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Abstract: Precipitation nowcasting predicts the future rainfall intensity in local areas in a brief time
that impacts directly on human life. In this paper, we express the precipitation nowcasting as a
spatiotemporal sequence prediction problem. Predictive learning for a spatiotemporal sequence
aims to construct a model of natural spatiotemporal processes to predict the future frames based on
historical frames. The spatiotemporal process is an abstraction of some of the spatial things in nature
that change with time, and they usually do not change very dramatically. To simplify the model and
facilitate the training, we considered that the spatiotemporal process satisfies the generalized Markov
properties. The natural spatiotemporal processes are nonlinear and non-stationary in many aspects.
The processes are not satisfied with the first-order Markov properties when making predictions,
such as the nonlinear movement, expansion, dissipation, and intensity enhancement of echoes. To
describe such complex spatiotemporal variations, higher-order Markov models need to be used for
the modeling. However, many of the previous models for spatiotemporal prediction constructed
were based on first-order Markov properties, losing information on the higher-order variations.
Thus, we propose a recurrent neural network which satisfies the multi-order Markov properties to
create more accurate spatiotemporal predictions. In this network, the core component is the memory
cell structure of the gated attention mechanism, which combines the current input information,
extracts the historical state that best matches the existing input from the historical multi-period
memory information, and then predicts the future. Through this principle of the gated attention,
we could extract the historical state information that is richer and deeper to predict the future and
more accurately describe the changing characteristics of motion. The experiments show that our
GARNN network captures the spatiotemporal characteristics better and obtains excellent results in
the precipitation forecasting with radar echoes.

Keywords: deep learning; recurrent neural network; spatiotemporal prediction; precipitation
nowcasting

1. Introduction

Spatiotemporal predictive learning is an essential branch of predictive learning, and it
has rich potential application scenarios for many practical problems, such as precipitation
nowcasting [1–4], traffic flow prediction [5,6], behavior recognition prediction [7], physical
scene understanding [8], and video understanding [9]. Such a wide range of potential
applications have attracted increasing interest in the machine learning and deep learning
communities. Meanwhile, many fruitful methods have also been proposed. Among these
methods, to fully capture the relationship of spatiotemporal data’s dependencies in both
the temporal and spatial dimensions, t a Recurrent Neural Network (RNN) has been
adopted, with stacked Convolutional Long Short-Term Memory (ConvLSTM) [10] units.
This recurrent neural network is mainly inspired by the widely used natural language-
processing-related technologies, such as machine translation, audio recognition, and natural
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language understanding. These scenarios have rich and skillful means of mining and using
sequence data time-series information.

One of the tricks is that the ConvLSTM unit includes a memory unit, which stores the
historical variations. Some of the studies have shown that the information retained by the
memory unit is mainly the hidden state’s gradient of the ConvLSTM. On the one hand, the
cumulative retention of the information of the hidden state’s gradient makes the historical
information more effective for backward transmission; on the other hand, it significantly
alleviates the RNN gradient’s disappearance problem. Another trick is that the ConvLSTM
unit contains a series of gated structures. These gated structures are mainly based on the
current input information, enabling adaptive transfer control and selective access to the
historical information.

There are other studies, in addition to storing the historical variations in the time
dimension to describe the changes in the time series, and adding the ConvLSTM unit to
store the spatial detail variations in the spatial dimension. However, when the ConvLSTM
unit models the spatiotemporal prediction model, its internal state transition may not
be optimal. Due to the changes in the spatiotemporal dimension of the natural scene
being full of randomness, the whole process could be highly nonlinear and non-stationary.
Although it can be considered to decompose the non-stationary process into the sum of
a deterministic time-varying polynomial and a zero-mean random variable, according to
the Cramer decomposition, some high-order variation information will still be lost in the
actual model learning.

Firstly, the convolution parameters in the ConvLSTM unit are highly shared in the
spatiotemporal dimension, which leads to the penalty of spatiotemporal prediction learn-
ing mainly for the overall changes in the spatiotemporal process. They cannot regard the
penalties for some of the local and highly nonlinear changes. The main reason for sharing
these parameters in the spatiotemporal dimension is the graphics card’s memory limitation.
Secondly, the status transition in the ConvLSTM unit only relies on the status information
of the previous moment. It is based on the assumption that the spatiotemporal process
described approximates a first-order Markov process or a first-order Markov process con-
verted by some transformation. For some of the slow and general nonlinear spatiotemporal
processes, this assumption is reasonable. However, for a spatiotemporal process, such as
radar echo, due to the sudden appearance and expansion, shrinking, disappearing, and
other highly nonlinear changes that are frequently occurring, many of the variations will be
lost based on this assumption. Finally, the gate structure is adopted in the ConvLSTM unit.
The characteristic of the gated structure is that each transfer of historical status information
is a selective transfer after synthesizing the current input information. To some extent, this
selective transfer is beneficial to the current moment, there is no guarantee that it is also
beneficial to the status information transfer in the next moment.

Therefore, we consider, in the time dimension, the ConvLSTM unit should add more
historical state information, that is, not relying on only the state of the previous moment,
but also relying on the state of the earlier moments. Combining our knowledge of the
ConvLSTM unit, we propose a spatiotemporal predictive recurrent neural network, with
the gated attention mechanism (GARNN). The network inherits the commonly used stacked
structure, meaning the mode of stacked cell blocks. The design of the cell block refers to the
Spatiotemporal Long Short-Term Memory (ST-LSTM) structure in the Predictive Recurrent
Neural Network (PredRNN) model [11], and the memory flow in the spatial dimension,
which is added to improve the ability of the cell block to maintain the small shape changes
in the spatial dimension. The cell block achieves innovation in the time dimension by
relying on the state information of multiple moments in the past. When we obtain the state
information of multiple moments in the past, we do not simply accumulate and sum the
past state information after transforming it, but refer to the attention mechanism. Because
the states of the multiple historical moments have different influences on the future, to
effectively utilize the state information with great influence, the attention mechanism is
used to selectively extract the information of the past moments. Based on the current input
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information, the meaningful historical state information is selectively obtained from the
state information of the multiple historical moments. Then, the meaningful historical state
information at each moment is synthesized to obtain the most valuable information for the
current input.

Intuitively, the spatiotemporal prediction recurrent neural network, GARNN, of the
gated attention mechanism that we propose, no longer passively accepts the historical state
of the previous moment but actively selects the historical status of multiple moments. This
network construction provides structural support for the highly nonlinear changes, making
it possible for the neural networks to learn them. We trained and validated the GARNN
model on the radar echo prediction dataset. Compared with the PredRNN model and the
ConvLSTM model, the prediction performance of our proposed recurrent neural network
with the gated attention mechanism was greatly improved.

2. Related Work

According to the different neural network structures, the spatiotemporal process’s
prediction learning can be roughly divided into three types [12,13]: 1. Generative Adver-
sarial Network (GAN)-based methods; 2. RNN-based methods; 3. Convolutional Neural
Network (CNN) and RNN-based methods.

Mathieu et al. [14] proposed a multi-scale GAN architecture model based on the
differential loss function of the image gradient, which solves the problem of predicting the
video frame blur to a certain extent. Liu et al. [15] added the spatial and motion constraint
losses on top of the loss based on the image intensity and gradient and then used a FlowNet
network to compute the optical flow information to predict temporally consistent frames.
Similarly, Yi et al. [16] proposed a GAN network structure with a dual learning mode,
using the relationship between the multiple domains for the image-to-image translation.
Liang et al. [17] proposed a Dual Motion GAN (DMGAN) architecture that ensures that the
model-predicted future frames are consistent with the pixel flow in the video, through a
dual learning mechanism. The dual training method ensures that the predicted optical flow
can help the network to reason, making the predicted future frames more realistic, and
the future frame prediction task also makes the predicted optical flow information more
realistic. Kwon et al. [18] proposed a unified generative adversarial network (comprising
a generator and two discriminators) to predict the video frames accurately, maintain the
consistency of the predicted past and future frames with the video sequence through
circular retrospective restrictions, and reduce the blurring of predicted frames. Compared
with the RNN models, these models transform complex state transitions into the operations
between convolutional channels by stacking convolutional layers, so they are often unable
to effectively capture the dependencies between video frames that are widely separated
in time.

The RNN model was initially proposed to process the one-dimensional time-series
information, such as text, which better captures the correlation of sequence elements in a
time series. Given this perspective, some scholars tried to use the RNN model to predict
future sequences according to the historical video sequences [19–21]. Ranzato et al. [22]
proposed a recurrent convolutional neural network inspired by language modeling. Un-
der the assumption of local space and time stationarity, the visual features generated
by the clustering image patches were used to predict the future video frames. Srivas-
tava et al. [23] used an LSTM Encoder to map the input video sequence to a fixed-length
representation, and then used a single-layer/multi-layer LSTM Decoder to decode the
learned representation, reconstruct the input video sequence and predict the future video
sequences. Babaeizadeh et al. [24] believed that the future of many natural processes is not
deterministic, and there may be multiple reasonable futures, so they proposed a Stochas-
tic Variational Video Prediction (SV2P) method that predicts a different probable future
for each sample of its potential variables. Denton et al. [25] introduced an unsupervised
video generation model. The model learned a prior model of the uncertainty in the given
environment and then drew samples from this prior model and combined them with the
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deterministic estimation of future frames to generate the final future frames. Some other
scholars also believed that the future is not certain and have completed a lot of preliminary
research [26–30]. These RNN-based methods mainly model the time series relationship and
characterize the uncertainty. However, they mainly model the spatiotemporal process’s
high-level features dynamically, leading to the inevitable loss of detailed information in the
actual natural process.

To address the loss of detailed information in the RNN model when modeling the
spatiotemporal processes, Shi et al. [10] combined the advantages of the convolution op-
eration and LSTM. They proposed the convolutional neural network ConvLSTM that
used convolution instead of the original matrix multiplication operation, allowing LSTM
to maintain the two-dimensional characteristics of the image. Shi et al. [31] also com-
bined the convolution operation with the GRU model [32,33], and proposed the Trajectory
GRU (TrajGRU) model, which can actively learn the position-changing structure of the
recurrent connections. Wang et al. [34] proposed an Eidetic 3D LSTM (E3D-LSTM), which
integrated 3D convolution into RNN, and the encapsulated 3D-Conv enabled the local
perceptron of RNN to have motion-sensing capability and enabled the memory cells to
store better short-term features. Wang et al. [35,36] proposed a PredRNN model using
zigzag memory flow, the core of which is a new spatiotemporal LSTM (ST-LSTM) unit,
which can simultaneously extract and memorize variations on both the temporal and
spatial dimensions. Wang et al. [37] proposed a Memory In Memory (MIM) network and a
corresponding recurrent block. The MIM module uses the differential signal between the
adjacent cyclic states to simulate the non-stationary and nearly stationary characteristics
of the spatiotemporal dynamics of two cascaded, self-updated memory modules. The
above method combines convolution with RNN, extracts the information in both time and
space dimensions, and significantly improves the prediction tasks for many of the natural
spatiotemporal processes. However, when the cell blocks of these networks are in the state
of transition, the historical state information they rely on is only from the previous moment.
This dependence is based on the assumption that the described spatiotemporal process is
an approximate first-order Markov process, or is transformed into a first-order Markov
process by some transformation. However, in fact, the natural spatiotemporal process is
often non-stationary and highly nonlinear.

3. Preliminaries
3.1. Spatiotemporal Predictive Learning

Assuming that there is a spatiotemporal process X, an observation device takes snap-
shots of the spatiotemporal process X according to a fixed time interval (the interval can be
considered as 1) and generates an observation sequence (Xt−2, Xt−1, Xt, Xt+1, Xt+2 . . . ).
The observation snapshot Xt at each moment is a grid of data that satisfy the snapshot
Xt ∈ RM×N×C (where M and N denote the width and length of the grid, and C denotes the
dimension of the observed data at each grid point). The spatiotemporal prediction learning
is to predict the most probable sequence (Xt+1, Xt+2, . . . , Xt+Q−1, Xt+Q) of observation
snapshots at Q moments in the future, given an observation sequence (Xt−P+1, Xt−P+2,
. . . , Xt−1, Xt) of a spatiotemporal process X, which satisfies the following equation:

X̂t+1, . . . , X̂t+Q = argmax
Xt+1,...,Xt+Q

p
(
X̂t+1, . . . , X̂t+Q

∣∣X̂t−P+1, . . . , X̂t
)
, (1)

The spatiotemporal prediction learning has a wide range of application scenarios, such
as traffic flow prediction, behavior prediction, video prediction and radar echo prediction.
Taking radar echo prediction as an example, the observation snapshot Xt is a grayscale
image with the width of M and the length of N (the number of channels C is 1). The
spatiotemporal prediction learning is to predict the content of the radar echo map in the
next few hours, according to the current nearest radar echo map sequence, to predict the
future precipitation at the grid level.
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3.2. Stacked ConvLSTM Network

The main difference between the convolutional LSMT (ConvLSTM) and the standard
LSTM is that the ConvLSTM replaces the matrix multiplication operation of standard
LSTM with a convolution operation, so that the input information and state informa-
tion can maintain the spatial structure in the LSTM unit. Simultaneous modeling of the
spatiotemporal structure of information and state information avoids the loss caused by
compressing the tensor information into the vector information in the standard LSTMs.
In the ConvLSTM, whether it is hidden state information Ht, state information Ct, input
information Xt, and various gates it, gt, ft, ot, all maintain a 3-dimensional tensor structure
(∈ RM×N×C, M and N are the width and length of the image, C is the number of input
channels or feature channels, and the 3-dimensional tensor structure can be understood as
in the two-dimensional space M × N, each point is a feature vector of dimension C). For a
point in a two-dimensional space, the convolution operation captures the information in
the neighborhood space of the point. The concatenating operation fuses the current input
state and historical state information to construct a new memory state and hidden state.
The spatial structure of this point is preserved throughout the process. The specific state
transition follows the following equation:

gt = tanh
(

Wxg ∗ Xt + Whg ∗ Ht−1 + bg

)
,

it = σ
(

Wxi ∗ Xt + Whi ∗ Ht−1 + Wci
⊙

Ct−1 + bi

)
,

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f
⊙

Ct−1 + b f

)
,

ot = σ
(

Wxo ∗ Xt + Who ∗ Ht−1 + Wco
⊙

Ct−1 + bo

)
,

Ct = ft
⊙

Ct−1 + it
⊙

gt,

Ht = ot
⊙

tan h(Ct), (2)

where σ is the sigmoid function; ∗ denotes the convolution operator; and
⊙

denotes the
Hadamard product. The meaning of gt is the state correction quantity generated according
to the current input Xt and the historical hidden state Ht−1. The state after the transition Ct
is the result of the joint action of the historical state Ct−1 and the state correction quantity
gt. The final hidden state Ht is obtained by the state Ct transformation, and the output gate
ot controls how much of the internal state information can be observed.

Multiple ConvLSTMs can be stacked and temporally concatenated to form more com-
plex structures. Such models have been applied to solve many real-world spatiotemporal
prediction problems. The four-layer stacked structure is generally used when using the
ConvLSTM for spatiotemporal prediction. At each timestep, the input information will be
transformed by four ConvLSTM units, and the last ConvLSTM unit outputs the expected
prediction. Here, the first two ConvLSTM units are generally understood as the Encoder
part of the convolutional neural network, and the last two ConvLSTM units are understood
as the Decoder part of the convolutional neural network. Each ConvLSTM unit has its
memory, which independently stores historical state information, and each ConvLSTM
unit only obtains historical state information from the ConvLSTM unit of the same layer
at the previous moment. Intuitively, this method of obtaining historical state information
is passive to a certain extent, and fails to give full play to the active role of current input
information in controlling the transfer of historical state information. Figure 1 shows the
stacked architecture of the ConvLSTM network used for spatiotemporal prediction.
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3.3. PredRNN

Compared with the ConvLSTM model [10], the biggest difference between the Pre-
dRNN model [35] is that the spatial memory unit is added to the PredRNN model. The
proponents of the PredRNN model believe that each ConvLSTM unit of the ConvLSTM
model only stores the memory state of the layer in the time dimension, and there is a
lack of memory state transfer between the ConvLSTM units of each layer at the same
time. This structure leads to a ConvLSTM model that can handle the dynamic informa-
tion of spatiotemporal processes with time, but not the changes in the spatial details. In
the ST-LSMT unit, a new spatial memory structure is added, combined with the original
temporal memory structure in the ConvLSTM unit, to generate a new hidden state Ml

t.
However, the spatial and temporal memory structures save and update their respective
historical state information independently of each other. The newly added spatial memory
structure mainly stores the spatial variations of the spatiotemporal process. It improves the
memory flow by employing the zigzag path for better knowledge transfer, as the yellow
line depicted in Figure 2. The architecture of the stacked recurrent neural network of the
PredRNN model is shown in Figure 2.
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Specifically, the state transition equations inside ST-LSTM are as follows:

gt = tan h
(

Wxg ∗ Xt + Whg ∗ Hl
t−1 + bg

)
,

it = σ
(

Wxi ∗ Xt + Whi ∗ Hl
t−1 + bi

)
,

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Hl
t−1 + b f

)
,

Cl
t = ft

⊙
Cl

t−1 + it
⊙

gt,

g′t = tan h
(

W ′xg ∗ Xt + W ′mg ∗Ml
t−1 + b′g

)
,

i′t = σ
(

W ′xi ∗ Xt + W ′mi ∗Ml
t−1 + b′i

)
,

f ′t = σ
(

W ′x f ∗ Xt + W ′m f ∗Ml
t−1 + b′f

)
,

Ml
t = f ′t

⊙
Ml

t−1 + i′t
⊙

g′t,

ot = σ
(

Wxo ∗ Xt + Who ∗ Hl
t−1 + Wco ∗ Cl

t + Wmo ∗Ml
t + bo

)
,

Ht = ottan h
⊙(

W1×1 ∗
[
Cl

t , Ml
t

])
, (3)

where σ denotes the sigmoid function; ∗ denotes the convolution operator;
⊙

denotes the
Hadamard product; and [ ] denotes the concatenation operator. g, i, f , and o denote the
memory’s state variations, input gate, forget gate, and output gate, respectively. Cl

t denotes
the temporal memory unit, Ml

t denotes the spatial memory unit. The final output gate is
controlled by the current input Xt, the hidden state Hl

t−1, the updated time state Cl
t, and

the updated space state Ml
t. The final hidden state Ht is the synthesis of the updated time

state Cl
t and the updated space state Ml

t.
Intuitively, the PredRNN model transmits state information more fluently than Con-

vLSTM. However, whether in temporal or spatial memory, PredRNN passively receives the
state information of the previous moment, and lacks a mechanism to select the historical
state information based on the current input activity.

4. Methods

As mentioned above, in the previous stacked recurrent neural networks used for
spatiotemporal prediction, the passivity of the historical state transition brought about
by relying only on the latest moment’s historical state information has not been fully
recognized. To overcome this passivity, it is first necessary to ensure that the historical state
information is obtained from multiple moments in the past, and the second issue is how
to obtain the historical state information at different moments. Considering these issues,
we propose a Gated Attention LSTM (GA-LSTM) block to actively obtain the historical
state we need from the state information of multiple past moments’ information. In this
chapter, we will first introduce the GA-LSTM block in detail, how to realize the initiative to
obtain the historical state information, and then use the GA-LSTM block in combination
with the commonly used stacked structure to construct a different RNN from the previous
one. Intuitively, the new architecture of the network is different from the previous RNN
architecture, in that each GA-LSTM unit no longer only obtains the state information from
the previous moment but obtains the historical state information from multiple historical
moments. The GA-LSTM block we propose is an improvement of the ST-LSTM block based
on the PredRNN model, but it is feasible to apply the GA (Gated Attention) part to any
unit similar to ConvLSTM.
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4.1. GA-LSTM Block

In real natural spatiotemporal process, dynamic changes in the time dimension are
usually very nonlinear, and the historical state that best matches the current input is often
not the state information of the previous moment. For example, if a mouse shifts one
step to the right at time t−2, one step downward at time t−1, and one step to the right at
time t, then the motion state at time t is obviously more related to the state at time t−2.
The previous stacked spatiotemporal prediction model lacks such a direct state transfer
mechanism across time, so it cannot directly transfer the state across time and can only
transfer the long-term state indirectly and iteratively. However, this iterative transfer will
perform the filter based on the input information at that time in each iteration, and this
filtering will largely filter out the information related to the current input.

The GA-LSTM block is mainly inspired by the attention mechanism in natural lan-
guage processing. It no longer only passively depends on the state of the previous moment,
such as the ST-LSTM block and the MIM block, but constructs a mechanism that relies
on the state information of multiple past moments and makes an automatic selection. As
shown in Figures 3 and 4 below, the historical state transition part of the ST-LSTM block
and the MIM block in the sequential memory (the part covered by the dotted box in the
figure) only depends on the state information at time t−1. The improvement of the MIM
block relative to the ST-LSTM block is that, based on the assumption of differential stability,
the state information is analyzed by using the differential information at time t−1 to per-
form stable information (corresponding to MIM-S in the figure) and unstable information
(corresponding to MIM-N in the figure) decomposition. Compared with the single-time
dependency of the ST-LSTM block and MIM block, we designed an LSTM-Atten module to
process the state information of multiple moments in the past. The overall GA-LSTM block
is shown in Figure 5.
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where LSTM-Atten denotes the attention operation based on the LSTM structure. We think
that the selection is attention. If the active variable X can selectively extract the passive
variable, we can think that the active variable X exerts attention on the passive variable
C. When the passive variable C has a greater positive effect on the active variable X to
complete a specific task, the passive variable C will be given greater attention when it is
extracted, and vice versa; it will be smaller or even negative. From this point of view, the
LSTM structure is an attention mechanism. The active variable is the input information
Xl−1

t , the passive variable is the state information Hl
t−1 and Cl

t−1. The active variable Xl−1
t
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selectively extracts the passive variable Hl
t−1 and Cl

t−1 to generate the Hl
t and Cl

t . Based on
this understanding, we designed the LSTM-Atten module, using LSTM as the historical
state information extraction operator integrated with the attention mechanism. The detailed
structure of the LSTM-Atten module we designed is as follows (taking the extraction of
historical state information from the past three moments as an example):

In Figure 6, the black dot denotes the concatenation operator. Combined with the
selection mechanism of the LSTM structure, Xl−1

t is used as the active variable, the state
variables Hl

t−1 and Cl
t−1 at time t−1 are actively selectively extracted to obtain Hhis1

t and
Chis1

t , the state variables Hl
t−2 and Cl

t−2 at time t−2 are actively selectively extracted to
obtain Hhis2

t and Chis2
t , and the state variables Hl

t−3 and Cl
t−3 at time t−3 are actively

selectively extracted to obtain Hhis3
t and Chis3

t . Then, use the convolutional network ENC_H
to synthesize the hidden state information Hhis1

t , Hhis2
t , and Hhis3

t , ENC_C to synthesize
the state information Chis1

t , Chis2
t , and Chis3

t . Automatically assign the attention weights to
the state information at each moment to generate the weighted state information Hhis

t and
Chis

t of gated attention. The internal state transition equation of the LSTM-Atten module is
written as:

g1
t = tanh

(
W1

xg ∗ Xl−1
t + W1

hg ∗ Hl
t−1 + W1

h1g ∗ Hl−1
t−1 + b1

g

)
,

i1t = tanh
(

W1
xi ∗ Xl−1

t + W1
hi ∗ Hl

t−1 + W1
h1i ∗ Hl−1

t−1 + b1
i

)
,

f 1
t = tan h

(
W1

x f ∗ Xl−1
t + W1

h f ∗ Hl
t−1 + W1

h1 f ∗ Hl−1
t−1 + b1

f

)
o1

t = tan h
(

W1
xo ∗ Xl−1

t + W1
ho ∗ Hl

t−1 + W1
h1o ∗ Hl−1

t−1 + b1
o

)
,

Chis1
t = f 1

t
⊙

Cl
t−1 + i1t

⊙
g1

t ,

Hhis1
t = o1

t
⊙

tan h
(

W1
1×1 ∗ Chis1

t

)
,

g2
t = tanh

(
W2

xg ∗ Xl−1
t + W2

hg ∗ Hl
t−2 + W2

h1g ∗ Hl−1
t−2 + b2

g

)
,

i2t = tanh
(

W2
xi ∗ Xl−1

t + W2
hi ∗ Hl

t−2 + W2
h1i ∗ Hl−1

t−2 + b2
i

)
,

f 2
t = tan h

(
W2

x f ∗ Xl−1
t + W2

h f ∗ Hl
t−2 + W2

h1 f ∗ Hl−1
t−2 + b2

f

)
,

o2
t = tan h

(
W2

xo ∗ Xl−1
t + W2

ho ∗ Hl
t−2 + W2

h1o ∗ Hl−1
t−2 + b2

o

)
Chis2

t = f 2
t
⊙

Cl
t−2 + i2t

⊙
g2

t ,

Hhis2
t = o2

t
⊙

tan h
(

W2
1×1 ∗ Chis2

t

)
,

g3
t = tanh

(
W3

xg ∗ Xl−1
t + W3

hg ∗ Hl
t−3 + W3

h1g ∗ Hl−1
t−3 + b3

g

)
,

i3t = tanh
(

W3
xi ∗ Xl−1

t + W3
hi ∗ Hl

t−3 + W3
h1i ∗ Hl−1

t−3 + b3
i

)
,

f 3
t = tan h

(
W3

x f ∗ Xl−1
t + W3

h f ∗ Hl
t−3 + W3

h1 f ∗ Hl−1
t−3 + b3

f

)
,

o3
t = tan h

(
W3

xo ∗ Xl−1
t + W3

ho ∗ Hl
t−3 + W3

h1o ∗ Hl−1
t−3 + b3

o

)
,

Chis3
t = f 3

t
⊙

Cl
t−3 + i3t

⊙
g3

t ,

Hhis3
t = o3

t
⊙

tan h
(

W3
1×1 ∗ Chis3

t

)
,

Chis
t = ENC_C

(
Chis1

t , Chis2
t , Chis3

t

)
Hhis

t = ENC_H
(

Hhis1
t , Hhis2

t , Hhis3
t

)
(5)



Water 2022, 14, 2570 11 of 18

where ENC_C and ENC_H denote the simple three-layer convolutional networks, respec-
tively. Replacing the LSTM-Atten in Equation (4) with Equation (5), the state transition
equation of the complete GA-LSTM block can be obtained.
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Our proposed GA-LSTM is mainly reflected in two aspects: on the one hand, the
LSTM structure is used to actively obtain the historical state information that matches the
input information from multiple historical moments. On the other hand, two convolutional
networks are used to automatically assign the attention weights to the historical state infor-
mation matching the input, and to obtain the weighted gated attention state information,
Hhis

t and Chis
t .

4.2. Gated Attention Recurrent Neural Network

By stacking the GA-LSTM blocks, as shown in Figure 7, we propose the Gated At-
tention Recurrent Neural Network (GARNN) for spatiotemporal prediction. The most
prominent feature of this recurrent neural network is that it no longer only depends on the
state of the previous moment, but on the state of the past multiple moments.

The GARNN network inputs a frame at each timestep and outputs the predicted
frame of the next moment. The yellow arrow is the state transition path of the spatial
memory unit, and the black arrow is the state transition path of the temporal memory
unit. Figure 7 shows the third layer of the GA-LSTM block at time t as an example. In
addition to receiving the state information Hl

t−1 and Cl
t−1 at time t − 1 (indicated by the

black line), it also uses the state information Hl
t−2, Cl

t−2, Hl
t−3, and Cl

t−3 at time t − 2 and
time t− 3 (indicated by the blue line). In addition, inspired by the MIM model, the GARNN
uses W1 ∗ Xl−1

t + W2 ∗ Hl−1
t−1 that can, to a certain extent, learn the transient information

in the temporal dimension, and uses W3 ∗ Hl
t−1 + W4 ∗ Hl−1

t−1 that can, to a certain extent,
learn the transient information before and after the state transition. Adding this transient
information helps to guide the extraction of the historical state information by input X, so
the part of the red line in is added Figure 7.
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Furthermore, as shown in Figure 7, due to the use of a four-layer stacked structure,
there will be four pieces of input information at each timestep (take time t as an example,
the input information at this time includes Xt, H1

t , H2
t , and H3

t ), the last three pieces of
input information are the hidden state information of the previous layer. Usually, the
hidden state has a higher number of channels (such as 64 or 128 channels), and the number
of channels of the first input is just the number of channels of the original image. To be
consistent, we let a simple convolutional network transform the input information X before
entering the GARNN network. Similarly, the output of the last layer of the GA-LSTM block
is transformed by another simple convolutional network to the same number of channels
as the original input.

5. Experiments
5.1. Experiment Design

We evaluated the proposed GARNN model for spatiotemporal prediction using a real-
life weather radar echo dataset, which was given in the form of a 120 × 120 × 1 grayscale
image (for the convenience of observation, when the radar echo image is displayed, it is
converted into a color image using the color scale) with a coverage of 240 km × 240 km.
The interval of each radar echo frame was 6 min. During training, every 20 time-consecutive
frames were used as a set of samples, the first 10 frames were input (the period is exactly
1 h), and the last 10 frames were predicted (the period is also 1 h). During the inference,
10 frames in the next hour were predicted, based on the last 10 frames that could be obtained
at the current moment.

As shown in Figure 8, we adopted a stacked recurrent neural network structure, which
contains four-layer GA-LSTM units, and the number of feature channels of each gated
structure in each GA-LSTM unit was 64. The model was trained with Mean Squared Error
(MSE) as the loss function, using the Ranger optimizer, and the initial learning rate was set
to 0.005. We set the mini-batch to eight, used the data-parallel mode for training, and set the
time length to 3, extracting the historical state information of interest from the last 3 past
moments each time. Additionally, we applied the layer normalization operation after the
convolution of each gating operation of this model to reduce the covariate shift problem.
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During the training and prediction, the image needs to be normalized to [0, 1], and
then the mean of the squared differences of all the pixels was calculated as the MSE loss of
the frame. The smaller the value, the better, indicating that the predicted image is closer to
the ground truth image.

We usually pay more attention to the Critical Success Index (CSI) indicator in practical
applications. After specifying the precipitation threshold, the CSI indicator reflects the
accuracy of the prediction results in precipitation forecasting, and a higher CSI indicates a
better precipitation forecasting accuracy. The CSI is defined as:

CSI =
TP

TP + FP + FN
(6)

where TP corresponds to true positives; FP corresponds to false positives; and FN corre-
sponds to false negatives; where positives can be considered as precipitation, and negatives
can be considered as no precipitation.

5.2. Results

Figure 9 shows the comparison results of the GARNN model, the PredRNN model,
and the ConvLSTM model on radar echo extrapolation prediction. As can be seen from the
figure, relative to the ConvLSTM model, the PredRNN model and our proposed GARNN
model predicted that the intensity attenuation of the generated echo was not apparent.
The results of the PredRNN model show that it relied too much on spatial memory units,
predicted that the echo changes in the generated images were small, and paid insufficient
attention to the temporal memory units. The yellow echoes in the upper half of the Ground
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Truth images show a variation pattern of “dissipating gradually from the middle and finally
dissipating completely in the upper right half.” The PredRNN model did not adequately
capture this variation pattern, while the GARNN model captured it almost completely.
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As shown in Figure 10, the further the PredRNN model predicts, the greater the
growth trend of MSE than the GARNN model. We speculate that the predictions of the
PredRNN model are clearer than the GARNN model in the future, however, such clear
details are not correct details, so the loss is too large, and the loss growth rate is hardly
weakened. The GARNN model is relatively fuzzier, especially for the later predictions,
and because it has learned the overall time dimension change characteristics, the overall
MSE loss is smaller, and the loss growth rate is also lower. This can also be seen from the
evaluation based on the CSI.

Combining the relationship between the radar and precipitation (according to our
experience, the echo intensity threshold for determining precipitation is generally be-
tween [8,15] dBZ), we obtained three thresholds of 8 dBZ, 12 dBZ, and 15 dBZ for the CSI
calculation. The overall mean value is shown in Table 1, and the CSI value comparisons are
shown in Figures 11–13.
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As can be seen in the figures above, at the three thresholds of 8 dBZ, 12 dBZ, and
15 dBZ, the GARNN model had the most noticeable improvement compared to the Pre-
dRNN model at 8 dBZ, while the two were almost the same at 15 dBZ.

This is mainly because the GARNN model reduces the dependence on the spatial
memory unit, the detail retention ability is not as strong as that of the PredRNN model,
and there is a certain strength attenuation, however, it learns better the dynamic variations
in the time dimension, so its CSI values are better.

6. Conclusions

For spatiotemporal prediction problems, especially radar echo prediction, we have
studied a series of methods to solve such problems and find that the spatiotemporal
prediction models based on ConvLSTM work best. However, these methods currently use
the first-order Markov properties to build a recurrent neural network by default, which is
sufficient for simple motion, but lacks the capture of highly nonlinear and non-stationary
motion features. This paper attempts to combine the attention mechanism and proposes a
GA-LSTM unit, using the gated mechanism of the ConvLSTM unit. The GA-LSTM unit
performs targeted screening of the multi-moment historical state information based on
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the current input and then automatically assigns attention weights to them through a
convolutional network. Using the GA-LSTM units, we built a recurrent neural network
that satisfies the multi-order Markov properties and used this neural network to test a
set of radar echo datasets. The test results showed that we learn better when it comes to
dynamic variations in the time dimension, the prediction accuracy is greatly improved
compared to the PredRNN model on which it is based. Nevertheless, there are still some
problems that need to be further solved in our future research work. The computational
complexity brought by the multi-moment historical information is relatively large, and the
system resource overhead is too great.
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