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Abstract: The rapid development to accommodate population growth has a detrimental effect on
water quality, which is deteriorating. Consequently, water quality prediction has emerged as a
topic of great interest during the past decade. Existing water quality prediction approaches lack
the desired accuracy. Moreover, the available datasets have missing values, which reduces the
performance efficiency of classifiers. This study presents an automatic water quality prediction
method that resolves the issue of missing values from the data and obtains a higher water quality
prediction accuracy. This study proposes a nine-layer multilayer perceptron (MLP) which is used
with a K-nearest neighbor (KNN) imputer to deal with the problem of missing values. Experiments
are performed, and performance is compared with seven machine learning algorithms. Performance
is further analyzed regarding two scenarios: deleting missing values and the use of a KNN imputer
to deal with missing values. Results suggest that the proposed nine-layer MLP model can achieve an
accuracy of 0.99 for water quality prediction with the KNN imputer. K-fold cross-validation further
corroborates this performance.

Keywords: water quality prediction; KNN imputer; machine learning; multilayer perceptron

1. Introduction

One of the most crucial natural resources, without which life cannot exist, is water.
According to the studies, approximately 66% of the Earth is made up of water with the
availability of fresh or usable water being only 1%, while the rest of the water is saline or
salt water. Water is an integral part of the prosperity and wealth of a nation. However,
the level of water has been falling considerably during the last few decades, which is one
of the emerging problems in the modern world. Due to the ever-increasing population
of the world, water resources are under pressure to provide basic functions to such a big
population due to the water pollution on and under the surface, which is a threatening
situation, keeping in mind the depleting water resources. As the population of the world
is growing at a rapid pace, it affects its demand, as well as its cost [1]. It can result
in the decline of per capita water used at higher population rates. It is proven that a
deficiency of clean water can increase the likelihood that people live in poverty. Water is
unevenly distributed among the countries. About 60% of the world’s water is accessible,
which suggests that even though water is abundant on Earth, its accessibility for drinking,
agricultural, and commercial use is unevenly distributed geographically [2].
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Water quality and abundant water supply are of key importance when it comes to
preserving the ecosystem [3]. The availability of clean, fresh water supports social and
economic well-being [4]. According to the United Nations Environment Program (2000),
20% of people worldwide lack access to clean drinking water, while around 50% of the
population of the world is denied access to safe sanitation systems, which is posing a
serious threat to water shortages and waterborne-related diseases. With the increase of
approximately 60 million people yearly, an estimated 64 billion m3 of water is needed to be
added annually to the water reservoirs.

The availability of a safe and sufficient quantity of drinking water is a crucial part of
basic healthcare since drinking water quality has a significant effect on the health of people.
The level of components in potable water must not threaten consumer health or reduce its
usefulness [5]. The following characteristics of good water quality should be met by water.

• Free of harmful organisms.
• Clean and clear (low turbidity).
• Lack of saline.
• Devoid of substances that provide an unpleasant flavor or smell.
• Devoid of substances that might have harmful effects on human health.
• Low levels of substances such as lead that are immediately hazardous or have negative

long-term effects.
• Free of chemicals that could damage the water supply system or taint washed-in clothing.

1.1. Elements in Water

There are a variety of water quality standards that can be followed depending on
the region or country. The World Health Organization (WHO) has created guidelines for
the lower and upper limits of several inorganic chemicals that are typically present in
drinking water, making them one of the most commonly used standards. The World Health
Organization’s maximum permissible concentration of elements is described in Table 1.

Table 1. Elements and their admissible amounts for drinking water as mentioned by the WHO [6].

Element Admissible Amount

Arsenic 10 µg/L

Selenium 40 µg/L

Barium 10 µg/L

Uranium 30 µg/L

Boron 2400 µg/L

Chromium 50 µg/L

Fluoride 1500 µg/L

Organic Species:

Benzene 10 µg/L

1,4-Dioxane 50 µg/L

Dichloromethane 20 µg/L

Tetrachloroethene 40 µg/L

Nitrilotriacetic acid 200 µg/L

Hexachlorobutadiene 0.6 µg/L

Xylene 500 µg/L

Trichloroethene 20 µg/L

1,2-Dichloroethene 50 µg/L
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Table 1. Cont.

Element Admissible Amount

Di(2-ethylhexyl)phthalate 8 µg/L

Pentachlorophenol 9 µg/L

1,4-Dichlorobenzene 300 µg/L

Toluene 700 µg/L

1,2-Dichlorobenzene 1000 µg/L

Carbon tetrachloride 4 µg/L

Ethylbenzene 300 µg/L

Edetic acid 600 µg/L

Styrene 20 µg/L

1,1-Dichloroethane 30 µg/L

1.2. Problem Statement

The public requires access to safe, easily accessible water for drinking, household
usage, food production, and recreational activities. A country’s economic development
may be considerably boosted by better water supply and resource management. Water
that is sufficient for personal and household use, constantly available, safe, accessible, and
reasonably priced is a right that belongs to everyone. Due to contaminated water every
year, lots of people experience kidney failure, cancer, etc. [7]. Contaminated water can lead
to diarrhea, cholera, typhoid, etc. [6]. Laboratory methods for water quality classification
are time-consuming procedures and need lots of resources. Presently, lots of systems are
available for water quality classification but they lack accuracy. Thus, it is the need of the
hour to have an automated system that can automatically classify the quality of water with
less effort.

1.3. Research Aims and Objectives

Drinking water quality surveillance is the continuous, vigilant evaluation and accept-
ability of drinking water supplies by the public health community. A perfect distribution
system will not keep the public healthy if the water it distributes receives insufficient treat-
ment, and flawless treatment is useless if the system’s design or cross-connections allow for
contamination. Due to the prevalent problems of water contamination over the past decade,
water quality prediction has emerged as a topic of great importance for the survival of life
on Earth. Consequently, a large body of automatic water quality prediction approaches
can be found in the literature. Predominantly, such works provide comparatively low
accuracy. Furthermore, the datasets available for experiments have a large number of
missing attributes needed to predict water quality, and the resulting accuracy is low. This
study aims to solve these problems by making the following contributions. Firstly, a KNN
imputer is used to deal with the missing values problem. Using this technique, the water
quality prediction accuracy is distinctly improved compared to deleting the missing values.
Secondly, a multilayer perceptron (MLP) is used for water quality prediction. Experiments
are performed using different architectures for MLP, including three, six, and nine layers,
where the best results are obtained using the customized nine-layered architecture. In
addition, a range of machine learning models is used for comparison for the prediction of
water quality with and without the KNN imputer.

This study is further divided into four sections. Starting with a description of studies
related to current work in Section 2, the proposed methodology, dataset, and machine
learning models are presented in Section 3. Section 4 discusses the results while the
conclusion is given in Section 5.
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2. Related Work

Water is essential to human life since it is used in so many daily activities such as
drinking, cooking, maintaining personal cleanliness, farming, and industrial processes [8].
Other processes, such as biotransformation and the creation of electricity, also depend on
water [9]. Because human existence depends on the availability of water, both sources
(surface and groundwater) are subject to varying degrees of pollution from numerous
pollutants [10].

There has been a greater demand for reliable, accurate, and adaptable prediction
models as surface water pollution has been acknowledged as a problem and there is grow-
ing interest in water quality assessment [11]. Numerous researchers have used neural
networks and other machine learning algorithms to forecast water quality in recent years,
with promising prediction outcomes [12]. Machine learning models have shown limita-
tions in generalizing complex and highly nonlinear connections between the modeling
parameters [13].

Although research has shown that various machine learning models, including deep
neural networks, kernel models, fuzzy logic, genetic programming, neuro-inference models,
and others, have been utilized to design surface water quality phenomena [14], there are
still a number of new classifiers that have not yet been investigated. For the conservation
of the water environment, water quality prediction is very important. Authors developed a
water quality assessment approach based on long short-term memory (LSTM) and IGRA,
taking into account the multivariate correlation and temporal sequence of the water quality
data [15]. The first suggestion made by IGRA was to choose features that have a higher
absolute correlation being predicted. Second, an LSTM-based prediction model was created,
with the indicators collected by IGRA serving as its inputs. Results show promising output
for water quality prediction.

Traditional water quality prediction approaches used machine learning and statistical
characteristics (normal distribution) and techniques and has not achieved good results. Con-
trarily, artificial intelligence-based approaches have shown better results as there is no need
to determine the relation of dependent variables with independent ones [16]. The authors
applied a neural network model to determine the quality of groundwater [17], and provide
an improved water quality monitoring system for drinking purposes. Authors investi-
gated quality indicators for potability by applying explainable artificial intelligence [18].
Many researchers have concentrated their efforts on using many variables as a function
model after the realization of the significance of monitoring and forecasting the changing
water quality. Artificial neural networks (ANNs) such as MLP and radial bias have been
employed by researchers for water quality prediction and have achieved satisfactory re-
sults [19]. A water quality index was also produced using an ANN and five significant
and widely accepted water quality indicators [20]. The literature includes studies on using
artificial intelligence systems to predict the water quality index [21].

The recurrent neural network (RNN) is the most widely used deep learning model for
the analysis of time-series data. An improved RNN with a significant capacity for informa-
tion acquisition and archival is LSTM, which has been used extensively for predicting water
quality [22,23]. In order to perform a thorough predictive study of the water quality in the
next time period, the authors developed a prediction technique based on the bidirectional
LSTM that takes into account the reliance at many time scales [24].

For accurate real-time water quality prediction, the researchers introduced a novel fea-
ture selection and classification approach in [25]. The complexity of the suggested approach
is decreased by using a learning-based model and quantum teaching to choose the best
possible collection of characteristics. The authors proposed two tree-based hybrid models,
namely, XGBoost and RF, to provide more precise short-term water quality prediction and
they also introduced a novel data denoising technique (CEEMDAN) [26].

Numerous versions of models have been utilized by researchers to determine water
quality; they are still facing challenges in the process. The literature review indicates
that there is a limited number of studies using deep neural networks in predicting water
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quality, especially for drinking purposes. In addition, models that can adapt to the complex
character of the majority of environmental engineering challenges are required.

3. Materials and Methods

This section presents the proposed approach for water quality prediction, machine
learning models, and the dataset used for experiments. The data flow of the proposed
approach is depicted in Figure 1. First, the dataset is collected, which contains the electronic
health records for different features of water. Since the dataset contains missing values, data
preprocessing is needed to deal with this problem. This study leverages the KNN imputer in
this regard. Afterward, different machine learning models are applied in addition to the MLP
model. For training and testing these models, the data are split into training and testing sets.
The classifiers are applied to determine the water quality as potable and not safe for humans.

Figure 1. Architecture of the proposed approach.

3.1. Dataset

The dataset utilized in this research is taken from Kaggle. Kaggle is a renowned and
free data repository from which we can obtain a dataset without any hassle. The dataset
used in this study is available with the name of ‘Water Quality’ [27]. The dataset consists of
10 columns and it has 935 instances. The target class is potable. It has two values, ‘0’ or ‘1’,
where ‘0’ denotes that the water is not safe for drinking and ‘1’ denotes that it is safe for
drinking. A detailed dataset description is presented in Table 2.

Table 2. Description of the dataset used in this study.

Feature Description

pH pH of water (0 to 14).

Hardness Capacity of water to precipitate soap in mg/L.

Solids Total dissolved solids in ppm.

Chloramines Amount of chloramines in ppm.

Sulfate Amount of sulfates dissolved in mg/L.

Conductivity Electrical conductivity of water in µS/cm.

Organic_carbon Amount of organic carbon in ppm.

Trihalomethanes Amount of trihalomethanes in µg/L.

Turbidity Measure of light-emitting property of water in NTU.

Potability Indicates if water is safe for human consumption. Potable, 1, and not potable, 0.

Data visualization helps researchers find the hidden patterns and relationships among
the data attributes [28]. The goal of data visualization is to efficiently and concisely present
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facts or information to readers. A chart, map, or infographic is frequently used to visually
convey data. Data visualization helps transform data into a more understandable format
and shows patterns and outliers. The dataset contains two classes, where 61% of the data
belong to the ‘not potable’ class, and 39% of the data belong to the ‘potable’ class. The
potable class indicates that the water is clean and safe for human use.

Figure 2 shows the histogram distribution of the nine features used for training the
machine learning models. The tenth attribute is the target class with potable and not potable
values. The histogram helps to understand the distribution of each feature in the dataset. It
shows how frequently a value/feature appears in a relatively unbiased way. Figure 2 shows
that the given features have a normal distribution and they are not skewed. Moreover, the
distribution is unimodal and symmetric. The given range of these features is different, and
the occurrence of each feature is helpful to determine the center of a particular feature. For
example, Figure 2a shows that the majority of pH values lie between 5.0 and 8.0.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 2. Class-wise histogram representation of each feature.
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Dataset attributes have a different level of correlation for water quality prediction.
Figure 3 shows the relationship of the features using the heatmap for dataset attributes,
which indicates the importance of each attribute with respect to the target class. It indicates
that ‘solids’ and ‘chloramines’ attributes have a strong linear relationship with potability,
while ‘organic_carbon’ and ‘sulfate’ have an inverse relationship with potability. This
relationship helps to understand which features are important to determine the target class
for water quality.

Figure 3. Correlation heatmap of features.

3.2. Data Preprocessing

Data preprocessing is an important step to obtain better performance from the models.
In this step, the unnecessary or redundant data are removed from the dataset. These
data have no meaning for the machine learning models. Preprocessing helps to enhance
the efficacy of the learning models. Not only does preprocessing help to enhance the
performance of the model, it also helps to reduce the computational time. In this research,
during the data preprocessing, we came to learn that there are several missing values in
the dataset. Missing values present in the dataset, according to the class, are presented in
Table 3.

Table 3. Missing values in the dataset.

Feature Missing Values % of Missing Values

pH 491 14.99

Hardness 0 0.00

Solids 0 0.00

Chloramines 0 0.00

Sulfate 781 23.84

Conductivity 0 0.00

Organic_carbon 0 0.00

Trihalomethanes 162 4.95

Turbidity 0 0.00

Potability 0 0.00
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It is clear from the table that there are a large number of missing values. As the dataset
is categorical, the missing values can be handled with two different methods:

• Using KNN imputer.
• By removing the missing value from the dataset.

3.2.1. KNN Imputer

In the modern world, data are collected from various sources and used for analysis,
insight generation, theory validation, and other purposes. There may frequently be some
information missing from these data which is gathered from various sources. This can
be the result of an issue with data extraction or collection caused by human error. Thus,
dealing with these missing values becomes a crucial step in the preprocessing of data.
The choice of imputation method is important because it can have a big impact on the
models’ performance. A popular technique for imputing missing values is KNN imputer by
sci-kit-learn. It is frequently used as an alternative to conventional imputation methods [29].
By using the Euclidean distance matrix to find the nearest neighbors, the KNN imputer
aids in the impute of missing values that are present in the observations. By ignoring the
missing values and increasing the weight of the non-missing coordinates, the Euclidean
distance is determined. Mathematically, Euclidean distance can be calculated as:

Dxy =
√

weight ∗ squared distance from present coordinates (1)

where
weight =

total number of coordinates
number of present coordinates

(2)

3.2.2. Removing Missing Values from Dataset

The second option for handling the data is to remove the missing values from the data.
The second set of experiments is performed using this approach where all the fields with
the missing values are removed.

3.3. Machine Learning Models Used in Study

Machine learning plays a significant role in enhancing the accuracy and efficacy of
water quality classification. To classify water quality, there exists a variety of machine
learning algorithms. The Scikit-learn library of Python has a variety of machine learning
classifiers. This library is open source and has a sizeable user base; it largely contributes to
the research community. This study uses the Scikit-learn library to implement LR, SVC, DT,
RF, KNN, SGDC, and XGBoost.

3.3.1. Logistic Regression

For solving the binary classification problem, LR is one of the widely used methods.
The logistic equation, often known as the sigmoid function, is the technique that makes LR
so popular [30]. Any evaluated number may be given to the sigmoid function (S-shaped
curve) that converts it to a number between 0 and 1.

y =
1

(1 + e−value)
(3)

where e represents the base of algorithms. The real numerical values are to be transformed.
The logistic functions value also ranges between 0 and 1.

y =
eb0+b1∗x

(1 + eb0+b1∗x)
(4)

where y presents the expected performance, b0 is the bias or intercept, and b1 presents the
coefficient for x which is an input value.
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In the input data, each column has a coefficient that is correlated with the training
data. To achieve a higher value of accuracy, LR uses ‘max_iter’ for solving converge.

3.3.2. Support Vector Classifier

SVC is also known as a support vector machine. It is a famous supervised machine
learning algorithm. SVC performs classification problems by developing the best line in
two dimensions [31]. SVC uses the RBC kernel and can be used to find the regression line.
The general equation is:

k(aa − a2) = exp
(
||(a1 − a2)||2

2a2

)
(5)

where k is the kernel function, and (a1 − a2) is the distance between a1 and a2. The kernel
function k can be written as

k =
1

e
d2

12
2σ2

(6)

where σ is the hyperparameter.

3.3.3. Decision Tree

DT is a renowned machine learning algorithm extensively utilized for regression and
classification problems. The selection of the root node at each level is a problem in the
decision tree [32]. This process is termed ‘attribute selection’. For attribute selection, there
are two renowned techniques: the ‘Gini index’ and ‘information gain’. The Gini index can
be computed by the following equation:

Gini = 1−
classes

∑
i=1

p(
i
t
)2 (7)

The Gini index helps to compute the impurity of data in the dataset. Another attribute
selection technique is information gain. Information gain tells about the purity of data.
Information gain can be calculated when we have the entropy of the target class and entropy
of the each attribute. Entropy D can be calculated as:

entropy(D) = −
|c|

∑
i=1

Pr(ci)log2Pr(ci) (8)

|c|

∑
i=1

Pr(ci) = 1 (9)

where Pr(ci) presents the probability, ci presents the class, and D presents the dataset.
The entropy of attribute Ai is utilized as the current root and can be calculated as:

entropyAi(D) = −
v

∑
j=1

|Dj|
D
∗ entropy(Dj) (10)

Finally, the following information is gained when attribute Ai is chosen to branch or
split data:

entropy(D, Ai) = entropy(D)− entropyAi(D) (11)

3.3.4. Random Forest

A tree-based classifier RF combines several poor apprentices (poor learners) to generate
very accurate predictions. To train different decision trees utilizing diverse bootstrap
samples, RF uses bootstrap bagging [33]. A bootstrap sample is generated using the sub-
sampling of the training dataset, where the size of the training and test sample dataset is the
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same. Similar to other ensemble classifiers, RF uses decision trees for making predictions.
At each stage, the identification of the root node is a challenging task for the development
of decision trees.

p = mode{T1(y), T2(y), T3(y), . . . . . . . . . . . . ., Tm(y)} (12)

p = mode{
m

∑
m=1

Tm(y)} (13)

The number of decision trees participating in the prediction process is T1(y), T2(y), T3(y), . . . ,
Tm(y), and p is the decision made by the decision trees by a majority vote.

In RF, the term “random state” is used during training to regulate the unpredictability
of the sample.

3.3.5. K-Nearest Neighbor

KNN is a simple supervised classification technique. The KNN locates the similarity
between the previous examples and new data and then places the new data in the group
with high similarity [34]. Distance calculations between the existing samples and new
data are used to determine similarity. Different distance estimation techniques, such
as Euclidean, Manhattan, and Minkowski, are used for measuring distance. The KNN
technique can be applied to classification and regression problems. Due to the fact that KNN
is a nonparametric method, it does not evaluate any inferences about the underlying data.

3.3.6. Stochastic Gradient Decent Classifier

The working principle of SGDC relies on the working of LR and SVM. SGDC uses the
LR convex loss function and proves to be a powerful classifier. It is an excellent option for
multiclass categorization. SGDC aggregates multiple classifiers in the OvA (one-versus-all)
method [35]. The quality of SGDC is that it handles large datasets efficiently. It uses a single
example per iteration. As SGDC uses the regression technique, it is very easy to implement
and easy to understand. For better results, SGDC must be correctly valued. SGDC has a
high value of sensitivity in terms of feature scaling.

3.3.7. XGBoost

XGBoost is a fast supervised learning algorithm. For the accurate and precise classifi-
cation of water quality, XGBoost is used in this study. Due to the availability of regularized
learning features, it helps in smoothing the final weights and it avoids the overfitting
phenomenon [36]. The specific algorithm is as follows:

Ω(θ) =
n

∑
i=1

d(yi, ŷi) +
k

∑
k=1

β( fk) (14)

where d is the loss function, β is the regularization term, yi is the predicting value, n is the
instance number in training, and k is the number of trees.

3.4. Deep Learning Models Used in Study

Due to promising results and high accuracy values, deep neural networks are in the
eye of many researchers. Water quality classification is also performed using the deep
learning model MLP in this study. A brief description of MLP is given in this section.

Multilayer Perceptron

An input vector and the associated output vector are nonlinearly mapped by the
deep learning neural network known as MLP. MLP constitutes a hidden layer, input layer,
and output layer. For the activation of neurons, MLP uses nonlinear activation function
except for the input node [37]. Due to the availability of a nonlinear function for activation,
MLP can handle data that cannot be linearly separated [38]. The connection weights are
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modified, and the calculation takes into account both the desired and actual output. The
output node is presented by y at the nth data point. The error can be computed by the
following equation:

ey(n) = ty(n)− py(n) (15)

where p is the output of perceptron and t presents the target value.
Node weights are changed following the adjustment to lessen the inaccuracy of the

overall output.

∈ (n) =
1
2 ∑

y
e2y(n) (16)

Any change in the weight is given using gradient descent.

∆wyx(n) = η
δε(n)

(δvy(n))
px(n) (17)

where η represents the learning rate and px is the output of the previous neuron.
Derivation calculation is calculated with the help of vy, which is an induced local field.

This derivative is calculated as

δε(n)
(δvy(n))

= ey(n)φ′(vy(n)) (18)

φ is a derivative of the constant activation function.

δε(n)
(δvy(n))

= ey(n)∑
k

δε(n)
(δvy(n))

wky(n) (19)

3.5. Proposed Approach for Water Quality Prediction

The dataset for this study was taken from Kaggle, a well-known data source. After
obtaining the dataset, the preprocessing was carried out to resolve the problem of missing
values. These missing values had a strong impact on the efficacy of the learning models.
To handle the missing values, KNN imputer was used. After that, the data splitting was
performed in 70:30, with 70% for the training of the model and 30% of the data used for
testing purposes. The proposed MLP system is used for water quality classification. It is a
feedforward deep learning network that gives a mapping between the matching output
vector and an input vector. The proposed MLP system consists of nine layers with each
layer of 250 neurons. MLP is used with the “binary_crossentropy” loss function while
“Adam” is used as the optimizer. The learning rate is set to 0.001, while a batch size of 100
is used with 20 epochs for training the model.

4. Results and Discussion

The results of water quality classification using various classifiers are discussed in
this section. Machine and deep learning models were employed using Python 3.0 on a
Jupyter notebook. Experiments were carried out on the Core i7 7th-generation machine
with Windows 10 as the operating system. The accuracy, precision, recall, and F1 score of
the learning models are used to evaluate their performance.

4.1. Results of Machine Learning Models with Deleted Missing Values

In the first set of experiments, the missing values are deleted from the dataset. After
deleting the missing values from the dataset, machine learning models are applied to the
data. The results of the machine learning models obtainedby deleting missing values from
the dataset are presented in Table 4.
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Table 4. Results of models obtainedby deleting missing values from the dataset.

Model Accuracy Precision Recall F1 Score

LR 0.48 0.48 0.48 0.48

SVC 0.52 0.54 0.52 0.47

DT 0.72 0.72 0.72 0.72

RF 0.79 0.79 0.79 0.79

KNN 0.57 0.55 0.57 0.56

SGDC 0.50 0.25 0.50 0.33

XGBoost 0.76 0.76 0.76 0.76

From the results, it is clear that the RF and the XGBoost achieve accuracy values of 79%
and 76%, respectively, which are the highest among all models. RF achieves a 79% value
for the precision, recall, and F1 score, and XGBoost achieves a 76% value for the precision,
recall, and F1 score. LR shows the worst performance and achieves 48% each for accuracy,
precision, recall, and F1 score. Overall, the performance results of machine learning models
are not satisfactory while using the deleted missing value data. A graphical representation
of the machine learning model results with deleted missing values data is given in Figure 4.
It indicates that besides the performance of RF and XGBoost, the results from other models
are very poor and unsatisfactory.

Figure 4. Graphical representation of machine learning models results using the deleted missing
values data.

In addition, Figure 5 shows the standard deviation and mean absolute error for
the models used in this study. The standard deviation is calculated using 10-fold cross-
validation. It shows that RFC and XGB have the lowest mean absolute error while DT has
the lowest standard deviation.
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Figure 5. Standard deviation and mean absolute error of models.

4.2. Results of Machine Learning Models by Using KNN Imputer

The second set of experiments is performed using the KNN imputer. After the pre-
processing of the dataset, several missing values are found in the dataset. To handle the
missing values, we used the KNN imputer. The KNN imputer imputes the value based on
the mean of the given values using the Euclidean distance. Once the missing values are
imputed, the data are used for experiments with the machine learning models. The results
of the machine learning models using the KNN imputer are shown in Table 5.

Table 5. Results of machine learning models using KNN imputer.

Model Accuracy Precision Recall F1 Score

LR 0.61 0.38 0.61 0.47

SVC 0.61 0.38 0.61 0.47

DT 0.72 0.73 0.72 0.72

RF 0.80 0.80 0.80 0.80

KNN 0.59 0.59 0.59 0.58

SGDC 0.59 0.56 0.59 0.55

XGBoost 0.80 0.80 0.80 0.79

The confusion matrices for all the models are provided in Figure 6. It can be observed
that DT achieved the highest number of true positives, with 249 correct predictions, and
XGBoost achieved the highest true negatives, with 529 correct predictions, from the used
machine learning models. KNN shows the highest type I and type II errors, with 244 false
positives and 157 false negatives. The MLP has no wrong predictions for the given dataset.
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Figure 6. Confusion matrix of machine learning models.

From the results, it is clear that the RF and the XGBoost achieve accuracy values of
80% while RF achieves an 80% precision, recall, and F1 score. XGBoost achieves 80% each
for precision and recall but its F1 score is 79%. KNN and SGDC achieve the lowest accuracy
value of 59%. A graphical representation of the machine learning model results using
the KNN imputer is provided in Figure 7. It demonstrates that using the KNN imputer
improves the machine learning model performance.

The area under the curve (AUC) is a metric used to assess a classifier’s capacity to
discriminate between classes. The performance of the model in differentiating between
the positive and negative classes improves with the increasing AUC. AUC curve of the
machine learning models is presented in Figure 8. It is evident that AUC for XGBoost and
RF is higher than that of other models.
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Figure 7. Results of machine learning models using KNN imputer to handle missing values.
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Figure 8. AUC curve of models.



Water 2022, 14, 2592 16 of 19

4.3. Comparison of Machine Learning Models with and without KNN Imputer

For clarity and performance analysis, we compare the results of the machine learn-
ing models with and without using the KNN imputer. The comparison reveals that the
performance of the machine learning models in the second experiment (using the KNN
imputer) is best, as compared to the results achieved by the learning models using the
deleted missing values data. The results of the machine learning models for both scenarios
are given in Table 6.

Table 6. Accuracy comparison of the machine learning models.

Model
Accuracy

KNN Imputer Deleting Missing Values

LR 0.61 0.48

SVC 0.61 0.52

DT 0.72 0.72

RF 0.80 0.79

KNN 0.59 0.57

SGDC 0.59 0.50

XGBoost 0.80 0.76

Figure 9 portrays the difference in the performance of machine learning models when
used with deleted missing values and using the imputed dataset with the KNN imputer.
The KNN imputer not only improves the individual performance of the models but also
leads to overall better performance from all the machine learning models.

Figure 9. Graphical representation of machine learning models results using KNN imputer to handle
missing values.

4.4. Results of Proposed Multilayer Perceptron

We experimented with three different architectures of the proposed MLP. The basic
difference lies in the fact that a different number of layers are used with each architecture,
starting with three layers and increasing to six and nine later on. Similar to the machine
learning process, MLP is applied with deleted missing values and the KNN imputer. Table 7
shows the results with each architecture of MLP when missing values are deleted. Although
there is improvement in the performance of MLP after increasing the number of layers
from three to nine, the performance is poor, with the best accuracy of 0.75, when used with
nine-layer architecture.
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Table 7. Results using the multilayer perception with 3, 6, and 9 layers with deleted missing
value data.

Model Accuracy Precision Recall F1 Score

MLP-3 0.6545 0.71 0.85 0.78

MLP-6 0.6932 0.75 0.87 0.82

MLP-9 0.7532 0.78 0.89 0.85

Table 8 shows the results of the MLP when KNN imputed data are used for training.
Results indicate that when using three layers, the performance is poor, with an 0.8271
accuracy score. However, as the number of layers is increased from three to six, the
accuracy is increased to 0.91. From the results, it is clear that the MLP achieves 99.90%
accuracy, precision, recall, and F1 score when used with a nine-layer architecture.

Table 8. Results using the multilayer perception with three, six, and nine layers using KNN imputer.

Model Accuracy Precision Recall F1 Score

MLP-3 0.8271 0.78 0.82 0.80

MLP-6 0.9124 0.87 0.91 0.90

MLP-9 0.9990 0.993 0.991 0.993

4.5. Comparison of Machine Learning Models with Proposed MLP

Table 9 presents the performance comparison of machine learning models and the
proposed approach for both scenarios. Results reveal that both the proposed approach
and the machine learning models perform better when the KNN imputer is used to fill
the missing values in the water quality prediction data. However, the best results are
obtained using the proposed approach, which obtains 100% accuracy when used with the
KNN imputer.

Table 9. Accuracy of all models using KNN imputer.

Scenario
Accuracy

LR SVC DT RF KNN SGDC XGBoost MLP 3 Layer MLP 6 Layer MLP 9 Layer

KNN imputer 0.61 0.61 0.72 0.80 0.59 0.59 0.80 0.82 0.91 0.997

Deleting MV 0.48 0.52 0.72 0.79 0.57 0.50 0.76 0.65 0.69 0.75

4.6. Results Using K-Fold Cross-Validation

To further validate the results of the proposed approach, we perform a 10-fold cross-
validation using the proposed MLP model with the KNN imputer-filled dataset. Table 10
presents the results of each fold for the proposed model. The results show a 100% accuracy
for each fold with slight variations in the precision, recall, and F1 score.

Table 10. Ten-fold cross-validation classification results using MLP-9.

Fold Number Accuracy Precision Recall F1 Score

1st-Fold 1.00 0.994 0.994 0.994
2nd-Fold 0.998 1.000 1.000 1.000
3rd-Fold 1.00 0.997 0.999 0.998
4th-Fold 0.996 1.000 1.000 1.000
5th-Fold 0.999 1.000 1.000 1.000
6th-Fold 0.998 1.000 1.000 1.000
7th-Fold 1.00 1.000 1.000 1.000
8th-Fold 1.00 1.000 1.000 1.000
9th-Fold 1.00 1.000 1.000 1.000
10th-Fold 0.999 1.000 1.000 1.000

Average 0.999 0.9991 0.9993 0.9992
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5. Conclusions

Recent environment-affecting developments have led to water contamination which
has negativeeffects on human life and causes several complicated diseases. Consequently,
water quality prediction is essential for sustaining human life. This study performed
experiments regarding the water quality prediction where the dataset has missing values.
For obtaining highly accurate predictions, MLP is used with the KNN imputer to deal with
missing values. Extensive experiments were carried out using several machine learning
models with two different scenarios: deleting missing values and using the KNN imputer.
Results suggest that the use of the KNN imputer for filling the missing values is a better
choice and it produces better results. The MLP obtains the best accuracy of 99.9% with a
nine-layer architecture and the KNN imputer. Overfitting is the main problem faced by
machine learning models with imbalanced datasets. In the future, using mixed features
and a balanced dataset is intended to obtain generalized results. We also intend to use deep
learning with a large dataset for automatic feature extraction and water quality prediction.

Author Contributions: Conceptualization, M.U. and S.S.; data curation, A.J. and S.S.; formal anal-
ysis, M.U.; funding acquisition, A.M.; investigation, A’.A.E.; methodology, H.K. and I.A.; project
administration, A’.A.E.; resources, A.M.; software, H.K. and A’.A.E.; supervision, I.A.; validation,
A.M.; visualization, H.K.; writing—original draft, A.J., M.U. and S.S.; writing—review and editing,
I.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available on Kaggle and can be requested from all co-authors.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2022R192), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Muhammad, S.Y.; Makhtar, M.; Rozaimee, A.; Aziz, A.A.; Jamal, A.A. Classification model for water quality using machine

learning techniques. Int. J. Softw. Eng. Its Appl. 2015, 9, 45–52. [CrossRef]
2. Radhakrishnan, N.; Pillai, A.S. Comparison of water quality classification models using machine learning. In Proceedings

of the 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 10–12 June 2020;
pp. 1183–1188.

3. Walley, W.; Džeroski, S. Biological monitoring: A comparison between Bayesian, neural and machine learning methods of water
quality classification. In Environmental Software Systems; Springer: Berlin/Heidelberg, Germany, 1996; pp. 229–240.

4. Nasir, N.; Kansal, A.; Alshaltone, O.; Barneih, F.; Sameer, M.; Shanableh, A.; Al-Shamma’a, A. Water quality classification using
machine learning algorithms. J. Water Process. Eng. 2022, 48, 102920. [CrossRef]

5. Sillberg, C.V.; Kullavanijaya, P.; Chavalparit, O. Water quality classification by integration of attribute-realization and support
vector machine for the Chao Phraya River. J. Ecol. Eng. 2021, 22, 70–86. [CrossRef]

6. World Health Organization. Drinking water. Available online: https://www.who.int/news-room/fact-sheets/detail/drinking-
water#:~:text=Contaminated%20water%20and%20poor%20sanitation,individuals%20to%20preventable%20health%20risks (ac-
cessed on 5 May 2022).

7. Abdulla, A.F. Bacterial Diseases Caused By Contaminated Drinking Water. 2021 .
8. Luo, Z.; Shao, Q.; Zuo, Q.; Cui, Y. Impact of land use and urbanization on river water quality and ecology in a dam dominated

basin. J. Hydrol. 2020, 584, 124655. [CrossRef]
9. Okumah, M.; Yeboah, A.S.; Bonyah, S.K. What matters most? Stakeholders’ perceptions of river water quality. Land Use Policy

2020, 99, 104824. [CrossRef]
10. Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Yaseen, Z.M. River water quality index prediction and uncertainty analysis: A

comparative study of machine learning models. J. Environ. Chem. Eng. 2021, 9, 104599. [CrossRef]
11. Abba, S.; Hadi, S.J.; Sammen, S.S.; Salih, S.Q.; Abdulkadir, R.; Pham, Q.B.; Yaseen, Z.M. Evolutionary computational intelligence

algorithm coupled with self-tuning predictive model for water quality index determination. J. Hydrol. 2020, 587, 124974.
[CrossRef]

12. Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in
rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [CrossRef]

http://doi.org/10.14257/ijseia.2015.9.6.05
http://dx.doi.org/10.1016/j.jwpe.2022.102920
http://dx.doi.org/10.12911/22998993/141364
https://www.who.int/news-room/fact-sheets/detail/drinking-water#:~:text=Contaminated%20water%20and%20poor%20sanitation,individuals%20to%20preventable%20health%20risks
https://www.who.int/news-room/fact-sheets/detail/drinking-water#:~:text=Contaminated%20water%20and%20poor%20sanitation,individuals%20to%20preventable%20health%20risks
http://dx.doi.org/10.1016/j.jhydrol.2020.124655
http://dx.doi.org/10.1016/j.landusepol.2020.104824
http://dx.doi.org/10.1016/j.jece.2020.104599
http://dx.doi.org/10.1016/j.jhydrol.2020.124974
http://dx.doi.org/10.1016/j.chemolab.2020.103978


Water 2022, 14, 2592 19 of 19

13. Barzegar, R.; Adamowski, J.; Moghaddam, A.A. Application of wavelet-artificial intelligence hybrid models for water quality
prediction: A case study in Aji-Chay River, Iran. Stoch. Environ. Res. Risk Assess. 2016, 30, 1797–1819. [CrossRef]

14. Tiyasha; Tung, T.M.; Yaseen, Z.M. A survey on river water quality modelling using artificial intelligence models: 2000–2020. J.
Hydrol. 2020, 585, 124670. [CrossRef]

15. Zhou, J.; Wang, Y.; Xiao, F.; Wang, Y.; Sun, L. Water quality prediction method based on IGRA and LSTM. Water 2018, 10, 1148.
[CrossRef]

16. Wagh, V.; Panaskar, D.; Muley, A.; Mukate, S.; Gaikwad, S. Neural network modelling for nitrate concentration in groundwater of
Kadava River basin, Nashik, Maharashtra, India. Groundw. Sustain. Dev. 2018, 7, 436–445. [CrossRef]

17. Bilali, A.E.; Taleb, A.; Mazigh, N.; Mokhliss, M. Prediction of chemical water quality used for drinking purposes based on
artificial neural networks. Moroc. J. Chem. 2020, 8, 8–3.

18. Dwivedi, P.; Khan, A.A.; Mudge, S.; Sharma, G. Explainable AI (XAI) for Social Good: Leveraging AutoML to Assess and Analyze
Vital Potable Water Quality Indicators. In Computational Intelligence in Data Mining; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 591–606.

19. Ubah, J.; Orakwe, L.; Ogbu, K.; Awu, J.; Ahaneku, I.; Chukwuma, E. Forecasting water quality parameters using artificial neural
network for irrigation purposes. Sci. Rep. 2021, 11, 24438. [CrossRef]

20. Gupta, R.; Singh, A.; Singhal, A. Application of ANN for water quality index. Int. J. Mach. Learn. Comput 2019, 9, 688–693.
[CrossRef]

21. Aldhyani, T.H.; Al-Yaari, M.; Alkahtani, H.; Maashi, M. Water quality prediction using artificial intelligence algorithms. Appl.
Bionics Biomech. 2020, 2020, 6659314. [CrossRef]

22. Liu, P.; Wang, J.; Sangaiah, A.K.; Xie, Y.; Yin, X. Analysis and prediction of water quality using LSTM deep neural networks in IoT
environment. Sustainability 2019, 11, 2058. [CrossRef]

23. Hu, Z.; Zhang, Y.; Zhao, Y.; Xie, M.; Zhong, J.; Tu, Z.; Liu, J. A water quality prediction method based on the deep LSTM network
considering correlation in smart mariculture. Sensors 2019, 19, 1420. [CrossRef]

24. Zou, Q.; Xiong, Q.; Li, Q.; Yi, H.; Yu, Y.; Wu, C. A water quality prediction method based on the multi-time scale bidirectional
long short-term memory network. Environ. Sci. Pollut. Res. 2020, 27, 16853–16864. [CrossRef]

25. Charles, J.; Vinodhini, G.; Nagarajan, R. An efficient feature selection with weighted extreme learning machine for water quality
prediction and classification model. Ann. Rom. Soc. Cell Biol. 2021, 25, 1969–1994.

26. Lu, H.; Ma, X. Hybrid decision tree-based machine learning models for short-term water quality prediction. Chemosphere 2020,
249, 126169. [CrossRef] [PubMed]

27. Kaggle. Water Quality Available online: https://www.kaggle.com/datasets/adityakadiwal/water-potability (accessed on 5
May 2022).

28. Aparicio, M.; Costa, C.J. Data visualization. Commun. Des. Q. Rev. 2015, 3, 7–11. [CrossRef]
29. Saranya, N.; Samyuktha, M.S.; Isaac, S.; Subhanki, B. Diagnosing chronic kidney disease using KNN algorithm. In Proceedings

of the 2021 7th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India,
19–20 March 2021; Volume 1, pp. 2038–2041.

30. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013;
Volume 398.

31. Wien, M.; Schwarz, H.; Oelbaum, T. Performance analysis of SVC. IEEE Trans. Circuits Syst. Video Technol. 2007, 17, 1194–1203.
[CrossRef]

32. Chandra, B.; Varghese, P.P. Fuzzy SLIQ decision tree algorithm. IEEE Trans. Syst. Man, Cybern. Part 2008, 38, 1294–1301.
[CrossRef] [PubMed]
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