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Abstract: Dual-frequency ultrasound (DFUS) has received considerable attention for enhanced
inactivation of microbial pathogens for medical treatment, but remains little investigated for water
disinfection. This study is focused on inactivation of E. coli and E. faecalis in aqueous solution under
dual-frequency ultrasonication at 120 + 1700 kHz using persulfate. Single-frequency ultrasonic
inactivation showed the higher efficiency of 1700 kHz, compared to 120 kHz. Under the experimental
conditions used, no measurable synergy between two frequencies was observed in the absence of
persulfate. A high time-based synergistic effect in terms of total inactivation (5-log) of both bacterial
species was achieved by DFUS-activated persulfate with synergistic indices of 1.8–5.0. We assume
that this is attributed to increased generation of reactive oxygen species (primarily, sulfate anion
(SO4•−) and hydroxyl (•OH) radicals) as a result of enhanced acoustic cavitation. Radical probing
and scavenging tests confirmed the generation of radicals and showed a nearly equal contribution of
•OH and SO4•−. This method could be an attractive alternative to ultraviolet technology for fast and
effective water disinfection.

Keywords: dual-frequency ultrasound; high frequency; 1.7 MHz; 120 kHz; synergistic effect; persulfate;
inactivation; water disinfection

1. Introduction

To date, the World Health Organization (WHO) estimates that at least 2 billion people
use microbially contaminated sources of drinking water, which transmits diseases, such
as diarrhea and dysentery, and causes 485,000 diarrheal deaths each year [1]. Reducing
the level of microbial pathogens in water bodies is essentially important for the protection
of drinking water quality and public health. Ultrasonication is regarded as an effective
reagent-free method of water disinfection, which is much less affected by water quality
compared to ultraviolet technology [2]. It is known that the ultrasonic acoustic wave of
sufficient power causes cavitation, which produces collapsing microbubbles in water. This
leads to generation of reactive oxygen species (ROS), such as hydroxyl radicals (•OH),
which are responsible for inactivation processes [3]. Cavitation also induces different
mechanical effects, which in addition damage the cell [4–6]. A synergistic effect is achievable
under irradiation of water with two ultrasonic frequencies. In this regard, dual-frequency
ultrasound (DFUS) has received considerable attention for water treatment and the related
research has been recently reviewed [7]. The literature survey showed that microbial
inactivation in water by DFUS remained much less investigated, compared to degradation
of organic pollutants. In related research, only low frequencies (≤100 kHz) were used in
combinations of 16 + 20 kHz [8], 17 + 33 and 70 + 100 kHz, coupled with NaClO [9,10].
A high-frequency ultrasound above 100 kHz and in the megahertz range has not been
used in dual combinations for water disinfection so far. Meanwhile, high frequencies were
successfully applied for medical treatment (sonodynamic therapy). In general, it is based
on the apoptosis of pathogenic cells (e.g., cancer cells) by ROS, which are produced upon
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activation of sonosensitizers with frequencies up to 2 MHz, including DFUS [11,12]. For
instance, the synergistically enhanced •OH generation was reported earlier in sonodynamic
therapy under exposure to DFUS at 0.5 + 1 MHz and TiO2 [13]. In view of this, DFUS-
based advanced oxidation processes (AOPs) using high frequencies can be identified as an
emerging research field and a promising tool for water disinfection.

Among environmentally safe oxidants (hydrogen peroxide, permanganate, ferrate),
persulfate (PS) has been extensively employed in sulfate radical (SR)-based AOPs for water
treatment and disinfection [14–17]. Its oxidation potential (E0 = 2.07 V) is higher than
permanganate (E0 = 1.7 V) and hydrogen peroxide (E0 = 1.77 V) [18]. Due to their higher
stability, PS salts are easily transported, stored and dosed. It is activated by many methods,
including acoustic cavitation, via homolysis of the O-O bond and production of sulfate
radicals (1). •OH are further generated upon their reaction with water (2):

S2O8
2− )))→ 2SO4•− (1)

SO4•− + H2O → •OH + HSO4
− (2)

Accordingly, the higher radical yield is achievable in SR-AOPs. The main advantages
of SO4•− over •OH include higher redox potential (E0 = 2.6–3.1 V versus 1.9–2.7 V) [19], a
longer half-life and a wider range of operational parameters (e.g., pH) [20,21].

The efficiency of radicals’ generation also depends on the ultrasonic frequency. Wang
and Wang (2022) [18] concluded that, with increasing frequency, cavitation promotes the
conversion of PS and more radicals are generated. Earlier, Kermani et al. (2020) [22] found
that furfural degradation by sono-activated PS after 90 min exposure increased from 50.6
to 95.3% by increasing the frequency from 35 to 130 kHz. Therefore, in view of increased
ROS production and intensification of inactivation processes, high-frequency ultrasound
represents an attractive alternative to low-frequency ultrasound in PS-based processes.
To date, there have been only a few reports on microbial inactivation by sono-activated
PS at 35 kHz [23] and 600 kHz [24,25] involving iron-catalyzed processes. At the time
of writing, no more studies have been published with a focus on water disinfection by
DFUS-activated PS, as well as by DFUS alone, at high frequencies above 100 kHz. In our
previous studies, a single frequency of 1700 kHz was applied for intensifying bacterial
inactivation by sonophotolysis [26,27] and sono-photo-Fenton-like process [28].

The aim of the present study was to evaluate a synergistic effect of dual-frequency
ultrasound on inactivating Escherichia coli and Enterococcus faecalis in model aqueous so-
lution using persulfate. The generation of radicals and the mechanisms of synergistic
inactivation, which are based on increased ROS yield and sonoporation due to the gen-
eration of additional frequencies under DFUS exposure, have been also considered. This
work is the first application of high frequencies in dual combination of 120 + 1700 kHz
for water disinfection purposes. These frequencies were selected due to the availability
of cheap commercial transducers and generators, which makes their practical application
technically and economically feasible. The frequency of 120 kHz is used for fine cleaning of
complex parts in industry, whereas 1700 kHz is widely applied for creating water mist and
humidifying the air.

2. Materials and Methods

The strains of Escherichia coli K-12 and Enterococcus faecalis B 4053 were purchased from
All-Russian collection of industrial microorganisms (Genetika, Moscow, Russia) and used
as indicators of fecal contamination in water. Overnight cultures of E. coli and E. faecalis
were obtained by aerobic incubation of lyophilized cells (37 ◦C, 180 rpm) in nutrient broth
(SRCAMB, Obolensk, Russia) and tryptic soy broth (Merck, Kenilworth, USA), respectively.
Afterwards, the cells were centrifuged (4000 rpm, 5 min), washed twice with phosphate-
buffered saline (PBS) at pH 7.4 (Gibco® Life technologies, Paisley, UK) and resuspended in
fresh PBS to obtain the stock bacterial suspension (108 CFU/mL). An aliquot of 0.15 mL
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was added to deionized water (1.5 L) to obtain a synthetic water with an initial population
of 105 CFU/mL.

Disinfection experiments were conducted in an orthogonal dual-frequency sonoreactor,
which represents a rectangular cuboid with a capacity volume of 4 L (Figure 1).
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Figure 1. A scheme of a dual-frequency sonoreactor. 1—stainless steel bath, 2—piezoceramic
transducer (120 kHz), 3—piezoceramic transducers and generator unit (1700 kHz), 4—ultrasonic
generator (120 kHz), 5—power unit (48 V), 6—cooling tubes.

Four piezoceramic transducers (120 kHz, 50 W each, Fan Ying Sonic, Granbosonic
Ultrasonic Generator 300 W/120 kHz, Shenzhen, China) were mounted on its long opposite
sides (two transducers on each side). Six transducers (1700 kHz, total power 150 W, MSX,
model ZCX-RM6D48F, Jiaxing, China) and a generator were assembled into a compact
unit and placed on the ground of the reactor to be orthogonally positioned to the 120 kHz
transducers. The power unit (Stepperonline, model S-250-48, Nanjing, China) was outside
the bath. The temperature of irradiated water was kept at 20 ± 2 ◦C by circulating cooling
water through the copper tubes. Deionized water, artificially contaminated with E. coli
or E. faecalis (105 CFU/mL), was irradiated simultaneously with two frequencies in the
absence or presence of potassium persulfate (Vekton, St. Petersburg, Russia). Control
experiments included irradiation of contaminated water with single frequency at 120 or
1700 kHz. Samples (0.1 mL each) were withdrawn after each exposure, diluted (if required),
spread onto nutrient agar (E. coli) and tryptic soy agar (E. faecalis) plates in triplicate and
incubated for 24 h at 37 ◦C. The survived cells were counted as CFU/mL and plots of
the log reduction (Lg(N/N0)) versus exposure time (min) were obtained to monitor the
inactivation kinetics. Each experiment was conducted in triplicate and the obtained data
were statistically treated using Statistica 10.0 software.

Radical probing experiments were performed in the same sonoreactor using 20 µM
p-chlorobenzoic acid (pCBA, 99%, Acros, Geel, Belgium) as a reference compound. Radical
scavenging tests for evaluating the contribution of SO4•− and •OH were also conducted
using pCBA in the presence of methanol and t-buthanol (Khimreaktivsnab, Ufa, Russia).
Samples after each exposure were analyzed for residual concentration by HPLC (Agilent
1260 Infinity chromatograph, Zorbax SB-C18 column, UV detector). pCBA was eluted
with a mixture of methanol and 1% acetic acid (70:30) at a flow rate of 0.8 mL/min and
detected at 230 nm. Degradation plots were presented as the ratio of residual and initial
concentration (C/C0) versus treatment time (min).

3. Results and Discussion

Figure 2 shows that no measurable inactivation of both bacteria was observed by
single-frequency ultrasonication for 60 min. Dual-frequency ultrasonication achieved only
~1-log reduction of E. coli and showed no inactivation of E. faecalis.
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To enhance ROS generation, further experiments were performed using sono-activated
persulfate at initial concentrations of 100 and 200 mg/L [23]. Generally, the gram-positive
E. faecalis was inactivated markedly slower than the gram-negative E. coli due to the thicker
peptidoglycan layer (40 nm) of the cell membrane [29]. On increasing the PS concentration, the
inactivation rate was expectedly increased due to enhanced ROS production and, accordingly,
the treatment time for 5-log reduction (total inactivation) was reduced (Figure 3).
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Comparison of single-frequency inactivation kinetics showed the higher efficiency of
1700 kHz, compared to 120 kHz. This result is consistent with the observation that ROS
generation increases with increasing frequency [30]. This dependence is attributed to a
decrease of the resonant bubbles’ radii at higher frequencies that accelerates their collapse
(cavitation). Specifically, Hua and Hoffmann (1997) [31] showed that the bubble radius
decreased from 177 µm at 20 kHz to 7 µm at 500 kHz, leading to higher rates of H2O2 and
•OH production. Our data suggest that PS, activated by 1700 kHz, yields more SO4•−
and •OH, thereby providing faster inactivation. Radical probing experiments with pCBA,
which is oxidized by both sulfate and hydroxyl radicals, confirmed this conclusion: its
degradation rate was higher at 1700 kHz in the absence and presence of PS (Figure 4).
Furthermore, the persulfate-assisted DFUS treatment revealed a synergistically accelerated
degradation that indicates the increased generation of radicals. The contribution of •OH
from DFUS alone to pCBA degradation was estimated to be 35% (Figure 4a).
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The rate constant for the reaction of pCBA with SO4•− (kpCBA/SO4•− = 3.6 × 108

M−1 s−1 [32]) is only one order of magnitude lower than that with •OH (kpCBA,•OH =
5 × 109 M−1 s−1 [33]). Therefore, it is difficult to distinguish between •OH and SO4•−
from the obtained degradation plots. To evaluate the contribution of •O H and SO4•−,
pCBA was degraded in the presence of t-buthanol (kSO4•

− = 4.0 × 105 M−1 s−1, kOH• =
6.0 × 108 M−1 s−1) and methanol (kSO4•

− = 1.1 × 107 M−1 s−1, kOH• = 9.7 × 108 M−1 s−1)
as radical scavengers [34–36]. Importantly, t-buthanol reacts with •OH by ~103 orders of
magnitude faster than with SO4•−. Alcohols were added individually to pCBA solution to
obtain a molar ratio of 100:1 (alcohol:persulfate) and sufficiently quench the radicals.

Figure 5 shows that both alcohols inhibited the degradation: methanol scavenged both
radicals and t-buthanol scavenged primarily •OH.

Assuming that pCBA was degraded by SO4•− in the presence of t-buthanol (which
scavenges •OH), the contribution of •OH can be obtained as the arithmetical difference
between the degradation efficiency with t-buthanol (29%) and without both scavengers
(63%) [37,38]. Accordingly, •OH (34%) and SO4•− (29%) nearly equally contributed to
pCBA degradation for 90 min. Such a relatively high •OH yield might be attributed to
the additional contribution of 1700 kHz (Figure 4a). It should be emphasized that ROS
generation upon sono-activation of PS has been little investigated; however, SO4•− rather
than •OH was reported to be the predominant radical under exposure to low frequency
at 28 kHz [39]. Our study showed that the frequency of 120 kHz is less effective than
1700 kHz for activating PS and producing radicals. This finding is also supported by
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Kumar et al. (2011) [40], who reported faster inactivation at 130 kHz than at 35 kHz, which
implies the increased radical generation at higher frequency.
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Another possible mechanism of inactivation is sonoporation, which represents the
cell permeabilization by acoustic cavitation during ultrasonic exposure [41]. Since this
phenomenon is attractive in view of non-invasive delivery of drugs and genes into cells,
sonoporation has been well studied for high frequencies and applied for therapeutic
purposes [42,43]. Briefly, during acoustic cavitation the collapsing microbubbles induce
shear stress, which results in different biological effects, including production of pores
on cells [41,44,45]. The higher the ultrasonic frequency in the range of 0.5–2 MHz, the
higher the shear stress and sonoporation [46]. Specifically, the sonoporation increased with
efficiencies of 39.5 ± 13.7, 46.6 ± 3.28 and 66.8 ± 5.5% at 1, 2.5 and 5 MHz, respectively [43].
It was also reported that, under ultrasonication at 1.5 MHz, the sonoporation occurs prior
to ROS generation [47]. In turn, the increased membrane permeability allows the transfer
of ROS (primarily, SO4•−) through the pores into the cell, leading to its apoptosis. This
mechanism explains the higher efficiency of 1700 kHz towards inactivation.

As shown in Figure 3, a high time-based synergistic effect was found under simul-
taneous dual-frequency ultrasonication (120 + 1700 kHz), which provided much faster
total inactivation (5-log reduction), compared to the single-frequency mode. In inactiva-
tion studies, a synergistic effect occurs if log reduction after integrated (hybrid) exposure
is higher than the algebraic sum of log reductions obtained after individual exposure.
A synergistic effect is normally quantified with the synergistic index (ϕ), which should be
above 1; otherwise, an additive (ϕ = 1) or an antagonistic (ϕ < 1) effect is stated. As shown
in our previous study [48], 5-log reduction was the most representative parameter for
assessing the synergistic effect under dual-wavelength ultraviolet treatment. In the present
study, a synergistic index was also calculated in terms of 5-log reduction by Formula (3):

ϕ =
Log reduction (120 + 1700 kHz)

Log reduction (120 kHz) + Log reduction (1700 kHz)
(3)

The log reductions after single-frequency treatment were taken for the same exposure
times, at which 5-log reduction in DFUS mode was achieved. The obtained values > 1
indicate a high synergistic effect for inactivation of E. coli and E. faecalis by persulfate
activated by DFUS (Table 1). Increasing the concentration of PS to 200 mg/L increased the
synergistic index and enhanced the synergistic effect.



Water 2022, 14, 2604 7 of 10

Table 1. The synergistic indices (ϕ) of inactivation under dual-frequency ultrasonication (120 + 1700 kHz)
using persulfate.

Persulfate, mg/L Sum of Log Reductions for
Single-Frequency (Exposure Time) ϕ

E. coli

100
200

2.3 (60 min)
1.1 (30 min)

2.3
5.0

E. faecalis

100
200

2.9 (100 min)
1.8 (60 min)

1.8
2.9

The general mechanism of synergistic effect under DFUS exposure was elucidated in
our review [7]. Under single-frequency exposure, the nonlinear dynamics of oscillating
microbubbles produces additional acoustic waves at different frequencies, such as harmon-
ics [49], subharmonics [50] and ultraharmonics [51]. Under dual-frequency exposure, i.e.,
interaction of two acoustic waves at different frequencies, new (combination) frequencies
are generated in addition to the main frequencies and accompanying harmonics, sub-
harmonics and ultraharmonics [52]. The combination frequencies represent an algebraic
sum or a difference of two main frequencies, main frequencies and harmonics, and so on.
Notably, the power of acoustic waves of the sum and the difference of main frequencies
is lower only by an order of magnitude than the power of main frequencies [53]. Later,
Ye et al. (2019) [54] advanced the theoretical insight into the enhanced acoustic cavitation
under dual-frequency exposure and found that the oscillation of cavitational microbub-
bles becomes more unstable and easier to collapse in the dual-frequency ultrasonic field.
The authors also conclude that DFUS can destroy the stable oscillation and accelerate the
collapse of microbubbles. In this regard, we propose that this phenomenon results in an
increase of ROS yield, thereby intensifying inactivation processes and providing a syner-
gistic effect. A synergistic effect in terms of accelerated inactivation is the main advantage
of the proposed method. In view of cost efficiency, modern transducers and generators of
high-frequency ultrasound, as well as persulfate, are low-cost and commercially available
products. We assume that additional costs associated with using the second frequency,
are coverable by significant reduction of treatment time (synergy). Although real water
has not been examined in this study, a high synergy can make this method applicable for
disinfecting drinking water and scaling up under flow-through conditions. Since ultrasonic
waves propagate well in water with suspended particles and coloration, dual-frequency
ultrasonication at 120 + 1700 kHz could be also a viable option for disinfecting wastewater.

4. Conclusions

A high time-based synergistic effect in terms of 5-log (total) inactivation of E. coli
and E. faecalis in model aqueous solution was found using dual-frequency ultrasonication
at 120 + 1700 kHz in the presence of persulfate. We presume that it is primarily caused
by generation of additional frequencies, which, in turn, increase the sonoporation and
ROS yield upon activation of persulfate. Comparing single frequencies, 1700 kHz was
found to be more efficient than 120 kHz due to enhanced ROS generation. Radical probing
showed the accelerated degradation of pCBA as a reference compound and confirmed this
conclusion. This study demonstrates promising results for fast and environmentally safe
disinfection of real waters, including drinking water.

Author Contributions: Investigation, formal analysis and validation, N.G., I.T., E.K.; Methodology,
data curation and writing—original draft preparation, G.M.; Conceptualization, project administra-
tion, methodology, supervision and writing—review and editing, V.B. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Russian Science Foundation, grant number 22-24-00482.



Water 2022, 14, 2604 8 of 10

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. Drinking Water, Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/

drinking-water (accessed on 13 July 2022).
2. Joyce, E.M.; Mason, T.J. Sonication used as a biocide. A review: Ultrasound a greener alternative to chemical biocides? Chim.

Oggi Chem. Today 2008, 26, 22–26.
3. Phull, S.S.; Newman, A.P.; Lorimer, J.P.; Pollet, B.; Mason, T.J. The development and evaluation of ultrasound in the biocidal

treatment of water. Ultrason. Sonochem. 1997, 4, 157–164. [CrossRef]
4. Jyoti, K.K.; Pandit, A.B. Water disinfection by acoustic and hydrodynamic cavitation. Biochem. Eng. J. 2001, 7, 201–212. [CrossRef]
5. Ananta, E.; Voigt, D.; Zenker, M.; Heinz, V.; Knorr, D. Cellular injuries upon exposure of Escherichia coli and Lactobacillus rhamnosus

to high-intensity ultrasound. J. Appl. Microbiol. 2005, 99, 271–278. [CrossRef]
6. Gao, S.; Hemar, Y.; Ashokkumar, M.; Paturel, S.; Lewis, G.D. Inactivation of bacteria and yeast using high frequency ultrasound

treatment. Water Res. 2014, 60, 93–104. [CrossRef]
7. Matafonova, G.; Batoev, V. Dual-frequency ultrasound: Strengths and shortcomings to water treatment and disinfection. Water

Res. 2020, 182, 116016. [CrossRef]
8. Wu, X.; Mason, T.J. Evaluation of power ultrasonic effects on algae cells at a small pilot scale. Water 2017, 9, 470. [CrossRef]
9. Zou, H.; Wang, L. The disinfection effect of a novel continuous-flow water sterilizing system coupling dual-frequency ultrasound

with sodium hypochlorite in pilot scale. Ultrason. Sonochem. 2017, 36, 246–252. [CrossRef]
10. Zou, H.; Tang, H. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water

treatment system in a pilot scale. Water 2019, 11, 258. [CrossRef]
11. Rengeng, L.; Qianyu, Z.; Yuehong, L.; Zhongzhong, P.; Libo, L. Sonodynamic therapy, a treatment developing from photodynamic

therapy. Photodiagn. Photodyn. Ther. 2017, 19, 159–166. [CrossRef]
12. Tabatabaei, Z.S.; Rajabi, O.; Nassirli, H.; Noghreiyan, A.V.; Sazgarnia, A. A comparative study on generating hydroxyl radicals by

single and two-frequency ultrasound with gold nanoparticles and protoporphyrin IX. Australas. Phys. Eng. Sci. Med. 2019, 42,
1039–1047. [CrossRef] [PubMed]

13. Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with
TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem. 2014, 21, 289–294. [CrossRef] [PubMed]

14. Guerra-Rodríguez, S.; Rodríguez, E.; Singh, D.N.; Rodríguez-Chueca, J. Assessment of sulfate radical-based advanced oxidation
processes for water and wastewater treatment: A review. Water 2018, 10, 1828. [CrossRef]
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