irrigation. This
cluster has a special interest in the efficiency of water use in agriculture in the face of
emerging global changes [136,162,234]. Research for sustainable food production [159,235]
encompasses water productivity [236,237], crop type studies, efficient irrigation, and nutri-
ent demand [214,238–242].
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Cluster 3 (blue colour) “evapotranspiration” integrates 10 items with 267 occurrences.
In this cluster, the most relevant terms are evapotranspiration and irrigation scheduling.
The studies investigate moisture losses by evaporation/transpiration [131,243] and their
link to irrigation, given their effect on yield and plant components [242,244–246]. In
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addition, these studies assess how water depletion affects crop yields [234,245,247,248] and
evapotranspiration as a function of reforestation and biomes [249,250].

Cluster 4 (yellow colour) “water stress” presents water stress and water footprint as
prominent terms, out of 10 items with 365 occurrences. In this cluster, the adaptation of
plants to limited water availability is studied [112,178]. The analysis of the effects of water
scarcity on food and meat production [207,251–253] and the evaluation of the impact on
water consumption and use by human activities [185,254], land use [230], rainfall variability
and aquifer recharge [255–257].

In cluster 5 (purple colour), “water productivity”, the terms water productivity, dry-
land and food security stand out. This cluster comprises nine items with 145 occurrences.
The research relates crop productivity prediction models to drainage simulation, evap-
otranspiration and nutrient regulation [150,225,258]. Also, efficient crop, water and soil
management is studied [209,245,259], especially for food security [153,224,260,261].

Cluster 6 (light blue colour) “soil moisture” comprises seven items with 122 occur-
rences, where soil moisture and soil water content are its most relevant terms. This cluster
includes water conservation, humidity and soil degradation research, given its close rela-
tionship with plant cover [194,262–264]. Studies suggest vegetation influences drainage
networks, runoff, and hydrological patterns [265–268]. In addition, the effects on crops
against nutrient content and carbon uptake are studied [269–271].

Cluster 7 (orange colour), called “model application”, encompasses six items with
87 occurrences and presents the terms modelling and nitrogen among the most important.
The articles in this cluster analyse models that include simulations in conjunction with field
observations. These models study the relationships between soil, water, atmosphere and
plants for predictions of changes and behaviours [236,272–275]. In addition, the studies
analyse management models for allocating water resources [188,276]. Finally, the research
evaluates the relationship between soil type, water/nutrient use, and seasonal changes
related to crop productivity [204,215,277–279].

When considering the evolution of the various topics in this field of study, it was
visualized using a Sankey diagram (see Figure 6), which allows multiple attributes to be
observed under the same graph [91]. This diagram was made with the Bibliometrix R-Tool
software, using the Biblioshiny library. Figure 6 shows the evolution of the different themes
in periods I (1967–1996), II (1997–2014) and III (2015–2021).
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In the first period, it is observed how water stress and groundwater stand out as the
main research topics. In the second period, these main themes are broken down into water
stress related to stomach conductance and groundwater with water scarcity. The latter was
the largest field of research and appeared to new topics such as irrigation, water shortage,
growth, and water-use efficiency. Water shortage appears as a concept related to scarcity
driven by the average availability of water per inhabitant, which differs from water stress
when the demand for the resource exceeds the amount available. In the last period, the two
themes of water stress and water scarcity continue to be a topic of interest. However, new
themes such as precipitation appear, which are related to changes in the extreme climatic
events that the planet experiences, a phenomenon that is intensified in the semi-arid region.
This period is important because it shows how climate change generates other problems
for the scientific community, such as increasing the irrigation deficit and its relationship
with food security.

Additionally, Figure S1 exhibits the evolution of the themes that the scientific commu-
nity has used with a frequency of 10 keywords. This figure highlights how germination
issues are displaced by applications of Geographic Information Systems (GIS) tools. GIS has
undergone advances in its use, generating new topics of interest, such as the Soil and Water
Assessment Tool (SWAT). SWAT develops hydrological models to address environmental
problems. His study in recent years is opening a critical potential line of research.

3.2.2. Journal Co-Citation

Co-citation is the frequency with which two journals are cited together [280]. Since
citations are a measure of influence, this allows for mapping the flow of research [48,218]
and insight into the intellectual structure of the field [43,281]. Thus, the more frequent the
citation, the more likely there is a similarity between their research fields. This analysis
results in the academic community of the area in question [43,282].

Cluster 1 (red colour) “Hydric resource management” encompasses 46 journals with
8576 citations, where the following stand out: Journal of Hydrology (J. Hydrol., 1692 cita-
tions), Desalination (600), Water Resources Management (Water Resour. Manag., 579) and
Science of the Total Environment (Sci. Total Environ., 518 citations). These journals originate
in the Netherlands and cover hydrology, environment, and management strategies.

Cluster 2 (green colour) “water management in agriculture” presents 10,711 citations
in 42 journals. In this cluster, the journals with the most citations are Agricultural Water
Management (Agr. Water Manage., Netherlands, 3484 citations), Irrigation Science (Irrig.
Sci., Germany, 798), Journal of Experimental Botany (J. Exp. Bot., United Kingdom, 629).
These journals address topics related to agriculture, irrigation, and plant sciences.

Cluster 3 (blue colour) “production agriculture” includes 34 journals with 6916 cita-
tions. In this cluster, the following stand out for their number of citations: Journal (Agron.
J., United States, 1234), Field Crops Research (Field Crops Res., Netherlands, 842) and Plant
and Soil (the Netherlands, 687). These journals present experiments and models of crops,
ecology, and plant-soil interactions.

Cluster 4 (yellow colour) "natural and social water sciences" has 34 journals with
8379 citations. His most notable journals are Water Resources Research (Water Resour. Res.,
United States, 911 citations), Agricultural and Forest Meteorology (Agr. Forest Meteorol.,
Netherlands, 900), and Remote Sensing of Environment (Remote Sens. Environ., United
States, 812). These journals deal with water, plant, and soil science topics, sometimes using
remote sensing as a prominent factor.

Cluster 5 (purple colour) “ecology and environment” has 28 journals that include
4,752 citations, among which the following stand out: Oecologia (Germany, 540 citations),
Journal of Arid Environments (J. Arid Environ., United States, 498), Tree Physiology (the
United Kingdom, 483). The studies of these journals include models and applications of
ecology, botany, ecosystems, and the environment.

Cluster 6 (light blue colour) “engineering in agriculture” comprises eight journals with
929 citations. Transactions of the Asabe (Trans. Asae, United States, 222 citations), Journal
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of Irrigation and Drainage Engineering (J. Irrig. Drain. Eng., United States, 176), Irrigation
and Drainage (Irrig. Drain., United Kingdom, 156). These journals present topics on the
application of technologies for water management in agriculture.

4. Discussion

The intellectual structure of water scarcity in semi-arid zones encompasses 2206 doc-
uments with 51,518 citations, distributed over 54 years of studies (1967 to 2021) with the
collaboration of 61 countries. This scientific production presents 10 languages, highlighting
English and publications of the type of scientific articles.

Research in this field has shown a growing interest on the part of the academic world,
given that inefficient management of water resources, soil and crops are often added
to water scarcity [209]. Thus, scientific production presents two periods of progress,
defined for the 20th and 21st centuries. This last period registers an accelerated in-
crease in research (93.1%), marked by the relationship between climate change and water
scarcity [187,228,283], global trends in resource consumption patterns, technological devel-
opment and population growth [66,227,234,284].

The countries with the most significant contribution to this scientific production are
the United States and China (Figure 4). Both are close collaborators due to their high
population rates and their patterns of water resource consumption, among which massive
agricultural production stands out [254,285,286]. However, the most outstanding journals
and research on the subject belong to the Netherlands, United Kingdom, United States
and Germany.

The networks of co-occurrence of keywords and co-citation of journals served to
analyse the intellectual structure of the research.

The keyword network presents a bimodal model that exhibits two central areas of inter-
est, led by the terms “water scarcity” and “water stress” (Figure 5). This duality may be due
to the pressure exerted on water, especially by extracting this resource for agricultural con-
sumption (70%) and managing the water–energy–climate nexus [147,227,286]. In this figure,
the red cluster led by water scarcity presents 42% of the co-occurrences of the topics related to
the management of conventional and unconventional water resources [187,221,226,228,233].
In turn, water stress appears as the most popular term, with 9.7% of the co-occurrences. The
terms water stress, evapotranspiration and water use efficiency are closely related to the
efficient use of soil-water and crop productivity [159,214,234,237,245,273,287]. The cluster
themes “model application”, “soil moisture”, and “water productivity” (orange, light blue
and purple) function as a link between the main themes (Figure 5) [187,246,260,288].

Four groups stand out in the network of journals (Figure 7). The first is the red and
yellow groups; these relate remote sensing to water resource management and concentrate
the most considerable number of journals (24%). The green and blue groups are the
second; these represent journals related to agriculture. The green cluster contains the most
significant citations (26.6%). The third, the purple set, shows a close relationship with
the yellow and green groups, which allows relating themes of botany, forest agriculture
and ecology. Furthermore, the fourth, the light blue cluster (in-engineering), functions
as a link between the journals on water resource management and agriculture (red and
green, respectively).
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5. Conclusions

The objective of this study was to analyse research on water scarcity in semi-arid
zones through bibliometric methods that allow the analysis of its structure, evolution, and
performance. This analysis reveals a growing interest in the subject, skyrocketing in the 21st
century, with 93.1% of scientific production. This positive trend covers 54 years of studies
(1967 to 2021) and 61 countries, with a majority of production in English and published as
scientific articles.

The main contributors in this field of study are (i) countries: the United States
and China; (ii) journal: Agricultural Water Management; (iii) most-cited publication:
Satellite-based energy balance for mapping evapotranspiration with internalised calibration
(METRIC)—Model by Richard Allen and colleagues (2007).

In turn, the analysis of the research through bibliometrics allowed us to know the
various areas covered by the intellectual structure of studying water scarcity in semi-
arid regions.

The co-occurrence of author keywords analysis presents seven themes linked to the
intellectual structure: water scarcity management, water use in crops, evapotranspiration,
water stress, water productivity, soil moisture and model application. In addition, the anal-
ysis of co-citation of journals presents the research activity in topics such as management,
science, and engineering of water resources.

The academic contribution of this research lies in the exploration of the intellectual
structure of this field of study because (i) this research can serve as a guide for researchers
who want to study the subject broadly; (ii) there is the possibility of forming collaboration
networks by getting to know the countries involved; (iii) briefly covers the central themes
and topics of this field of study.

6. Future Research Lines

Research on water scarcity in semi-arid zones has overgrown, causing the need to
explore new research gaps. Here are topics to consider in future studies:

Anthropogenic effects and climate change. Given humans’ substantial impact on the en-
vironment, it is crucial to calculate their effects on the distribution of water resources [192,289].
In addition, the study of effective adaptation and mitigation strategies to face climate
change, such as indicators and efficient public policies [230,290].

The accuracy and applicability of models by scaling up and applying various tech-
nologies and factors warrant further investigation. These are powerful and predictive tools
for qualifying the fit of alternatives in areas of interest [171]. Some topics to consider are:
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• The reduction of future precipitation in arid and semi-arid zones and measurements
of hydric stress [181,245].

• 3D aquifer models and groundwater potential mapping [246,247].
• Models for the allocation and management of water resources [248].
• In agriculture, future trends are:
• Accurately detecting water stress by varying environmental conditions and hydrologi-

cal flow control factors [149,250].
• Development and application of irrigation techniques for the efficient use of water,

control in the use of fertilizers and mitigation of soil contamination [163,191,291].
• Use of conventional and unconventional water resources for supply. Trends include:
• New alternatives of unconventional resources and studying their environmental impacts [292].
• Use of alternative energy sources, development, adaptation and improvement of

desalination models and techniques, depending on the place of application [243,293].
• Sustainable groundwater extraction, water transfer, rainwater harvesting, and aquifer

recharge structures [294–296].
• Recycling treated wastewater as a circular economy for irrigation and groundwater

protection [157,297].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/w14172685/s1, Figure S1. The main trend topic keywords are associated with the literature on
water scarcity in semi-arid zones in the Scopus database.
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