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Abstract: The presence of floodborne objects (i.e., vegetation, urban objects) during floods is con-
sidered a very critical factor because of their non-linear complex hydrodynamics and impacts on
flooding outcomes (e.g., diversion of flows, damage to structures, downstream scouring, failure of
structures). Conventional flood models are unable to incorporate the impact of floodborne objects
mainly because of the highly complex hydrodynamics and non-linear nature associated with their
kinematics and accumulation. Vegetation (i.e., logs, branches, shrubs, entangled grass) and urban
objects (i.e., vehicles, bins, shopping carts, building waste materials) offer significant materialistic, hy-
drodynamic and characterization differences which impact flooding outcomes differently. Therefore,
recognition of the types of floodborne objects is considered a key aspect in the process of assessing
their impact on flooding. The identification of floodborne object types is performed manually by
the flood management officials, and there exists no automated solution in this regard. This paper
proposes the use of computer vision technologies for automated floodborne objects type identification
from a vision sensor. The proposed approach is to use computer vision object detection (i.e., Faster
R-CNN, YOLOv4) models to detect a floodborne object’s type from a given image. The dataset used
for this research is referred to as the “Floodborne Objects Recognition Dataset (FORD)” and includes
real images of floodborne objects blocking the hydraulic structures extracted from Wollongong City
Council (WCC) records and simulated images of scaled floodborne objects blocking the culverts
collected from hydraulics laboratory experiments. From the results, the Faster R-CNN model with
MobileNet backbone was able to achieve the best Mean Average Precision (mAP) of 84% over the
test dataset. To demonstrate the practical use of the proposed approach, two potential use cases
for the proposed floodborne object type recognition are reported. Overall, the performance of the
implemented computer vision models indicated that such models have the potential to be used for
automated identification of floodborne object types.

Keywords: blockage of hydraulic structures; computer vision; object detection; floodborne objects;
floods

1. Introduction

Floods are one of the natural disasters which usually occur on a large scale and result
in catastrophic damage to the community [1,2]. Rapid evacuations, damage to property,
wildlife loss, human causalities and agricultural damage are a few of the most highlighted
damages from a flooding event [3,4]. The frequency of rain-originated floods has been ob-
served to be increasing over the last couple of decades mainly because of an increase in the
duration and intensity of rainfalls and blockage of urban drainage structures. The rain is a
naturally occurring phenomenon and hence cannot be controlled; however, drainage struc-
tures (e.g., bridges, culverts, sewerage) can be efficiently managed to avoid urban floods to
a significant extent. Hydraulic structures including bridges and culverts are vulnerable to
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damage and ultimately fail during extreme floods. A few highlighted reasons for the failure
of hydraulic structures include huge hydrodynamic loads during transient flows [5,6],
downstream/piers scouring by extreme flows [7–9] and interactions of floodborne objects.
These factors of hydrodynamic loads, scouring and fllodborne objects individually or
collectively result in sustained damage to hydraulic structures. In the context of urban
flash floods, blockage of drainage structures by the floodborne objects are found to be
one of the key factors which originate floods [10–13]. The Wollongong, Australia, 1998
floods [13,14]; Newcastle, Australia, 2008 floods [13,15]; and Pentre, United Kingdom,
floods [16] are examples from the recent past where floods resulted because of hydraulic
structures were blocked or failed by the accumulation and interaction of floodborne objects.
The interaction of floodborne objects with hydraulic structures during extreme flows can
impact the flooding outcome in many ways. During extreme floods, floodborne objects can
cause large impulsive loads on the bridges [17] and simple structures [18]. Furthermore,
the accumulation of objects across bridges and culverts often results in increased flow
velocities and increased applied moments (e.g., pitch, yaw, roll), enhancing the likelihood
of a structure to fail [19].

Conventionally, flood modelling through hydraulic engineering is an established
science; however, it is often observed failing in practice, resulting in damages [20–23]. One
of the reasons for the failure of conventional flood models is their inability to account
for the impact of non-linear factors such as floodborne objects [24–29]. However, multi-
physics numerical approaches (e.g., coupled SPH-FEM, coupled SPH-DEM) have recently
demonstrated their potential for simulating debris effects. Hasanpour et al. [30] reported
the use of the SPH-FEM multi-physics approach for the successful simulation of the impacts
of debris movement and loads during floods. Furthermore, Trujillo-Vela et al. [31] also
used a similar multi-physics approach (i.e., SPH-DEM) to simulate the debris in soil
flows, which indicates the potential for the use of these approaches for floodborne debris
simulation. Although multi-physics simulation approaches have shown encouraging
performance, they are limited by the interaction and handling of multiple numerical
methods for a single physical simulation. Furthermore, these models are dependent on the
established fundamental equations defining the physics of the involved processes [32,33].
These models may be successful when dealing with a single type of floodborne object
(e.g., tree logs, vehicle); however, in practice, the uncertain nature of the accumulation,
combination and interaction of floodborne objects with hydraulic structures offer very
complex hydrodynamic impacts. For such complex, non-linear and uncertain cases, as in
floodborne objects, where there exist no apparent relationships, data-driven models have
shown significant success in capturing the hidden relations among variables. However,
given the limited availability of data related to floodborne objects and blockage of structures,
the research in this domain is hindered to some extent. In literature, floodborne objects
are often categorized as (a) vegetation, consisting of tree branches, tree logs and entangled
grass, and (b) urban objects, consisting of vehicles, bins, shopping carts and building
waste materials [13,34]. Both types of floodborne objects have a very distinct impact on
floods from a flood management perspective, and hence it is very important to recognize
the types of floodborne objects. The hydraulic impacts of vegetation largely depend on
the type, size and accumulation pattern. For example, a tree with rootwads offers more
porous characteristics in comparison to the tree without rootwads; therefore, large tree logs
without roots are often considered critical [35]. Furthermore, the diameter and length of
the vegetation relative to the opening/size of the hydraulic structure also plays a vital role
in and influences the depth of the flow required to entrain/transport the vegetation [36,37].
The density and transport regime of the vegetation are also important factors in the context
of the blockage and flooding [37–40]. Generally, the smaller type of vegetation including
grass, leaves and branches type of is not considered hydraulically critical unless entrained
with large wood or urban objects [10]. On the other hand, compact urban objects, including
vehicles, bins and building materials, are often considered hydraulically critical because
of their ability to instantly block or damage a structure on impact. Shopping carts are
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porous in nature and often offer very low hydraulic blockage [10]; however, they serve as
a means for capturing small vegetation. Therefore, it is very important aspect within the
flood management domain to recognize the type of floodborne objects to incorporate it in
the flood-related decision-making process. So far, in the literature, there is no automated
approach reported for the recognition of the types of floodborne objects.

The research reported in this paper is motivated from the recent success of Artifi-
cial Intelligence (AI) approaches in multiple application domains within water resources
(e.g., water depth measurement [41], water quality prediction [42,43], structural damage
assessment [44,45], blockage detection [10–12], marine debris detection [46,47]). This paper
proposes the use of computer vision object detection models for the recognition of flood-
borne object types from images to help mitigate blockage-related floods. In tge literature,
the Faster R-CNN and You Only Look Once version 4 (YOLOv4) models have been identi-
fied among the most robust and fast object detection models based on deep Convolutional
Neural Network (CNN) architecture [46–50]. The Faster R-CNN model is developed based
on the idea of using the shared CNN features for Region Proposal Network (RPN) from
the feature extraction layers, making it a computationally efficient model. Overall, Faster
R-CNN is a two-stage unified model, where the RPN model proposes the regions while
the Fast R-CNN model detects the objects using proposed regions [51]. On the other hand,
the YOLOv4 [52] belongs to the class of single stage detectors and is the enhancement
of the YOLOv3 [53] model with many new universal features, enhanced data augmenta-
tion techniques and genetic models for hyperparamter optimization. The YOLO series
of models is designed to achieve a robust performance, specifically for mobile platforms,
and is one of the first choices for hardware deployment using edge computers. In this
context, multiple variants of the Faster R-CNN and YOLOv4 models have been trained
using the Floodborne Objects Recognition Dataset (FORD) established from local council
records and simulated hydraulics laboratory experiments. The performance of the models
was evaluated using standard Average Precision (AP) and Mean Average Precision (mAP)
measures. AP is computed as the model’s precision weighted mean at each confidence
threshold, while weight is the increase in recall from the previous threshold. The precision
of the model is calculated using the Intersection of Union (IoU) threshold within the object
detection models. mAP is used for the case where multiple class prediction is involved and
computes the mean of all the classes’ AP to provide a cumulative performance measure.
The mathematical expression for mAP is given as follows in Equation (1):

mAP =
1
N

N

∑
i

APi (1)

As part of the big picture, the intuition behind the presented research is to make use of
the latest computer vision models towards extracting useful information about floodborne
objects during floods and incorporate that information within the existing models to
adapt to the impacts of floodborne objects. Furthermore, the scope of the research also
extends to the maintenance of the blocked hydraulic structures during floods in which the
types of floodborne objects accumulated around structures is critical information used for
decision making. In this context, as a first step, in this paper, we proposed the automated
recognition of the types of floodborne objects using computer vision object detection models.
Therefore, the anticipated contribution of the presented research is to establish a floodborne
objects recognition dataset for bounding box detection and the implementation of the latest
computer vision object detection models for the first time towards recognizing the types of
floodborne objects from images.

The rest of the article is organized as follows. Section 2 reports the review of the most
related literature on the automated detection of floodborne objects. Section 3 presents the
details about the materials and methods. First, the details about the collection and develop-
ment of the floodborne objects dataset (i.e., FORD) are provided. Second, the background
theoretical information about the computer vision object detection models used in this



Water 2022, 14, 2605 4 of 20

research is presented. Finally, a detailed description of the adopted research approach is pro-
vided for the development of an automated floodborne object recognition system. Section 4
presents the experimental protocols and performance evaluation measures. Section 5
presents the quantitative and graphical results of the implemented computer vision models
for floodborne object type recognition. Section 6 provides the discussions and insights into
the experimental investigation including research implications, research limitations and
potential future research directions. Finally, Section 7 summarizes the study by highlighting
key outcomes from the experiments and listing potential future research directions.

2. Related Work

In this section, benchmark literature related to the detection of water floating debris
using computer vision models is summarized. The literature review is structured in
chronological order to highlight the advancements over time.

MacVicar and Piegay [54], in the year 2012, proposed the use of video camera moni-
toring system for efficient detection of wood passage and transport rates in river. A semi-
manual video monitoring approach was adapted where conventional image processing
techniques were used to extract the velocity and size of the wood for budgeting. The results
clearly suggested a highly non-linear relationship. An increase in wood transport was
reported with an increase in the discharge. Although promising results were reported
related to video-based wood budgeting, the use of conventional approaches suggests its
invalidity as a generalized solution. This approach may work specifically for a certain site,
however, may drastically fail when applied to a new site. Benacchio et al. [55], in the year
2017, proposed the use of ground-camera-based image processing to monitor the wood
delivery in rivers. The idea of automatically detecting the wood area and translating it into
weight and flux was used. A conventional approach of using a classical machine learning
Support Vector Machine (SVM) model for pixel-based classification was adopted to classify
if a given grid cell within the captured image belongs to the wood. Although the study
reported over 90% accuracy in predicting the wood, the use of conventional models suggest
that this cannot be considered a generalized performance.

Lieshout et al. [48], in the year 2020, proposed a camera-based setup equipped with
deep learning object detection models to detect floating plastic debris in rivers. The dataset
used to train the deep learning models was collected from five different locations and
was annotated for the floating plastic objects boxes (e.g., plastic bottles, plastic bags).
Overall, the dataset (i.e., river image dataset, floating plastic dataset) consisted of around
1300 images with approximately 14,500 bbox annotations. The Faster R-CNN model was
used for the detection of floating plastic debris and reportedly achieved an mAP of 68.7%.
From the experimental investigations, it can be observed that the model was able to achieve
reasonable accuracy, indicating the challenging nature of the dataset mainly due to the
presence of small targets and water reflections. There was no comparison with previous
literature reported to demonstrate the status of the presented research. Furthermore, no
comparative experimental investigations were performed using multiple CNN models to
justify the selection of the best one for the detection of floating plastic debris. In the context
of debris type recognition, the camera setup and floating nature of debris are common
factors; however, the types of debris being detected are not exactly the ones categorized
under floodborne objects.

Cheng et al. [46], in the year 2021, proposed a comprehensive marine floating debris
detection dataset called FloW and reported the performance of state-of-the-art object detec-
tion models for the proposed dataset. The dataset included 2000 images with 5271 floating
debris bbox annotations. The latest object detection models, including DSSD, RetinaNet,
YOLOv3, Faster R-CNN and Cascade R-CNN, were implemented. The Cascade R-CNN
model was able to achieve the highest mAP of 0.43 with 3.9 FPS, while the DSSD model was
the fastest, with an FPS of 28.6 and an mAP of 0.275. From the experimental investigation,
it can be observed that even the latest object detection models were found struggling and
achieved relatively lower detection accuracy for the challenging dataset. The highlighted
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challenges of the dataset include the presence of small objects in the water, water reflec-
tions, and reflections from other objects. In the context of floodborne objects detection,
although the debris type being detected is not directly related, the water environment and
floating nature of debris are common factors in both cases.

Ghaffarian et al. [56], in the year 2021, proposed the use of multiple image processing
and tracking approaches for the automated detection and quantification of wood in a river.
A combination of static masks, dynamic masks and tracking was used for the detection
of wood in the used images. To further improve the false detection rate, post-processing
techniques including precision improvement and estimating missed detections based on
recall rate were used. From the results, it was reported that post-processing approaches
were able to reduce the error rate to 15% from 36%, while the missed detection rate was
reduced to only 6.5% from 71%. The conventional image processing approaches were
used, and the potential of state-of-the-art deep-learning-based models was not explored.
Furthermore, no comparison with the literature was made to compare the performance of
the proposed methodology. In the context of floodborne object type detection, the problem
of detecting wood in the river is very similar to what has been proposed in this manuscript
about detecting floodborne vegetation.

Lin et al. [57], in the year 2021, developed an improved version of the YOLOv5
model with a Feature Map Attention (MAP) layer for the detection of floating debris to
assess the water quality. The dataset used to train the model included 2400 images with
floating objects from eight different classes (i.e., plastic bags, leaf, grass, bottles, milk
boxes, balls, branches, plastic garbage). The dataset was further enhanced using a fusion
approach where water backgrounds were merged with the floating debris objects. From the
experimental investigations, the proposed model was able to achieve an mAP of 77% when
compared with other models for the challenging dataset. The branch class in the dataset is
most relevant to the floodborne vegetation type and was reported to be detected with an
accuracy of 55% (i.e., lowest among all the eight classes), which indicates the challenges in
detecting floodborne vegetation.

Most recently, Majchrowska et al. [58] proposed a detection–classification pipeline for
the detection of waste material in natural and urban images. The efficientDet-D2 object
detection model was used to detect the waste objects in the image, while the EfficientNet-B2
model was used to classify the detected waste objects into one of the eight waste classes.
For waste detection, the benchmark detect-waste dataset was used along with a subset
of many other similar datasets, including Extended TACO [59], TrashCan [60], Trash-
ICRA [61], UAVVaste [62] and drinking-waste [63]. For the training of the classifier, a semi-
supervised approach was adopted using thousands of images from the Open Litter Map [64]
dataset. From the experiments, an mAP of 70% was reported for the waste detection using
EfficientDet-D2, while an accuracy of 75% was reported for the classification of detected
objects using EfficientNet-B2. Although acceptable accuracy was achieved from the results,
there was no comparison of different detection and classification models reported to justify
the selection of the implemented models. Furthermore, no comparison with literature was
made to demonstrate the status of the reported research. The dataset used in the research is
comprehensive; however, it is relatively easier, specifically designed for detection purposes
with the presence of only the waste objects in the image, avoiding any background noise.
In the context of floodborne object type recognition, this research is not directly related
since it only attempts to detect the trash and small urban waste (e.g., plastic bottles, glass,
accumulated trash, plastic bags) and not vegetation and large urban objects.

Aleem et al. [47], in their most recent research, proposed the use of a deep learning
approach to detect marine debris. The Forward-Looking Sonar Image (FLS) marine debris
dataset was used to train the computer vision object detection models. The dataset consisted
of 1865 images belonging to 10 classes of marine debris. A Faster R-CNN model with
ResNet50 and VGG16 backbones was used as an object detector to detect marine debris from
images. From the experimental investigations, the Faster R-CNN model with ResNet50
was able to achieve a mean IoU of 3.78. There was no comparison reported with literature



Water 2022, 14, 2605 6 of 20

to demonstrate the status of the presented research. In the context of floodborne object
detection, the presented research is not directly relevant, but the water background in the
marine images overlaps with one of the use cases (river use case) presented in this research.

In summary, most of the related literature addresses either the marine debris detection
or the floating plastic debris detection problems, similar to the floodborne object detec-
tion problem. Faster R-CNN, DSDD, RetinaNet, YOLOv3, Cascade R-CNN, YOLOv5
and EfficientDet were the computer vision models reported for the detection of debris.
The most relevant research in terms of detecting a similar type of vegetation was reported
by Ghaffarian et al. [56] and Lin et al. [57]. Table 1 summarizes the benchmark literature
related to the detection of different debris types using computer vision techniques.

Table 1. Summary of Benchmark Literature Related to the Detection of Different Debris Types using
Computer Vision Techniques.

Author Year Addressed Problem Dataset Proposed Approach Performance

MacVicar and Piegay [54] 2012 wood detection custom dataset conventional methods NA

Benacchio et al. [55] 2017 wood detection custom dataset conventional methods R2 of 93%

Lieshout et al. [48] 2020 floating plastic custom dataset Faster R-CNN mAp of
debris detection (1300 images) 68.7%

Cheng et al. [46] 2021
marine debris custom dataset DSSD, RetinaNet, mAP of

detection (2000 images) YOLOv3, Faster R-CNN 43% for Cascade
Cascade R-CNN

Ghaffarian et al. [56] 2021 river wood NA Conventional static 21% improved
detection and dynamic masking error rate

Lin et al. [57] 2021 floating debris custom dataset Improved YOLOv5 mAP of
detection (2400 images) 77%

Majchrowska et al. [58] 2022
waste material TACO, TrashCan, EfficientDet-D2 mAP of

detection Trash-ICRA, UAVVaste, EfficientNet-B2 70%
drinking-waste

Aleem et al. [47] 2022 marine debris FLS dataset Faster R-CNN IoU of
detection (1865 images) 3.78

3. Materials and Methods
3.1. Floodborne Objects Recognition Dataset (FORD)

The dataset used in this research is referred to as the “Floodborne Objects Recogni-
tion Dataset (FORD)” and is developed mainly from two sources: (a) historical records of
Wollongong City Council (WCC) and (b) hydraulic-lab-simulated experiments. Images in
the dataset are the subset of the two datasets developed for visual blockage prediction: Im-
ages of Culvert Opening and Blockage (ICOB) [11] and the Visual Hydraulics-Lab Dataset
(VHD) [11]. The ICOB dataset consists of the images of real culverts blocked with different
types of floodborne objects. On the other hand, VHD includes the images from a detailed
hydraulic study where multiple blockage scenarios were replicated using scaled physical
models (see Iqbal et al. [10,12] for more details about the laboratory experimental setup).
Given the fact that there exists no benchmark dataset related to floodborne object recogni-
tion, FORD is proposed to be first of its kind in this domain. However, the real images sorted
from the WCC’s historical records were very few and not enough to train the data-hungry
deep learning models; therefore, the dataset was enhanced with simulated images captured
from the laboratory experiments to facilitate the training process. Although the addition of
controlled simulated dataset will have its own limitations, the investigation on the impacts
of simulated data on the models performance is not in the scope of the presented research.
For this specific study of recognizing the floodborne object types, the subset images from
the ICOB and VHD were annotated for different floodborne object types and organized
into a new dataset (i.e., FORD). There are, in total, 663 images (141 real, 522 simulated) in
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the FORD with 946 bbox annotations (640 vegetated, 306 urban). Figures 1 and 2 show the
annotated real and simulated sample images from FORD, respectively.

vegetated

vegetated
urban vegetated

urban

urban

urban

urban

urban

vegetated

vegetated

vegetated

Figure 1. Annotated Real Samples from FORD.

vegetated

vegetated

vegetated

urban
urban

urban urban

urban

Figure 2. Annotated Simulated Samples from FORD.

3.2. Background to Computer Vision Object Detection Models

This section presents the theoretical background of the implemented computer vision
object detection models (i.e., Faster R-CNN, YOLOv4) for floodborne object type recognition.
Fundamental working principles and a description of the architecture for both modes are
presented briefly.

3.2.1. Faster R-CNN

Faster R-CNN is one of the most popular and commonly used object detection models
proposed by Ren et al. [51] in 2017 to address the problem of region proposal computational
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cost by proposing an RPN. The proposed RPN resulted in generating region proposals
with almost no computational cost because of the idea of using the shared CNN features
from the image to the detection network. Furthermore, the Faster R-CNN model merges
the RPN and Fast R-CNN by sharing the convolutional features and using the attention
mechanism. Overall, the Faster R-CNN model is a unified network with two modules: (a) a
deep CNN architecture to propose the regions (RPN) and (b) a Fast R-CNN detector to use
the proposed regions for detection. The RPN network generates the multi-scale anchors as
regression references and built a pyramid type approach, which makes it more cost-efficient
in comparison to other models. A multi-task loss function, as expressed in Equation (2) (i.e.,
a combination of classification and bbox regression loss), is used to optimize the training in
the Faster R-CNN model:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nbbox

∑
i

p∗i Lbbox(ti, t∗i ) (2)

where i represents the anchor index, pi represents the ith anchor probability, p∗i represents
the ith anchor ground truth, ti represents the predicted bbox coordinates vector, t∗i repre-
sents the ground truth bbox coordinates vector, Ncls and Nbbox represent regularization
terms and λ represents the balancing parameter.

3.2.2. You Only Look Once version 4 (YOLOv4)

The YOLOv4 object detection model was proposed by Bochkovskiy et al. [52] in 2020
towards achieving optimized accuracy and speed by making use of multiple universal
features including Cross-Stage Partial Connections (CSP), Self-Adversarial Training (SAT),
mesh activation, Weighted Residual Connections (WRC) and Cross Mini-Batch Normaliza-
tions (CmBN). The YOLOv4 architecture was designed by selecting the optimal backbone
network, neck network and head network for detection. The base YOLOv4 architecture
included the CSPDakrNet53 backbone model, SSP additional module, PANet neck model
and YOLOV3 head architecture for anchor-free detection. DropBlock has been used as
the regularization method for the training for the YOLOv4 model. Some highlighted
training-related improvements included the introduction of the new mosaic and SAT data
augmentations and the selection of optimal hyperparameters using a genetic algorithm.
As a result of these improvements, the YOLOv4 model was able to achieve improved
performance over the benchmark dataset in comparison to its predecessor YOLOV3 while
keeping the real-time functionality.

3.3. Research Approach

A five-step approach is adopted in this research to develop the computer-vision-based
floodborne object type recognition solution (see Figure 3). A detailed description of the
tasks and activities performed under each stage is provided as follows:

• Stage I: Data Preparation—At the first stage, the raw images from the WCC records
were processed and annotated for training the computer vision object detection models.
In context to data processing stage, firstly, the images from the records were manually
sorted to select the suitable candidates for training. Presence of floodborne objects
accumulated at culverts or within the catchment was used as the criterion to sort the
images. Secondly, the selected images were cropped where required to remove the
background noise and were converted to unified format for consistency. Once the final
set of images was decided, they were annotated/labelled with ground truth bounding
boxes of vegetation and urban objects in the images. For the labelling of images,
an open source image annotation tool called LabelImg [65] was used, which, by
default, saved the labels in XML format (i.e., one of the formats to which bounding box
labels can be saved). Within the computer vision domain, there are different platforms
developed to facilitate the training of the state-of-the-art models, including Detectron2,
TensorFlow Object Detection API, NVIDIA Train Adapt Optimize (TAO) and DarkNet.
Each of these platforms requires the ground truth labels to be stored in a specific
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data format, for example, Detectron2 accepts .json format labels, TensorFlow API
accepts XML format labels, NVIDIA TAO accepts KITTI labels and DarkNet accepts
.txt format labels. For this research, NVIDIA TAO toolkit was used for training, which
is a framework designed to simplify and accelerate the development of AI-oriented
industrial solutions.

• Stage II: AI Development—At the second stage, the AI models were developed and
trained using the labelled data from Stage I. In the process of AI development, firstly,
the object detection models were selected from the available model zoo based on the
performance reported in the literature. As a result, keeping the robustness and hard-
ware deployment as key factors, Faster R-CNN (i.e., robust detection performance)
and YOLOv4 (i.e., suitable for hardware deployment) model variants were selected
to be trained for the floodborne object type recognition problem. Secondly, for each
selected model, hyperparameters, including training epochs, learning rate, optimiza-
tion function and regularization technique, were set using default off-the-shelf values.
Furthermore, different data augmentation techniques (i.e., one of the conventional
approaches used in computer vision model training where input image is subjected to
different transformations towards creating multiple variants of same image) were also
used during the training process to enhance the performance. All the models reported
in this study were trained using the NVIDIA TAO platform.

• Stage III: Training Evaluation—At the third stage, the models were evaluated for
their performance during the training phase using different standard evaluation
measures including training loss per epoch, training time per epoch and validation
mAP. In context of the deep learning computer vision models, the loss of a model refers
to the prediction error (i.e., predicted-actual) and is a measure to assess how well a
model has performed. In the training process, deep learning models use optimization
functions (e.g., Stochastic Gradient Descent (SGD), Adaptive Momentum (adam))
with the objective to minimize the loss function using the backpropagation approach.
The aim of assessing the training performance is to ensure that the training process did
not involve any abnormal behaviour, specifically overfitting. Training loss and mAP
curves are standard indicators to observe any abnormalities. Usually, for a normal
training process, the loss curve should follow the negative exponential trend, while
the mAP should follow the positive exponential trend.

• Stage IV: Test Evaluation—At the fourth stage, the trained object detection models
were evaluated against the unseen validation data and were compared to identify the
best performing model(s). Evaluation was performed using test mAP and AP for each
of the two floodborne object classes.

• Stage V: Discussion—At the fifth and final stage, the inference results from the models,
specifically with best test performance, were analysed and discussed in detail to
report the important insights from the experiments. Furthermore, performance of the
proposed approach was linked with existing literature, and different implications of
the research were presented. In addition, potential limitations of the research were
highlighted, and future directions were discussed.

4. Experimental Protocols and Evaluation Measures

The computer vision models were trained using a Linux machine having an NVIDIA
A100 Graphical Processing Unit (GPU) with 80 GB memory. Python programming with
TensorFlow and Keras packages was used for training the models. A dataset split of 80:20
was used for training and validation purposes, respectively. Two variants of the Faster
R-CNN model (i.e., Faster R-CNN with ResNet18 backbone, Faster R-CNN with MobileNet
backbone) and two variants of YOLOv4 (i.e., YOLOv4 with ResNet18 backbone, YOLOv4
with CSPDarkNet backbone) were trained for detecting vegetation and urban objects within
the images. All the models were trained for 100 epochs with a batch size of 1. For Faster
R-CNN models, data augmentation of horizontal flip, zoom variation and contrast variation
were used. The models were trained using an SGD optimizer with a momentum of 0.9 and
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a learning rate of 0.02. The L2 regularization approach was used for Faster R-CNN models.
For the YOLOv4 models, data augmentation of colour transformation, horizontal flip
and jitter were used. Adam optimizer with a learning rate of 1× 10−7 was used along with
the L1 regularization approach. The training performance of models was assessed based
on the training loss, validation mAP and training time in seconds per epoch. Moreover, the
test performance of models was assessed using mAP and AP for each class.

Stage I: Data Preparation 
Data Processing, Annotation and 

Conversion for AI Training 
(LabelImg, KITTI converter)

Stage III: Training Evaluation 
Training Performance Evaluation 

of Models 
Training Loss, Validation mAP 

(NVIDIA TAO, matplotlib)

Stage II: AI Development 
AI Models Selection, 

Hyperparameter Settings, Data 
Augmentation and Training 

(NVIDIA TAO Toolkit)

Stage IV: Test Evaluation 
Test Performance Evaluation of 

Models 
Test mAP, Test Loss 

(NVIDIA TAO, matplotlib)

Stage V: Discussion 
Evaluation of Inference Results, 
Discussions and Identification of 

Best Performing Model

RAW Data

Figure 3. Functional Block Diagram of the Proposed Research Methodology for Floodborne Object
Type Recognition.

5. Results

This section presents the quantitative and graphical results for the computer vision
models to detect the floodborne object types. Computer vision models are assessed for
their performance in both the training and testing phases.

5.1. Training Performance

The training performance of the models has been evaluated from the training loss
curves, validation mAP curves, quantitative values from the best validation epoch and the
training time taken by each model for a single epoch. The training loss and validation mAP
curves for the Faster R-CNN models and YOLOv4 models are shown in Figures 4 and 5,
respectively. For the Faster R-CNN models (see Figures 4a and 5a), it can be observed
that both the ResNet18 and MobileNet variants performed comparatively, with the Mo-
bileNet variant being slightly on the better end. The loss curves followed the standard
negative exponential trend and settled around 0.1, which is the indication of normal train-
ing performance. The validation mAP, however, stabilized to some extent after 40 epochs,
around 80%.
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Figure 4. Training Loss Curves for the Different Variants of Computer Vision Object Detection Models
Implemented for Floodborne Object Type Recognition: (a) Faster R-CNN Models, (b) YOLOv4 Models.

For the YOLOv4 models (see Figures 4b and 5b), similar to the Faster R-CNN case,
both variants performed comparatively similar, with the ResNet18 variant being slightly on
the better end in comparison to CSPDarkNet variant. The training loss was found gradually
decreasing (i.e., negative exponential) over the training epochs and settled around 20 for
the ResNet18 variant, while it was around 24 for the CSPDarkNet variant. The negative
exponential trend of training loss is the indication of the normal training process. In terms
of validation mAP, curves were stabilized around 76% after the 60th epoch.

The quantitative results from the best validation mAP epoch for each model are
presented in Table 2 in terms of training loss, validation mAP, precision and recall. From the
results, it can be observed that the Faster R-CNN with the MobileNet backbone model
achieved the overall best training results, with a validation mAP of 0.86 at the 90th epoch
and a training loss of 0.10. The Faster R-CNN with the ResNet18 backbone model was
second best, with a validation mAP of 0.86 and a training loss of 0.35.
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Figure 5. Training mAP Curves for the Different Variants of Computer Vision Object Detection Models
Implemented for Floodborne Objects Type Recognition: (a) Faster R-CNN Models, (b) YOLOv4 Models.

Table 2. Quantitative Training Results for the Different Variants of Computer Vision Object Detection
Models Implemented for Floodborne Objects Type Recognition.

Model Training Loss mAP Mean Precision Mean Recall

Faster R-CNN Models

MobileNet Backbone 0.1044 0.8601 0.2515 0.8827
ResNet18 Backbone 0.3492 0.8642 0.0713 0.8990

YOLOv4 Models

ResNet18 Backbone 34.87 0.8138 NA NA
CSPDarkNet Backbone 47.48 0.7804 NA NA

Finally, the models’ training speeds were also compared by monitoring the training
time in seconds per epoch. The training times per epoch for each trained model are
presented in Figure 6. It can be observed that the Faster R-CNN model with the MobileNet
model took the least time to train (i.e., 30 s per epoch), while the YOLOv4 model with the
ResNet18 model took the most time to train (i.e., 160 s per epoch). The longer training times
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for the YOLOv4 model variants may be associated with the higher level of complexity of
the model and greater number of trainable parameters.
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Figure 6. Training Time Per Epoch for each Implemented Computer Vision Object Detection Model.

5.2. Testing Performance

The trained models were evaluated over the unseen samples from the dataset to assess
their test performance. Table 3 presents the qualitative test results for the implemented
computer vision model to recognize floodborne objects type in terms of the mAP and AP
for each class. From the results, it can be observed that the Faster R-CNN model with
MobileNet backbone was able to achieve the best test performance with an mAP of 0.8445,
an APvegetated of 0.7544 and an APurban of 0.9345. YOLOv4 models were outperformed by a
difference of at least 8% in the mAP. The APvegetated was observed to be consistently lower
in comparison to the APurban. This may be attributed to the more vegetated annotations in
the challenging real dataset samples in comparison to the lab-simulated controlled samples.
The performance of the computer vision detection models was found comparable to the
reported performance by Lin et al. [57] (i.e., mAP of 70%), Cheng et al. [46] (i.e., mAP of
43%) and Liseshout et al. [48] (i.e., mAP of 68.7%).

Table 3. Quantitative Testing Results for the Different Variants of Computer Vision Object Detection
Models Implemented for Floodborne Object Type Recognition.

Model mAP APvegetated APurban

Faster R-CNN (Resnet18 Backbone) 0.8007 0.7236 0.8778
Faster R-CNN (MobileNet Backbone) 0.8445 0.7544 0.9345
YOLOv4 (ResNet18 Backbone) 0.7826 0.7393 0.8331
YOLOv4 (CSPDarkNet Backbone) 0.7616 0.7115 0.8114

6. Discussion

The experimental investigations reported in Section 6 indicated that the computer
vision models have significant potential for the automated recognition of floodborne object
types in images. The best performing model (i.e., Faster R-CNN with MobileNet backbone)
was able to achieve the mAP of 0.84 on a relatively challenging dataset. Figures 7 and 8
show a few samples from the results where the best-performing computer vision model
predicted floodborne object types accurately and made mistakes, respectively. From the
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samples, it can be observed that the model made a mistake while detecting vegetation.
In one instance, the model mistakenly detected a background tree as vegetation, while
in another instance, it mistakenly detected a grassy region as vegetation. These false
predictions may be associated with the similarity in the visual appearance of vegetation
with the natural backgrounds containing a lot of trees and grass. In a third instance,
the model missed a few detections and partially detected the vegetation in the scene. This
may be attributed to the clutteredness of the scene and the presence of connected floodborne
objects. The results for the lab-simulated controlled samples were observed to be very high,
mainly because of the presence of no background noise and clear differentiation between
different floodborne object types.
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Figure 7. Sample of Correct Predictions by the Faster R-CNN with MobileNet Backbone Model.
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Figure 8. Sample of False Predictions by the Faster R-CNN with MobileNet Backbone Model.
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The presented research is in line with the literature corresponding to the quantification
and budgeting of vegetation in rivers towards determining the induced fluxes. The bench-
mark studies in this regard [54,55] implemented the classical image processing techniques
and cannot be considered as the generalized solution to the problem. The classical solution
may work specifically for the quantification of the vegetation in a specific use-case; however,
it is likely to fail in varying lighting conditions (adverse weather) and composite types
of floodborne objects. On the other hand, it has been established from the literature that
deep-learning-based approaches are way more efficient and offer robust generalized perfor-
mance. In this context, the presented research in this article is the first step towards using
automated computer vision analysis of floodborne objects for incorporating the information
into flood mitigation and management policies/systems. The resulting information about
the types of floodborne objects along with other known information can potentially be used
for issuing early warnings and/or evacuations. For example, given the information about
the hydraulic capacity of a structure, the upstream discharge through sensors and rainfall
information from radar along with the types and sizes of floodborne objects, the system
can be configured to estimate the flooding outcomes, damage to structure and likelihood of
structure failure.

6.1. Research Implications

From the utility perspective, such a system is proposed to be deployed either pointing
towards the hydraulic structures to detect the accumulated floodborne objects for main-
tenance purposes or pointing away from the structure to detect the incoming floodborne
objects for blockage-related flood mitigation. The real-world images used in this research
for training were not captured taking into account the utility of such a system; rather, they
are randomly captured by flood management officials, and therefore, they contain a lot
of background noise visually similar to vegetation, degrading the detection performance.
However, these problems can be avoided by calibrating the camera in such a way that it
captures only the region of interest. For the first use case, the camera should be pointed
right at the hydraulic structure, avoiding any background, which will make it easier for
the model to detect the correct floodborne objects accumulated at the structure. The infor-
mation extracted by the system will help in better understanding the floodborne objects’
accumulation patterns, in monitoring different ways the floodborne objects interact with
structures and in making maintenance solutions. For the second use case, the camera
should be pointing away from the structure (most probably a bridge on a river) such that
it only captures the water background and not the background vegetation. Vegetation or
urban objects floating in the water will be easier for the model to detect because of the clear
visual differentiation between water and floodborne objects. In addition to the floodborne
objects type detection from the camera system, a LIDAR sensor may be used to determine
the volume of incoming floodborne objects, both of which can then be incorporated into the
flood models towards mitigating the floods. The information extracted by the system will
be incorporated in hybrid data-driven self-correcting models towards better and adaptive
flood modelling. From a practical perspective, the models trained in this research can serve
as baseline models for the pilot installation and will be fine-tuned over time more data
become available to achieve the optimized performance. Graphical illustrations of culvert
and river use cases are presented in Figure 9a,b, respectively.

6.2. Limitations and Future Directions

The availability of the relevant visual floodborne objects data from real flooding
events is one of the key challenges of the presented research. One potential approach to
address the data availability problem is to use the synthetic images generated from different
simulated platforms, including NVIDIA Isaac replicator, FLOW 3D, Generative Adversarial
Networks (GANs) and style transformations. In addition, as an initiative, such a pilot
system installed on a real site will be able to generate plenty of relevant data during the first
year duration. Although the approach of using the simulated data towards enhancing the
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dataset is reported useful in most of cases, to ensure its usefulness, a detailed investigation
on the impacts of different types of simulated data would be needed. It is anticipated that
the performance of computer vision models will degrade with the use of simulated data;
therefore, an investigation of determining different data mixes with different ratios needs
to be performed. The system proposed in this research is only capable of recognizing if
a given floodborne object is vegetation or an urban object. However, in the future, more
detailed analyses are planned, including detecting different types of vegetation and urban
objects at a subclass level and detection of the composite floodborne objects where both
vegetation and urban objects are present. The quantification of the detected floodborne
objects is the ultimate goal to bring the presented research in line with the literature. It is
planned to make use of a camera matrix and proper calibration to estimate the size of the
detected floodborne objects in pixels which can then be translated to volume.

Camera Pole  
with Edge Computer

Output

vegetated

Direction of Flow

(a)

urban

Camera with  
Edge Computer

Output

Direction of Flow

(b)

Figure 9. Graphical Illustration of Two Potential Use Cases for the Proposed Floodborne Object Type
Recognition using Computer Vision: (a) Culvert Use Case, (b) River Use Case.
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7. Conclusions

Computer vision object detection models have been successfully implemented for
the recognition of floodborne object types. Multiple variants of the Faster R-CNN and
YOLOv4 models were trained using the FORD dataset and were evaluated in the context of
training and testing performance. From the experimental investigations, the Faster R-CNN
model with MobileNet backbone was able to achieve the best mAP of 84%. In terms of
class-wise AP, the best model achieved 75% for vegetation and 93% for urban objects. Two
potential use cases (i.e., culvert use case, river use case) were also described to demonstrate
the practical usability of the proposed research. The availability of relevant data and the
challenging nature of vegetation detection were highlighted as potential hindrances that
need to be addressed in the future. Deployment of pilot projects to collect data and the
use of simulated data generation platforms including GANs, NVIDIA ISAAC replicators
and style transfers are potential future research directions. In addition, investigating the
impact of simulated data on the performance of computer vision models is also among the
tasks planned to be performed in the near future.
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The following abbreviations are used in this manuscript:

YOLO You Only Look Once
CNN Convolutional Neural Network
RPN Region Proposal Network
FORD Floodborne Objects Recognition Dataset
AP Average Precision
mAP Mean Average Precision
IoU Intersection of Union
SVM Support Vector Machine
MAP Feature Map Attention
FLS Forward Looking Sonar Images
WCC Wollongong City Council
ICOB Images of Culvert Opening and Blockage
VHD Visual Hydraulics-Lab Dataset
CSP Cross Stage Partial Connections
SAT Self Adversarial Training
WRC Weighted Residual Connections
CmBN Cross Mini-Batch Normalizations
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TAO Train Adapt Optimize
SGD Stochastic Gradient Descent
Adam Adaptive Momentum
GPU Graphical Processing Unit
GANs Generative Adversarial Networks
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