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Abstract: Low flow simulation by hydrological models is a common solution in water research and 

application. However, knowledge about the influence of the objective functions is limited in 

relatively arid regions. This study aims to increase insight into the difference between the calibrated 

objective functions by evaluating eight objectives in three different classes (single objectives: 

KGE(log(Q)) and KGE(1/Q); multi objectives: KGE(Q)+KGE(log(Q)), KGE(Q)+KGE(1/Q), 

KGE(Qsort)+KGE(log(Qsort)) and KGE(Qsort)+KGE(1/Qsort); Split objectives: split KGE(Q) and 

split (KGE(Q)+KGE(1/Q))) in Bahe, a semi-arid basin in China. The calibrated model is Xin An Jiang, 

and the evaluation is repeated under varied climates. The results show a clear difference between 

objective functions for low flows, and the mean of KGE and logarithmic transformed-based KGE in 

time series (KGE(Q)+KGE(log(Q))) presents the best compromise between the estimation for low 

flows and general simulation. In addition, the applications of the inverse transformed-based KGE 

(KGE(1/Q)) and the Flow Duration Curve-based series (Qsort) in objectives are not suggested. 
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1. Introduction 

Low flow research plays a significant role in water management, such as aquatic 

ecosystems, irrigation, water supply, and hydroelectricity [1,2]. Applying hydrological 

models to low flow analysis is essential, especially for basins lacking discharge data [3]. 

However, hydrological models have simplified the water cycling processes and include 

some model parameters that cannot be directly measured [4]. Therefore, before applying 

the model in the interested regions, model calibration is essential to optimize the model 

parameters [5]. Due to the changing climate, growing scientific efforts to assess 

hydrological changes for future scenarios have been made. Aiming to reduce the 

uncertainty of future predictions, generating well-calibrated models is imperative [6]. 

Model calibration is the process of identifying a suitable model parameter set to 

minimize the difference between the simulated and observed values, represented by the 

objective function [7]. Thus, an excellent objective function is always the backbone of a 

satisfactory scientific outcome. To understand the influence of objective functions and 

improve the model simulation, considerable research has been carried out in recent 

decades (e.g., [8–11]). The most critical improvement is replacing the single objective with 

multi-objective (e.g., [12,13]), making the multi-objective calibration widely used in water 

resource applications, especially for hydrological simulations [14]. Efstratiadis and 

Koutsoyiannis [9] reviewed different case studies about multi-objective applications in 
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hydrology and found that the multi-objective approach improved the identifiability of 

parameters in complex parameterization. 

Even though a significant number of studies have applied various multi-objective 

functions in hydrological model calibration, studies focusing on low flow analysis are 

limited. Shafii and De Smedt [15] calibrated the WetSpa model by combining the normal 

and log-transformed Nash–Sutcliffe Efficiency (NSE) as the objective function and found 

that it is possible to find a compromise with equal attention to both high-flows and low-

flows. Kim [16] also applied the normal and log-transformed NSE in the objective function 

to emphasize high and low flow in a hydrograph and concluded that it worked better. 

Garcia et al. [3] conducted a comprehensive evaluation, particularly on low flow 

simulations with different objective functions in hundreds of French basins but applied 

the inverse transformation to make the low flow sensitive to the objective functions. Their 

result suggested that the combination between normal and inverse transformed Kling 

Gupta Efficiency (KGE) is recommended. Apart from the transformed format of objective 

functions based on time series, studies including the hydrological signatures in the 

objective function are increasing. According to the comparison between the time series-

based and Flow Duration Curve (FDC)-based transformed format of objective functions, 

Garcia et al. [3] found using FDC based transformation is worse than the time series-based 

objective function for low flow indices simulation. At the same time, Lombardi et al. [17] 

deduced that including the match of the FDC statistic in the calibration outperformed the 

time domain calibration on an excellent reproduction of the low-to-average flow 

quantiles, based on 52 Italian catchments. Consistent with Lombardi et al. [17], Chilkoti et 

al. [14] found the inclusion of FDC-based signatures in objective functions could improve 

the performance for low flow simulation, according to the calibration of a SWAT model 

in a small snow-fed catchment. From the above studies, there are consistent answers to 

the question of whether or not taking the FDC-based signatures could help low flow 

simulation. On the other hand, the above studies were conducted in humid regions and 

little attention has been paid to relatively arid areas. 

To enhance the knowledge about the influence of the calibrated objective functions 

in relatively arid regions, this study proposes a comprehensive evaluation by considering 

eight different objective functions in a semi-arid Chinese basin. The evaluated objective 

functions consist of varied formats, transformations, and bases, and are compared from 

three aspects: the hydrograph simulation, FDC simulation, and the low flow indices. To 

additionally explore more about the climatic influence on the objective functions, different 

climatic conditions are also considered in the evaluation. 

2. Study Area and Data 

2.1. Study Area 

The study was conducted in the Bahe basin of China, which is in the northern part of 

the Qinling Mountains. The Ma Du Wang (MDW) hydrologic station was selected, located 

downstream in the Bahe basin; the watershed station before the Bahe River flows into the 

Weihe River. There is no large reservoir in the catchment. The catchment area is about 

1760 km2 (see Figure 1), the average elevation is 1170 m, and the land use is dominated 

by agriculture and forest. The average annual precipitation in the Bahe region is about 720 

mm, and nearly 60% of precipitation occurs between July and October. Precipitation is the 

primary source of runoff, and the summer runoff accounts for more than 40% of annual 

runoff. According to the Köppen–Geiger climate classification, the watershed controlled 

by the MDW station belongs to Dwa and Dwb classes: monsoon-influenced hot/warm 

summer, semi-arid continental climate. 
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Figure 1. The location and Digital Elevation Model (DEM) information of the study area. 

2.2. Data 

The meteorological data in this study come from the National Meteorological 

Information Centre (NMIC) and applies the same site station information as He et al. [18]. 

In addition, the spatial interpolation method for areal mean precipitation and ET 

calculation is by the Simple Kriging, which is also the same as He et al. [18]. The runoff 

data are at the daily time scale in this study, obtained from the Yellow River Conservancy 

Commission (YRCC). 

3. Methods 

For this comparative analysis, a conceptual hydrological model, Xin An Jiang (XAJ), 

is calibrated with different objective functions under varied climates. More detailed 

information is shown in the following. 

3.1. Hydrological Model and Model Optimization 

In this study, the XAJ model, a conceptual rainfall-runoff model at a daily time step, 

is selected. The XAJ model was developed for relatively humid regions in China by Zhao 

et al. [19,20], which has become a widely used model in runoff simulation, water resources 

assessment, and climate change assessments (e.g., [21]). In this study area, this model has 

been validated [22], and the model structure applied here is the same as Lin et al. [23]. For 

a detailed model description, please check there. 

To optimize the hydrological model parameter set, an effective global optimization 

algorithm, the shuffled complex evolution (SCE-UA) algorithm was used in this study. 

This algorithm is mainly based on the concept of information-sharing and natural 
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biological evolution [24,25]. It has been widely used in hydrological model calibration 

(e.g., [26,27]). 

3.2. Calibration Objective Functions 

Summarizing currently used objective functions, three different classes of objectives 

were evaluated; Table 1 gives more detailed information. About the criteria, both NSE and 

KGE are widely used in hydrology, while KGE is free of the influence of unhelpful 

interactions among components [28]. Therefore, KGE has been analyzed and 

recommended by many studies (e.g., [29–31]) and is applied here. 

The calculation of KGE follows Equation (1): 

KGE = 1 − √(r − 1)2 + (α − 1)2 + (β − 1)2 (1) 

With  

{
  
 

  
 𝑟 =

1

𝑁
∑

(Qo − μo)(Qs − μs)

𝜎𝑜𝜎𝑠

𝑁

𝑖=1

α =
μs
μo

β =
𝜎𝑠
𝜎𝑜

 (2) 

As shown in Table 1, it includes the single objectives, multi objectives, and split 

objectives. The single objective class, which includes OBJ1 and OBJ2, applies two different 

transformation approaches to the discharge in the KGE calculation. These transformations 

are considered to emphasize the low flow goodness of fit: one is the logarithmic 

transformed discharge [5,32,33] and another is the inverse transformed discharge [34]. For 

the multi objective class, which is from OBJ3 and OBJ6, follows the format from Garcia et 

al. [3], who combined the normal KGE with the inverse transformation-based KGE in the 

objective by the same weights for both the time-based and FDC-based series. Additionally, 

this study includes the logarithm transformation-based partners to explore the influence 

from the transformation selection. The last class considers the recommendation from 

Fowler et al. [35], who proposed the split KGE as the objective function and found it could 

significantly improve the model performance. To validate the improvement of this 

strategy, this split KGE is set as OBJ7. OBJ8 is proposed in this study, which applies this 

strategy to the suggested objective function (OBJ4) by Garcia et al. [3]. Regarding the 

above description, some connections or similarities exist between the evaluated objective 

functions, which is helpful to explore the characteristics by pair comparison. 

Table 1. The information of evaluated objective functions in this study. 

Classes Criteria Name Description Reference 

Single objective 

KGE(log(Q)) OBJ1 
KGE calculated on logarithmic transformed 

discharges 
Oudin et al. [33] 

KGE(1/Q) OBJ2 KGE calculated on inverse transformed discharges 
Pushpalatha  

et al. [34] 

Muti objective 

KGE(Q)+KGE(log(Q)) OBJ3 
Sum of KGE calculated on discharges and logarithmic 

transformed discharges 

Proposed in this 

study 

KGE(Q)+KGE(1/Q) OBJ4 
Sum of KGE calculated on discharges and inverse 

transformed discharges 
Garcia et al. [3] 

KGE(Qsort)+KGE(log(Qsort)) OBJ5 
Sum of KGE calculated on the FDC and logarithmic 

transformed of the FDC 

Proposed in this 

study 

KGE(Qsort)+KGE(1/Qsort) OBJ6 
Sum of KGE calculated on the FDC and logarithmic 

transformed of the FDC 
Garcia et al. [3] 

Split objective 

split KGE(Q) OBJ7 Averaged KGE calculated on discharges in each year Fowler et al. [35] 

split (KGE(Q)+KGE(1/Q)) OBJ8 
Averaged sum of KGE calculated on discharges and 

inverse transformed discharges in each year 

Proposed in this 

study 
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3.3. Model Performance Assessment 

3.3.1. Climatic Robustness Assessment 

The Differential Split-Sample Test (DSST) is applied to test the objective functions, 

where two independent periods are in different conditions [36]. According to the 

statistical climate analysis, the climate will be drier in the future in this region [18]. 

Considering this, the model is calibrated with a relatively wet climate and validated in a 

dry climate. 

Figure 2 displays the precipitation information from 1998 to 2019 in the MDW station. 

It is easy to see that 2000–2002 is the only continuous period that every annual 

precipitation is lower than the average value; the annual precipitation is around 540 mm. 

To provide more valuable information for the application, as considered above, the period 

2000–2002 is thus set as the validation period. Correspondingly, a relatively humid period 

is considered to be the calibration period. Through the plot, 2003–2005 shows the highest 

3-year mean precipitation value (about 681 mm per year), making it as the calibration 

period. In order to increase the climatic robustness, the period 2007–2009 is also set as a 

calibration period, since its annual precipitation (about 661 mm per year) is higher than 

the average value in each year. In summary, two relatively humid periods (2003–2005 and 

2007–2009) are applied for the calibration evaluation, and a relatively arid period (2000–

2002) is used for the evaluation in this study. 

 

Figure 2. The precipitation (P) information in Ma Du Wang station, the blue and red window marks 

the calibration periods, and the yellow window marks the validation period. 

3.4. Assessment Criteria 

Paying more attention to the low flow simulation does not mean reducing the general 

performance. Therefore, the evaluation criteria used to compare the objective functions in 

this study are based on the general and the low flow simulation. Table 2 shows the applied 

assessment criteria correspondingly, including many low-flow indices used in hydrology 

[2,37]. For instance, the logarithmic transformed criteria have been widely used in studies, 

which shows overall goodness of fitting but emphasizes low flow [4,5,33]. Another class 

of low flow indices measure the low flow severity at different time steps, which is more 

concerned by water management agencies; for example, the mean annual 3-day minimum 

discharges. Moreover, the usage of FDC statistics increases, since it could provide 

valuable information in the frequency domain [11,38]. In this class, the LFD, Q95, and Q75 

are applied in the study. 
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Table 2. The applied criteria of performance evaluation in this study. 

Criteria Description 

KGE Kling-Gupta Efficiency (see Equation (1)) 

KGElog KGE calculated on logarithmic transformed flow 

MAM3 Mean Annual Minimum 3-day mean flow at 3-year return period 

MAM10 Mean Annual Minimum 10-day mean flow at 3-year return period 

MAM30 Mean Annual Minimum 30-day mean flow at 3-year return period 

LFD The duration of low flow smaller than 30% of the time 

Q95 Flow exceeded 95% of the time  

Q75 Flow exceeded 75% of the time  

4. Results 

4.1. Objective Functions Evaluation 

4.1.1. Hydrograph Simulation 

The time series of flow observation presents the temporal change in the water cycle 

in a basin, which is the base information for hydrological statistical analysis, such as the 

trend, the seasonality, etc. Therefore, assessing the performance of time series simulation 

is a vital evaluation aspect for objective functions. 

To compare the objective function influence on the time series simulation, Figure 3 

displays the probability density function (PDF) of the percent bias (Pbias) information for 

the period of 2003–2005. The Pbias here divides the model residual by the observed flow 

value, which measures the general information for relative simulation errors. From the 

left subplot, the logarithmic transformed objective functions are better than the inverse 

transformed objective functions, regardless of whether the objective is single or multi. 

Taking the performance classification from Moriasi et al. [39], the days that achieved good 

simulation (|Pbias| < 15%) account for 45% and 44% during the calibration period by the 

OBJ1 and OBJ3, followed by OBJ4 with 40%, which is much higher than OBJ2. The result 

of acceptable performance (|Pbias| < 25%) also supports the above finding, where 61%, 

60%, and 57% days are achieved by the OBJ1, OBJ3, and OBJ4, respectively. When 

comparing the single and multi-objectives, the above results indicate that the difference 

between single objectives (OBJ1 and OBJ2) is much more significant than the multi 

objectives (OBJ3 and OBJ4). Moving to the middle subplot, which shows the result from 

the multi objectives, the general probability of achieving smaller Pbias for objectives based 

on the time series seems higher than that based on the FDC. For instance, for OBJ5 and 

OBJ6, the days showing a good performance account for 45% and 26%, respectively, and 

the values change to 62% and 48% for acceptable performance. The right subplot shows 

the result from all three different kinds of objectives, and OBJ4 presents a better result 

than others, which means the split objective functions did not improve the simulation for 

the hydrological time series, while between two split objective functions, OBJ8 provides a 

slightly better simulation performance, which makes 2% and 1% days achieve a good and 

acceptable performance than OBJ7, correspondingly. 



Water 2022, 14, 2591 7 of 17 
 

 

Figure 3. The probability density function (PDF) comparison for the objective functions evaluating by the percent bias 

(Pbias) during the calibration period 2003–2005. 

Figure 4 shows the same information as Figure 3, but for the calibration result during 

2007–2009. Even though the general characteristics here are in line with Figure 3, minor 

differences exist. Although a clear distinction appears between single objectives (OBJ1 and 

OBJ2), the difference between multi objectives (see the middle subplot) is smaller than the 

period 2003–2005. Statistically, the days in good performance accounts for 45%, 44%, 36%, 

and 35%, and the values change to 64%, 58%, 53%, and 50% for acceptable performance 

for the OBJ3, OBJ4, OBJ5, and OBJ6, respectively. 

Figure 4. The probability density function (PDF) comparison for the objective functions evaluating by the percent bias 

(Pbias) during the calibration period 2007–2009. 

The goodness of hydrograph fitting is also an essential measure for flow time series 

simulation, which has been evaluated frequently by KGE in recent years. Since this study 

focuses more on the low flow, the logarithmic transformed KGE results (KGElog) are also 

included. Table 3 presents the calculated values of KGE and KGElog during two calibration 

periods with all eight objective functions. In the table, the highest values for each period 

among objective functions are highlighted in bold, and ‘/’ is used when the value is lower 

than 0. 

Table 3. The calibrated KGE and KGElog values during two calibration periods. 

Evaluation Criteria KGE KGElog 

Calibration Period 2003–2005 2007–2009 2003–2005 2007–2009 

OBJ1 0.85 0.63 0.78 0.84 

OBJ2 0.60 0.25 / / 

OBJ3 0.90 0.78 0.77 0.83 
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OBJ4 0.92 0.78 0.70 0.79 

OBJ5 0.89 0.62 0.74 0.69 

OBJ6 0.90 0.55 0.68 0.61 

OBJ7 0.85 0.68 / / 

OBJ8 0.74 0.69 / / 

Note: ‘/’ is used when the value is lower than 0. 

When looking at the KGE values, almost all objective functions show an acceptable 

performance in both calibration periods but with considerable differences. For example, 

during 2003–2005, the highest KGE is 0.92 from OBJ4, and the lowest value is 0.6 from 

OBJ2, while the difference between multi objectives is slight, which is 0.03 according to 

the result from 2003–2005. Comparing three different objectives classes, multi objectives 

show relatively higher KGE values, followed by split objectives and single ones. Focusing 

on the low flow simulation assessment by KGElog, three objectives produce values lower 

than 0, which means unacceptable. At the same time, all the multi objective functions 

provide good results, whose KGElog values are higher than 0.61. The highest KGElog value 

appears for OBJ1; this is mainly because the evaluation criterion is the same as the 

objective function and the KGElog values for OBJ3 are very close to OBJ1. 

Considering the balance between general and low flow simulation through two 

periods, OBJ3 and OBJ4 yield relatively better results, followed by OBJ1. Taking the 

averaged KGE and KGElog values for the two periods as the example, the result is 0.821 

and 0.797 for OBJ3 and OBJ4, respectively, followed by 0.773 for OBJ1. Among the multi 

objectives, regardless of whether it is time series-based or FDC-based, the logarithmic 

transformed objectives tend to yield higher averaged measurements than the inverse 

transformed objectives. The averaged KGE and KGElog value of the two periods for OBJ5 

is 0.736, which is 0.685 for OBJ6. 

4.1.2. Flow Duration Curves 

Unlike the time series evaluation, FDC statistics could provide valuable frequency 

domain information. Figure 5 presents the FDC assessment result overall for the eight 

objective functions during 2003–2005, and each subplot contains two zoomed subplots to 

more clearly present the results for high and relatively low flow simulations. 

 

 

Figure 5. The result of the observed and simulated FDCs by all objective functions during the 

calibration period 2003–2005. The zoomed plots in each subplot show the result for the highest 10% 

flow (left) and the lowest 50% flow (right) simulations. 

According to the left subplots, the simulated FDC from OBJ2 is far from all other 

curves, including the observation one. With the two zoomed subplots, OBJ2 presents 

substantial overestimation-to-observation for the highest 10% flow and heavy 
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underestimation-to-observation for the lowest 50% flow. While the curves from OBJ1 and 

OBJ3 seem closer to the observation through two zoomed subplots, especially the low 

flow one. Compared with the left subplot, these multi objectives evaluated in the middle 

subplot produce more similar FDC simulations, especially for the high flows. While 

according to the zoomed low flow subplot, OBJ5 presents the closest FDC simulation to 

the observation, followed by OBJ3, and OBJ6 stays furthest. All simulated curves show a 

visible difference from the right subplot, more significant between each curve than from 

the left subplot. Among these objective functions, OBJ4 provides the closest simulation; 

the split objective functions work similarly to OBJ2. 

Figure 6 presents the results in the same way as in Figure 5 but is based on the 

calibration during 2007–2009. The general characteristics presented here totally agree with 

findings from Figure 5, regardless of the scale difference. For instance, the curve simulated 

by the OBJ2 stays visibly far from the observation curve, and OBJ5 and OBJ3 yield the 

closest simulation curve to the observation. However, the curves from the multi objectives 

keep close to each other. 

 

Figure 6. The result of the observed and simulated FDCs by all objective functions during the 

calibration period 2007–2009. The zoomed plots in each subplot show the result for the highest 10% 

flow (left) and the lowest 50% flow (right) simulations. 

4.1.3. Low Flow Indices 

Since this study emphasizes low flow simulation, different low flow indices are thus 

applied in Figure 7, where the line shows the observed value and the bar presents the 

simulated value. 

Through all subplots, the objective functions provide similarly good simulations to 

the observed LFD. Apart from the simulation of LFD, the objectives OBJ2, OBJ7, and OBJ8 

vastly underestimate the other observed low flow indices, which are not comparable with 

other evaluated partners. Between the rest of the objectives, the inverse transformed 

objectives (OBJ4 and OBJ6) estimate the indices visibly lower than the logarithmic 

transformed ones (OBJ1, OBJ3, and OBJ5). For example, the average estimation for MAM3 

is about 1.3 m3/s from the inverse transformed objectives, which is about 2.2 m3/s from the 

logarithmic transformed objectives. 
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Figure 7. The observed (the line) and simulated (the bars) low flow indices by all objective functions 

during the calibration period 2003–2005. 

Assessing the performance aspect, the inverse transformed objectives better estimate 

the indices sensitive to the extreme low flows (e.g., MAM3, MAM10, and Q95). According 

to the subplot for MAM10, the averaged estimation error is about 0.3 m3/s from the inverse 

transformed objectives, which climbs to 0.8 m3/s from the logarithmic partners. 

Conversely, the logarithmic transformed objectives provide a better estimation for the 

indices less sensitive to the extreme low flows (e.g., MAM30 and Q75). Observing the 

subplot for MAM30, the averaged estimation error is about 1.4 m3/s from the inverse 

transformed objectives, which is about 13 times for the logarithmic partners. 

In Figure 8, the information is summarized similarly to Figure 7 but applies the data 

calibrated during 2007–2009. There are some of the same characteristics observed here as 

in Figure 7, such as the similar simulation from all objectives for LFD; unacceptable 

estimation by OBJ2, OBJ7, and OBJ8, and the higher estimation by logarithmic 

transformed objectives than the inverse transformed partners. However, the performance 

preference shows some differences here from Figure 7. First, OBJ6 produces a minor 

estimation error for the MAM3 and MAM10, while the OBJ5 yields almost the exact same 

estimation as the observed Q95. This result cannot support the finding in Figure 7 that the 

inverse transformed objectives produce a better estimation for the indices sensitive to the 

extreme low flows. Second, OBJ4 and OBJ5 provide the most similar estimation to the 

observed MAM30 and Q75, respectively. This result is not consistent with the finding that 

logarithmic transformed objectives provide a better estimation for the indices less 

sensitive to the extreme low flows. 
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Figure 8. The observed (the line) and simulated (the bars) low flow indices by all objective functions 

during the calibration period 2007–2009. 

4.2. Climatic Robustness Assessment 

As mentioned above, the DSST method is applied to assess the climatic robustness of 

the objectives. To enhance the finding reliability and applicability, the climatic robustness 

evaluation validates the calibration result achieved in two different wet climate periods 

in a relatively dry climate. 

4.2.1. Hydrograph Simulation 

Figure 9 displays the observed and simulated hydrographs during the validation 

period, with the evaluated objectives, except for OBJ2, OBJ7, and OBJ8 due to the bad 

calibration. 

At first sight, even though the objectives are different, all simulations follow the 

observation temporal change pattern, and no apparent time jags appear in both subplots. 

From the upper subplot, OBJ5 shows a relatively better estimation for high flows, 

especially the peaks, followed by OBJ4, and other objective measures are comparable. In 

the lower subplot, OBJ4 tends to overestimate the high flows, except for the peak flow. 

The rest objectives present similar simulations for most time steps, except OBJ5 for some 

high flows. Evaluating the simulation performance between two periods, the estimated 

hydrographs based on the period 2003–2005 are generally closer to the observation than 

based on the period 2007–2009. 
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Figure 9. The hydrograph plot during the validation period based on the calibration period (a) 2003–

2005 (b) 2007–2009. 

Due to the serious overlaps between hydrograph simulations, the information about 

the evaluated statistics (KGE and KGElog) is presented in Table 4 to provide more valuable 

information for hydrograph simulation evaluation. 

Table 4. The validated KGE and KGElog values yield by different calibrated models. 

Calibration Period 2003–2005 2007–2009 

Evaluation Criteria KGE KGElog KGE KGElog 

OBJ1 0.61  0.67  0.42  0.69  

OBJ3 0.68  0.70  0.58  0.68  

OBJ4 0.68  0.62  0.61  0.71  

OBJ5 0.79  0.67  0.58  0.63  

OBJ6 0.61  0.64  0.49  0.67  

Most of the objectives produce acceptable validation results based on both calibration 

periods. According to the values shown in the table, all the KGElog values are higher than 

0.62, and most of the KGE values are higher than 0.58. As shown in bold text, all the 
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highest values for both criteria appear in the multi objective group, and all the values are 

higher than 0.7, except the KGE value during 2007–2009. Between the evaluations based 

on two different calibration periods, all the KGE values based on the calibrated model 

during 2003–2005 are higher than 2007–2009, but the KGElog values are comparable. For 

example, when applying the OBJ1, the KGE value based on 2003–2005 is 0.19 higher than 

in 2007–2009, but the difference between the two KGElog values is only 0.02. Focusing on 

the low flow simulation through both validation results, if taking the averaged KGElog 

value as the measure, OBJ3 presents the best performance, with an averaged KGElog 

value of 0.69. 

4.2.2. Flow Duration Curves 

As mentioned above, FDC statistics could provide additional information to the time 

series simulation. Thus, the validation evaluation also includes the FDC assessment result. 

Figure 10 presents the corresponding result and the left and right penal subplot show the 

result based on the calibrated model during 2003–2005 and 2007–2009, respectively. 

 

 

Figure 10. The observed and simulated FDCs for the validation period based on the calibration in 

(a) 2003–2005 (b) 2007–2009. The zoomed plots in each subplot show the result for the highest 10% 

flow (left) and the lowest 50% flow (right) simulations. 

Overall, the simulated FDCs from all the objectives are comparable and not far from 

the observed FDC, consistent in both periods. Through the simulation for the highest 10% 

flow and the lowest 50% flow, the results of which are shown in the left and right zoomed 

subplots, respectively, the difference between objectives is large for the low flow 

simulations. Among the low flow simulation objectives, the FDC from OBJ5 seems closer 

to the observed curve in subplot (a), which changes to OBJ4 in subplot (b). In contrast, the 

simulated FDC from OBJ1 and OBJ6 in corresponding subplots (a) and (b) present a clear 

distance from the observation. In addition, the simulated FDCs tend to be higher than the 

observation in subplot (a), while they spread mixed on both sides of the observation in 

subplot (b). 
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4.2.3. Low Flow Indices 

To further explore the objective influence on low flow simulation, Figure 11 displays 

the observed and simulated low flow indices during the validation period by applying 

the calibrated model based on different periods. Through the validated simulations, there 

is no apparent conflict result shown between the different calibration periods, therefore, 

the generated result over both periods is described below. 

Consistent with the results shown in the calibration period. First, the OBJ2, OBJ7, and 

OBJ8 provide significantly different and worse estimations than other objectives for all 

evaluated low flow indices except LFD. Second, all the objectives based on both 

calibration periods appear similar to the simulation for LFD, which is about 1.2 days 

averagely longer than the observation. Third, all the left logarithmic transformed 

objectives (e.g., the OBJ1, OBJ3, and OBJ5) provide a relatively higher estimation than the 

inverse transformed partners (e.g., the OBJ4 and OBJ6), except for the Q95 simulation here. 

 

Figure 11. The observed and simulated low flow indices by all objective functions during the 

validation period. 

Going through the simulation over upper subplots, the inverse transformed 

objectives appear closer to the observation, even though the observations between the 

three indices are clear. For instance, the estimated MAM30 from OBJ6 is only about 0.1 

lower than the observation, while for the quartile indices, the simulations from the left 

objectives (e.g., the OBJ1, OBJ3, OBJ4, OBJ5, and OBJ6) are comparable, especially for Q95, 

whose range between those objectives is smaller than 0.5. Another interesting point is that 

for the logarithmic transformed objectives, the difference between the single objective and 

multi objectives is relatively smaller for extreme low flow indices. For example, the 

difference between the simulations from the three objectives is about 0.5 for the evaluation 

of MAM3, which increases to about 1 when assessing the MAM30. 

5. Discussion 

The hydrological models have been popularly applied in water research and 

application, while the objective functions that are suitable for calibrating the hydrological 

models for low flow simulation are unclear, especially in relatively arid regions. 

Therefore, a comprehensive evaluation of different kinds of objective functions in 

relatively dry areas will provide valuable information. 

5.1. Objective Functions Evaluation 

In the current study, eight objective functions were selected for model calibration, 

which belong to different classes. According to the above results, the logarithmic and 

inverse transformation formats shows a pronounced difference. This may be due to the 
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high sensitiveness of the inverse transformation to extreme low values, as analyzed by 

Pushpalatha et al. [34]. In the model error term part, the inverse transformation gave more 

emphasis on low flows than the logarithm transformation. Another explanation may be 

that, at relatively arid regions, very low values appear frequently in observed flow, which 

enhances the weight on low flows. Second, our results suggest applying logarithm 

transformation rather than the inverse transformation in low flow studies, which differs 

from Pushpalatha et al. [34]. One possible reason may be that Pushpalatha et al. [34] 

applied NSE, and NSE is regarded to give more emphasis on high flow than KGE, which, 

thus, balances the low flow weight to some extent. Furthermore, despite the FDC 

simulation, the FDC-based multi objectives did not exhibit a better performance than the 

time series-based partners, which concurs with Garcia et al. [3]. As confirmed by the above 

results and analysis, OBJ3 is suggested for low flow simulation studies in relatively arid 

regions. It fails to agree with the finding by Garcia et al. [3], who recommended the OBJ4 

as the sufficient calibration objective for low flow simulation based on the evaluation in a 

humid region. Therefore, the climate and geographic conditions may be the main factor 

for the disagreement between the two studies. 

Comparing the single and the combined multi objective group from the performance 

over different aspects, the general performance applying combined multi objectives seems 

better. This result confirms the notion that the combined objectives could achieve an 

overall better benefit (e.g., [40]). The single objective is difficult to simulate all the 

hydrograph shape characteristics simultaneously (e.g., [41,42]). Furthermore, whether 

based on the time series or FDC, the performance difference between multi objectives 

appears smaller than between the single objectives. That means the simulation uncertainty 

is relatively smaller when applying the multi objectives, which is in line with the 

knowledge that multi objective calibration could mitigate the uncertainty issues (e.g., 

[43]). Regarding the performance from spit objectives, which is proposed and 

recommended by Fowler et al. [35], it seems the worst among all groups, especially for 

the simulation of low flow indices. 

5.2. Climatic Robustness Assessment 

To additionally explore their climatic robustness, the evaluation of their performance 

was based on two different calibration periods and a validation period, whose climatic 

conditions varied. Assessing from two calibration periods, the general observed 

characteristics of the results are consistent, although the performance values showed some 

differences. Furthermore, even though the average precipitation changed more than 20%, 

shown as the validation and calibration periods in this study, no noticeable changes were 

detected for the general observed characteristics. This is unlike the finding by Garcia et al. 

[3], who asserts that the robustness depends on the climate variability rather than the 

objective function. This difference of opinion may be related to the different magnitude. 

For example, the climate difference between the calibration and validation period in the 

current study is not big enough to explore the climatic influence. At the same time, a minor 

but interesting characteristic from the validation results is that the general performance 

difference between single and multi-objectives seems more significant based on the 

calibration with more considerable climate variability. 

6. Conclusions 

The accuracy of low flow simulation yield from the hydrological models presents an 

apparent effect on water management. Research on the suitableness evaluation of the 

calibration objectives is of importance. Aiming to enhance insight into the objective 

influence on low flow simulation in relatively arid regions, which prior to our research 

was very limited, this study evaluated eight different kinds of objective functions with 

varied climate conditions. The analysis was performed using the observation at Ma Du 

Wang station in the Bahe basin, China, located in a semi-arid and semi-humid continental 
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climate region. The main conclusions from the study are summarized in the following 

points: 

- The influence of the included transformation formats in objective functions on low 

flow simulation is pronounced, and logarithmic transformation is recommended. 

- Among the three classes of objective functions, the combined multi-class is highly 

recommended, and the mean of KGE(Q) and KGE(log(Q)) remains a first choice. In 

contrast, the class of split objectives is regarded as the last choice as it demonstrated 

the worst performance. 

- Replacing the objective function from the time series based on the FDC could not 

improve the simulation performance. 

Although this study evaluated the performance of different objectives under varied 

climates and achieved additional valuable knowledge, the current study has some 

limitations. First, including more hydrological models could help obtain more solid 

conclusions and deepen the understanding of model influence. In addition, assessing the 

performance under an increased number of varied climate conditions could broaden the 

knowledge about the climatic influence, which is essential for research concerning the 

changing climate. 
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