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Abstract: The catalytic capability of original carbon nitride (CN) is limited by a small specific
surface area and high electron–hole recombination rate. In this study, WO3-loaded porous carbon
nanosheets (MCA-CN/WO3) were synthesized by thermal treatment with melamine, cyanuric acid
and WCl6. The MCA-CN/WO3 could degrade 98% of the methylene blue (MB) within 30 min in
the photo-Fenton-like process, displaying better catalytic activity than the original CN (30%), pure
MCA-CN (63%) and original CN/WO3 (87%). The results of photoluminescence and electrochemical
impedance spectroscopy demonstrated that the Z-scheme heterojunction of MCA-CN/WO3 inhibited
the recombination of electrons and holes. In addition, the porous nanosheet structure accelerated
the electron transfer and provided abundant active sites for MB degradation. A radical quenching
experiment indicated that the Z-scheme heterojunction facilitated the decomposition of H2O2 to
produce 1O2 for MB degradation. The possible degradation pathways of MB were proposed.

Keywords: photo-Fenton-like process; WO3-loaded porous carbon nitride nanosheet; Z-scheme
heterojunction; MB degradation

1. Introduction

Dye wastewater is difficult to deal with due to its characteristics of high chroma and
high organic content. Advanced oxidation processes (AOPs) such as photocatalysis, Fen-
ton process, photocatalysis, ozonation, etc., have been extensively used in the actual dye
wastewater treatment for their high efficiency, simplicity and no secondary pollution [1,2].
AOPs degrade pollutants into CO2 and H2O by active substances such as hydroxyl radical
(•OH), superoxide radical (O2

•−), sulfate radical (•SO4
−) and singlet oxygen (1O2). As one

of the AOPs, the Fenton process degrades organic pollutants with •OH generated from hy-
drogen peroxide (H2O2) activation in the Fe2+/Fe3+ homogeneous system [3]. However, the
disadvantages such as narrow pH range, incomplete H2O2 decomposition and formation of
numerous iron mud limit the widespread application of the technology [4]. To solve these
issues, Fenton-like processes are explored, including fabricating heterogeneous catalysts to
substitute for Fe2+/Fe3+, as well as combining Fenton processes with photocatalysis and
electrochemical oxidation. It is found that the photo-Fenton-like process can accelerate the
reaction rate and broaden the pH range through the synergy of light and H2O2. Therefore,
it is a promising alternative to the traditional Fenton method.

The key to improving the catalytic rate of photo-Fenton-like processes is to prepare
a catalyst with good performance. Carbon nitride (CN) is a conjugated polymer semi-
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conductor with a narrow band gap (about 2.7 eV), which has the characteristics of visible
light catalytic performance, harmlessness and good stability [5]. Meanwhile, the intrinsic
functional groups and vacancies, as well as the sp2 hybridized configuration of CN, accel-
erate the generation of electrons [6]. Therefore, CN has developed as a promising material
in the Fenton-like process. However, the catalytic capability of original carbon nitride is
limited by a small specific surface area and high electron–hole recombination rate [7,8].
Porous carbon nitride nanosheets have a high specific surface area compared to the original
bulk carbon nitride, providing more active sites for degradation reactions. In addition,
the lamellar structure of CN is beneficial for the electron transfer. Xu et al. synthesized
highly porous CN with melamine and cyanuric acid by thermal polycondensation, which
exhibited enhanced visible light response and higher electron–hole separation efficiency [9].
Hossein et al. prepared porous CN nanosheets with excellent photodegradation efficiency
for Rhodamine B and tetracycline [10]. Based on the above research, fabrication of car-
bon nanosheets using melamine and cyanuric acid can effectively improve the catalytic
performance of CN.

The electron–hole separation efficiency of carbon nitride can be further enhanced by
constructing heterojunctions with a metal oxide semiconductor. WO3 is a nonpoisonous,
stable semiconductor photocatalyst with a narrow bandgap (2.7–2.8 eV) and displays high
visible light utilization [11]. WO3 exhibits excellent oxidation capacity due to its positive
VB edge potential (+3.0 V vs. NHE) [12]. The Z-scheme heterojunction between CN and
WO3 can effectively facilitate the separation of electrons and holes, as well as maintain a
high redox capacity [13]. Bai et al. used WO3/g-C3N4 to degrade ciprofloxacin in a photo-
electro-Fenton-like system, which revealed enhanced catalytic performance. The results
showed that the W6+/W5+ cycle promoted the decomposition of H2O2, and broadened the
pH range without iron sludge [14]. Therefore, WO3 is a good catalyst in photo-Fenton-like
processes for the decomposition of H2O2 to form an active substance.

In this paper, the modified carbon nitride (MCA-CN) was synthesized by melamine
and cyanic acid through thermal treatment. An appropriate amount of WO3 was loaded on
the MCA-CN to synthesize MCA-CN/WO3 by thermal treatment. The MCA-CN/WO3 was
used to degrade methylene blue (MB) through the photo-Fenton-like process. Compared
with original CN, the MCA-CN/WO3 displayed enlarged specific surface area and acceler-
ated electron–hole separation. As a consequence, the MCA-CN/WO3 exhibited superior
catalytic performance to original CN for MB degradation in a wide pH range. Combined
with the free-radical quenching experiment and EPR analysis, the mechanism of the photo-
Fenton catalytic processes was proposed. The intermediate products of MB degradation
were determined by LC-MS and possible degradation pathways were put forward. The
study provides a reference for CN treatment of MB in the photo-Fenton-like process.

2. Materials and Methods
2.1. Chemicals

All chemicals were reagent grade and used as received. Melamine (ME), cyanuric
acid (CA), dimethyl sulfoxide (DMSO), tungsten chloride (WCl6), sodium hydroxide
(NaOH), p-benzoquinone (BQ), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), ethylene di-
amine tetra acetic acid disodium (EDTA-2Na), L-histidine (L-His), 4-hydroxy-2, 2, 6, 6-
tetramethylpiperidine (TEMP) and methylene blue (MB, C16H20ClN3OS) were supplied by
Aladdin Ltd. Hydrogen peroxide (H2O2, 30 wt%), isopropyl alcohol (IPA), hydrochloric
acid (HCl) and ethanol were obtained from Guangzhou chemical reagent factory. Aqueous
solutions were prepared with pure water.

2.2. Synthesis of MCA-CN/WO3

Typically, 5 g melamine and 5.1 g cyanic acid were dissolved in 200 mL and 100 mL
DMSO, respectively, and stirred at 25 ◦C for 20 min to obtain white precipitation. Then, the
precipitation was centrifuged, washed and dried at 50 ◦C for 12 h. The dried white solid
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was calcined at 550 ◦C under a flowing N2 atmosphere for 4 h [15]. The obtained yellow
sample was named MCA-CN.

The MCA-CN/WO3 catalysts were fabricated by the following steps. Typically, 250 mg
MCA-CN and a certain amount of WCl6 were ground with a small amount of ethanol until
the materials turned blue. The blue materials were calcined at a certain temperature in
N2 atmosphere for 1 h to construct a heterojunction (heating rate of 7 ◦C·min−1) [16]. To
optimize the WO3 content, MCA-CN/WO3 samples with various WO3 contents (5 wt%,
15 wt%, 25 wt% and 35 wt%) were prepared. Samples 300 ◦C MCA-CN/WO3, 350 ◦C
MCA-CN/WO3, 400 ◦C MCA-CN/WO3 and 450 ◦C MCA-CN/WO3 were obtained when
the thermal treatment temperatures were 300 ◦C, 350 ◦C, 400 ◦C and 450 ◦C, respectively.
For comparison, pure WO3 was synthesized without MCA-CN in the same way, and single
MCA-CN was second calcined at 350 ◦C for 1 h without WCl6. The typical synthetic
procedure is shown in Figure 1.
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Figure 1. The typical synthetic procedure of MCA-CN/WO3.

2.3. Characterizations

The crystal structure was characterized by X-ray polycrystalline diffraction (XRD,
Ultima VI, Akishima-shi, Japan). The geometrical morphology, geometrical size, disper-
sion state and microelement composition of the material were obtained through scanning
electron microscopy (SEM, Merlin Zeiss, Oberkochen, Germany). The morphology, dis-
tribution and phase structure of the samples were obtained by 120 kV high-resolution
transmission electron microscope (HRTEM, Talos L120c Thermo Fisher, Waltham, MA,
USA). Fourier transform infrared spectroscopy (FTIR, infrared thermerfeld IN10, Thermo
Fisher Scientific, Waltham, MA, USA) was used to identify the functional groups present
in the molecule. The chemical composition and valence band conduction values were
obtained by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Waltham,
MA, USA). The pore structure and pore size distribution were characterized by nitrogen
adsorption–desorption measurement (Micromeritics APSP 2460, USA). The light absorption
range and band gap were obtained by ultraviolet–visible diffuse reflectance absorption
spectra (UV DRS, Shimadzu 3600plus, Kyoto, Japan). The charge separation efficiency
was detected by photoluminescence spectra (PL, Edinburgh FS5, Livingston, UK) with
the excitation wavelength of 380 nm, and 1O2 was measured by electron paramagnetic
resonance spectrometer (EPR, ELEXSYS-II E500 CW-EPR, Billerica, Germany). The interme-
diate products of MB degradation were determined by liquid chromatography–tandem
mass spectrometry (LC-MS, Ultimate 3000 UHPLC–Q Exactive, Waltham, MA, USA).
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2.4. Photocatalytic Test

A typical experimental suspension contained 0.15 g L−1 MCA-CN/WO3, 0.5 mL H2O2
and 20 mg L−1 MB (100 mL) at pH 7.4 ± 0.1 in a beaker with constant mechanical stirring
at 298 ± 2 K. Before analysis, the MB aqueous solution was stirred in darkness for 30 min
to achieve adsorption–desorption equilibrium. Next, the degradation reaction was initiated
by adding H2O2 and illumination with a 25 W LED lamp (λ > 400 nm). Water samples were
taken every five minutes and filtered by a 0.45 µm membrane. The pH value of MB was
adjusted by the HCl solution (1 mol L−1) and NaOH solution (2 mol L−1). The concentration
of MB was measured by UV-vis spectrophotometer at the absorption wavelength of 665 nm.
The degradation of MB was calculated based on Equation (1) as follows:

D = [(C0 − C)/C0]× 100% (1)

where C0 is the initial concentration of MB at t = 0 and C is the instant concentration at
photocatalytic degradation time t (min). Moreover, the kinetics reaction constant (k) is
obtained by a pseudo-first-order kinetics model as follows (Equation (2)):

ln(C/C0) = −kt (2)

2.5. Photoelectrochemical Measurement

Photoelectrochemical measurement was carried out on a CHI 660E electrochemical
workstation with a three-electrode system. Ag/AgCl electrode and Pt wire were used
as reference and counter electrodes, respectively. For the preparation of the working
electrode, 10 mg of the sample was mixed with 1 mL ethanol and 80 µL Nafion solution
under ultrasonication for 30 min. Then, 40 µL of the suspension was coated on Fluorine-
doped Tin Oxide (FTO) glass, and dried at room temperature. Electrochemical impedance
spectroscopy (EIS) measurement was measured in a 0.5 M Na2SO4 solution in the frequency
range of 0.01 Hz to 100 kHz under the irradiation of 300 W Xe lamps.

2.6. Radical Quenching Experiments

The reactive oxygen species (ROS) including ·OH, h+,·O2
− and 1O2 were captured

by adding a certain amount of isopropyl alcohol (IPA), ethylenediamine tetra acetic acid
disodium (EDTA-2Na), p-benzoquinone (BQ) and L-histidine (L-His), respectively. Singlet
oxygen (1O2) was detected in water with 2,2,6,6-tetramethylpiperidine (TEMP) by electron
paramagnetic resonance (EPR).

3. Results
3.1. Characterization

The SEM images (Figure 2a) showed that the original carbon nitride is lumpy with no
obvious pores, while MCA-CN displayed crimped porous carbon nanosheet morphology
(Figure 2b). This result indicated that the morphological regulation of carbon nitride
by cyanuric acid can make the carbon nitride into loose porous nanosheets, providing
more active sites for MB degradation. The lamellar structure ensures strong interaction
of carbon nitride and WO3, accelerating the electron transfer between carbon nitride and
WO3. Figure 2c showed the SEM image of MCA-CN/WO3, and it can be seen that the
structure of MCA-CN was destroyed because of the load of WO3. As shown in the TEM
images (Figure 2d), MCA-CN/WO3 exhibited the shape of folded nanosheets. Figure 2e
showed the layered structure of MCA-CN/WO3, with the lighter region being MCA-CN
and the region with the lattice stripe being WO3. As shown in the HRTEM image (Figure 2f),
the lattice fringes of 0.383 nm corresponded to the (002) crystal plane of WO3 [14]. The
survey spectrum of MCA-CN/WO3 (Figure 2g) showed the element of carbon and nitrogen
accounted for a relatively high proportion. EDX analysis (Figure 2h–k) showed that carbon,
nitrogen, oxygen and tungsten elements distributed uniformly in the catalyst, indicating
the successful synthesis of MCA-CN/WO3 [17].
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The phase composition of materials was investigated by XRD. As displayed in Figure 3a,
MCA-CN showed two characteristic peaks at 27.5◦ and 12.8◦, corresponding to interpla-
nar aromatic stacking (002) and intraplanar stacking (100) of carbon nitride [18]. For
MCA-CN/WO3, the new diffraction peaks at 23.5◦ corresponded to the standard card
PDF#83-0949 of WO3, indicating the successful coupling of WO3 and MCA-CN. In addition,
the broad peak of WO3 showed amorphous features. Other characteristic diffraction peaks
of WO3 were not observed because of its weak crystallization and low loading content. To
further determine the generation of WO3, the XRD pattern of pure WO3 was conducted. Ob-
viously, the diffraction peaks of WO3 were consistent with the standard card PDF#83-0949,
demonstrating the successful generation of WO3.



Water 2022, 14, 2569 6 of 17Water 2022, 14, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 3. (a) XRD patterns of MCA-CN and MCA-CN/WO3 and (b) FTIR patterns of MCA-CN, WO3 
and MCA-CN/WO3. 

The elemental composition and surface chemical states of MCA-CN/WO3 were re-
vealed by XPS. The signals of C, N, O and W elements were observed in the full scan 
spectrum of MCA-CN/WO3 (Figure 4a). For the C1s spectrum shown in Figure 4b, the four 
characteristic peaks at 284.6 eV, 286.5 eV, 288.2 eV and 289.2 eV corresponded to C−C, 
C−N−C, N−C=N and O−C=O, respectively [24]. The three characteristic peaks of 398.5 eV, 
399.5 eV and 401.1 eV in the N1s spectra corresponded to the sp2 nitrogen N−C=N, N−(C)3 
and C−N−H on the triazine ring, respectively (Figure 4c) [25]. As shown in Figure 4d, the 
O1s spectrum displayed three peaks at 530.6 eV, 532.0 eV and 533.2 eV. The peak at 530.6 
eV corresponded to W−O−W in WO3 [26]. The peak at 532.0 eV was ascribed to the exist-
ence of the OH group, which can capture photogenerated holes and inhibit the recombi-
nation of electron and hole [27]. The peak at 533.2 eV was related to H2O or CO2 adsorbed 
from the air. Figure 4e presents the spectrum of W 4f. The peaks at 37.13 eV and 35.07 eV 
corresponded to W 4f5/2 and W 4f7/2 of W6+, respectively [11]. Two peaks at 35.8 eV and 33.8 
eV were ascribed to W 4f7/2 and W 4f5/2 of W5+ [28]. 
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FT-IR spectra of WO3, MCA-CN and MCA-CN/WO3 are shown in Figure 3b. For
pure MCA-CN, the broad absorption vibration peak at 2900–3500 cm−1 corresponded to
the band of N−H or O−H [19]. The absorption band ranging from 1200 to 1600 cm−1

belonged to the stretch of C−N and C=N in CN heterocycles [20]. The strong absorption
vibration peak at 810 cm−1 was related to the characteristic vibration of the triazine ring
unit [21]. For pure WO3, the wide absorption peak at 500–1000 cm−1 corresponded to the
vibration of the O−W−O bond [22]. For the MCA-CN/WO3 composites, the absorption
peaks at 1200–1600 cm−1 were similar to those of MCA-CN, indicating that the structure of
MCA-CN was not changed by WO3. The typical absorption peak of WO3 at 500–1000 cm−1

was also observed in the spectrum of MCA-CN/WO3, further proving the successful
heterojunction construction of MCA-CN and WO3 [23].

The elemental composition and surface chemical states of MCA-CN/WO3 were re-
vealed by XPS. The signals of C, N, O and W elements were observed in the full scan
spectrum of MCA-CN/WO3 (Figure 4a). For the C1s spectrum shown in Figure 4b, the
four characteristic peaks at 284.6 eV, 286.5 eV, 288.2 eV and 289.2 eV corresponded to
C−C, C−N−C, N−C=N and O−C=O, respectively [24]. The three characteristic peaks
of 398.5 eV, 399.5 eV and 401.1 eV in the N1s spectra corresponded to the sp2 nitrogen
N−C=N, N−(C)3 and C−N−H on the triazine ring, respectively (Figure 4c) [25]. As shown
in Figure 4d, the O1s spectrum displayed three peaks at 530.6 eV, 532.0 eV and 533.2 eV.
The peak at 530.6 eV corresponded to W−O−W in WO3 [26]. The peak at 532.0 eV was
ascribed to the existence of the OH group, which can capture photogenerated holes and
inhibit the recombination of electron and hole [27]. The peak at 533.2 eV was related to
H2O or CO2 adsorbed from the air. Figure 4e presents the spectrum of W 4f. The peaks at
37.13 eV and 35.07 eV corresponded to W 4f5/2 and W 4f7/2 of W6+, respectively [11]. Two
peaks at 35.8 eV and 33.8 eV were ascribed to W 4f7/2 and W 4f5/2 of W5+ [28].

The N2 adsorption−desorption isotherms and the Barrett–Joyner–Halenda (BJH) pore
size distribution curves of ME-CN, MCA-CN and MCA-CN/WO3 are displayed in Figure 5.
In N2 adsorption−desorption isotherms, all samples showed type IV isotherms with a
type H3 hysteresis loop, indicating the presence of mesoporous structures (Figure 5a).
As shown in BJH pore size distribution curves (Figure 5b), all samples exhibited a wide
range distribution of pore size. There were two peaks at 2.75 nm and 27.8 nm in in the
curve of MCA-CN, indicating that the pore size distributed from 2 nm to 30 nm. The BET
specific surface area, pore volume and pore size of the materials were calculated by the BJH
method and are listed in Table 1. The BET specific surface areas of ME-CN, MCA-CN and
MCA-CN/WO3 composites were calculated to be 10.4, 74.4 and 53.8 m2 g−1. The specific
surface area of MCA-CN is 7.1 times higher than that of ME-CN. Obviously, the increased
surface area and mesopores of carbon nitride are attributed to the addition of cyanic acid,
providing more active sites for catalytic degradation of pollutants. In addition, the porous
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structure also contributes to enhanced light absorption, since light is reflected multiple
times within the holes. However, MCA-CN/WO3 had a lower surface area than MCA-CN,
because WO3 is coarse and lumpy with a small specific surface area, and the load of WO3
covered part of the pores of MCA-CN.
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Table 1. Surface area, pore volume and pore size of ME-CN, MCA-CN and MCA-CN/WO3.

Samples Surface Area
(m2 g−1)

Pore Volume
(cm3 g−1)

Pore Size
(nm)

ME-CN 10.43 0.025 28.66
MCA-CN 74.44 0.168 24.36

MCA-CN/WO3 53.84 0.135 27.50

3.2. Photochemical Characterization

The optical performance of the ME-CN, MCA-CN, WO3 and MCA-CN/WO3 catalysts
were studied by UV-vis DRS. As displayed in Figure 6a, pure MCA-CN exhibited an
absorption edge at about 470 nm. Compared with ME-CN (461 nm), the absorption edge of
MCA-CN moved to the visible region. This is because the abundant mesopores of MCA-CN
can absorb more light radiation. Compared with pure MCA-CN, there was a red shift
(490 nm) and significantly enhanced light absorption capacity of MCA-CN/WO3, which
ascribed to the heterojunction between MCA-CN and WO3. Based on the Kubelka−Munk
function (Equation (3)), the band gaps (Eg) of ME-CN, MCA-CN and MCA-CN/WO3 were
determined to be 2.62, 2.54 eV and 2.41 eV, as depicted in Figure 6b. Figure 6c shows
that the Eg of WO3 was 2.50 eV. Obviously, the band gap of carbon nitride was effectively
reduced by modification of cyanic acid and WO3. The reduction in the band gap made it
easier for MCA-CN/WO3 to form photogenerated carriers, promoting the separation of
electrons and holes.

αhυ(1/n) = A(hυ− Eg ) (3)

where α, h, ν and A represent the adsorption coefficient, Planck’s constant, light frequency
and a constant, respectively. The value of n is determined by the type of semiconductor
(1/2 for the indirect band gap and 2 for the direct band gap). Herein, the values of n for
MCA-CN and WO3 were 2 and 1/2, respectively.

Moreover, the valance band (EVB) and conduction band (ECB) of MCA-CN and WO3
could be calculated via the following formulas [29]:

EVB = X− Ee + 0.5Eg (4)

ECB = EVB − Eg (5)

where X is the absolute electronegativity of the catalyst (X-MCA-CN = 4.72 eV and
X-WO3 = 6.58 eV) and Ee is the energy of free electrons vs. hydrogen (4.5 eV). Accord-
ing to the above Equations (4) and (5), the EVB, ECB of ME-CN, MCA-CN and WO3 are
calculated and listed in Table 2. Obviously, there was an alternating band structure be-
tween MCA-CN and WO3, efficiently improving the photogenerated charge separation
and degradation rate of pollutants.

PL spectroscopy under the excitation at 380 nm and EIS spectra were conducted
to measure the electron–hole separation rate of MCA-CN/WO3. Generally, the weaker
the PL intensity, the higher the separation efficiency of catalysts. As shown in Figure 7a,
the PL intensity of MCA-CN was weaker than that of ME-CN, implying that MCA-CN
exhibited higher electron–hole separation efficiency than ME-CN. Compared with MCA-
CN, the significant decrease in PL intensity of MCN indicated the inhibited recombination
of electron and hole. EIS spectra are depicted in Figure 7b. The diameter of ME-CN,
MCA-CN and MCA-CN/WO3 decreased in sequence, indicating the lowest electron–hole
complexation rate of MCA-CN/WO3. Therefore, the nanosheet structure of MCA-CN
and the heterojunction between MCA-CN and WO3 effectively improved the separation
efficiency of electron and hole.
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MCA-CN 2.54 1.49 −1.05
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3.3. Catalytic Performance
3.3.1. Photo-Fenton Performance of Catalysts

The catalytic activities of MCA-CN/WO3 composites were examined by degrading
MB in the presence of H2O2 and visible light. As exhibited in Figure 8a, there was little
MB degraded in photo-Fenton system without catalysts, indicating the negligible radical
production by H2O2 without catalysts. After adding MCA-CN/WO3 catalysts, the removal
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rate of MB reached 98% within 30 min. This result suggested that MCA-CN/WO3 compos-
ites were highly efficient catalysts for H2O2 activation to produce reactive radicals. The MB
degradation efficiency of MCA-CN (63%) was higher than that of ME-CN (30%), which
ascribed to the larger specific surface area of MCA-CN. MCA-CN/WO3 exhibited better
catalytic performance than MCA-CN, suggesting that the heterojunction between MCA-CN
and WO3 accelerated the decomposition of H2O2 for improving catalytic activity. The
MB degradation efficiency of ME-CN/WO3 (87%) was lower than that of MCA-CN/WO3,
indicating that the sheet-like structure of MCA-CN can enhance catalytic performance.
Moreover, in the MCA-CN/WO3 photo-Fenton-like process, the degradation rate was
higher than when H2O2 (38%) and light (10%) were present alone. This result indicated
that the synergistic effect of catalysts, H2O2 and visible light could significantly enhance
the removal efficiency of MB. Figure 8b displays the reaction rate constants (k) obtained
through the Langmuir–Hinshelwood kinetics model. Among all the materials, the rate
constant of MCA-CN/WO3 (0.1465 min−1) was the highest, which was about 12.4, 4.7
and 2.1 times higher than that of ME-CN (0.0118 min−1), MCA-CN (0.0314 min−1) and
ME-CN/WO3 (0.0685 min−1). Furthermore, the kinetic constant of MCA-CN/WO3 in the
photo-Fenton-like process was 37.5, 9.5 times higher than its rate constant in the corre-
sponding photocatalytic processes (0.0037 min−1) and Fenton-like processes (0.0154 min−1).
The photo-Fenton degradation of pollutants over g-C3N4-based photocatalysts is shown
in Table S1, and MCA-CN/WO3 displayed better degradation performance than most of
those catalysts.
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3.3.2. Performance Optimization of MCA-CN/WO3

To obtain optimized preparation conditions for high-performance MCA-CN/WO3,
two experimental parameters were adjusted, the loading amount of WO3 and the heat
treatment temperature. As exhibited in Figure 9a, the removal rate of MB increased
gradually as the WO3 content increased from 5% to 25%. When the content of WO3 was
35%, there was little improvement in the degradation efficiency. Excess WO3 induced
inter-particle aggregation, thus decreased interfacial contact with MCA-CN and lowered
photocatalytic performances. Therefore, the optimal content of WO3 in the composite was
25%. The degradation properties of catalysts synthesized at temperatures from 300 ◦C
to 450 ◦C are shown in Figure 9b. Obviously, catalysts synthesized at 300 ◦C and 350 ◦C
showed better catalytic performance than that at 400 ◦C and 450 ◦C. Furthermore, the
catalysts synthesized at 300 ◦C, 350 ◦C and 450 ◦C were characterized by XRD (Figure S2).
There were no obvious diffraction peaks of WO3 in the curve of 300 ◦C MCA-CN/WO3,
indicating that WO3 cannot be formed at 300 ◦C, while there were impure peaks in the curve
of 450 ◦C MCA-CN/WO3, owing to the decomposition of MCA-CN. Hence, 350 ◦C was the
most appropriate temperature to synthesize the sample with good catalytic performance.
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3.3.3. The Effect of Experimental Parameters

The effects of pH, amounts of H2O2 and catalyst (25% MCA-CN/WO3) on the removal
efficiency of MB in the photo-Fenton system were explored to optimize the reaction con-
ditions. It is obvious from Figure 10a that the sample maintained excellent degradation
performance in the pH range of 4.3 to 12.3. In addition, the higher the pH value, the better
the degradation of MB. About 57% of MB was degraded in 30 min at pH 2.4, but when
increasing the pH value to 12.3, the degradation rate reached 99.5% in 30 min. Under acidic
conditions, high concentrations of H+ will scavenge HO2• (HO2• + H+ + e− → H2O2) [30],
while high pH is beneficial to the survival of HO2• and lowers the redox potential of
the conduction band to form more HO2•. Since 1O2 formed via HO2•was responsible
for the removal of MB, there was more 1O2 produced at a higher pH, improving the MB
degradation efficiency.
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MCA-CN/WO3/H2O2/visible light system.

H2O2 is the main substance that generates radicals in the Fenton system. As displayed
in Figure 10b, the MB degradation efficiency increased from 95% to 99% in 30 min with an
increase in the amount of H2O2 from 0.1 to 0.5 mL. The degradation rate of MB improved
slightly with the addition of 0.9 mL H2O2. When the amount of H2O2 exceeded 0.9 mL, the
removal rate decreased with the increase in H2O2 content. At high H2O2 concentrations,
the excess H2O2 molecules removed the valuable radical species, resulting in a decrease in
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efficiency [31]. Considering both degradation effectiveness and cost, the optimum amount
of H2O2 for the catalytic degradation of MB in the photo-Fenton system was 0.5 mL.

The effect of catalyst amount on the degradation rate is illustrated in Figure 10c.
With the catalyst dosage increasing, the degradation rate was faster. However, when the
amount of catalyst increased from 0.15 to 0.25 g L−1, there was almost no difference in the
degradation rate at 30 min. Generally, increasing the amount of catalyst would enhance the
absorption of light and pollutant, thus improving the catalytic activity. However, from the
adsorption curve in Figure S1 (Supplementary Materials), it could be concluded that when
the catalyst dosage exceeded 0.20 g L−1, the removal of pollutants was mainly attributed to
adsorption rather than degradation. Hence, in order to study the degradation of MB by
catalyst, the optimum amount of the catalyst was 0.15 g L−1.

3.4. Degradation Mechanism

To investigate the mechanism of MB degradation by the MCA-CN/WO3 composite,
a quenching experiment and EPR analysis were conducted to determine the main active
radicals for MB degradation.

In radical quenching tests, IPA, p-BQ, EDTA-2Na and L-His were used to eliminate
•OH, •O2

−, h+ and 1O2, respectively. As exhibited in Figure 11a, the degradation rate
of MB decreased slightly when IPA, EDTA-2Na and p-BQ were added into the system.
However, the degradation of MB decreased from 98% to 40% within 30 min after the adding
of L-His. The results indicated that 1O2 radicals were responsible for MB removal in the
photo-Fenton system of the MCA-CN/WO3 composite, while •OH, •O2

− and h+ had a
slight effect on MB degradation.
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EPR analysis was conducted to confirm the role of 1O2 in the reaction. The 1O2 was
captured by TEMP and generated a 1:1:1 triplet signal, as displayed in Figure 11b. In
comparison with bare MCA-CN system, the signal produced in the MCA-CN/WO3 system
was much stronger, indicating that more 1O2 was produced in the MCA-CN/WO3 system.
This was consistent with the previous results shown in Figure 11a, demonstrating that 1O2
played a critical role for the removal of MB. Typically, 1O2 can be generated through three
pathways: (1) the oxidation of •O2

− produced by O2 [32]; (2) The Haber–Weiss reaction
between •O2

−/HO2• and H2O2 [33]; (3) the recombination of •O2
−/HO2• [34]. To explore

the origin of 1O2, the degradation rate of MB with MCA-CN/WO3 in nitrogen atmosphere
was tested. As depicted in Figure 11a, the MB degradation remained unchanged in the
presence of N2, indicating that O2 was not the precursor of 1O2 in this reaction. Therefore,
we could speculate that H2O2 was the only source for 1O2 generation in the MCA-CN/WO3
photo-Fenton system. As displayed in radical quenching tests, •O2

− had little effect on
MB degradation. Hence, it was speculated that H2O2 was converted into 1O2 via the
Haber–Weiss reaction between HO2• and H2O2, or the recombination of HO2•. The
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reaction rate constant of HO2• recombination is 8.3 × 105 M−1 s−1 [35], which is about
five magnitudes larger than that of HO2• and H2O2 (3 M−1 s−1) [36,37]. Therefore, HO2•
recombination was dominant for 1O2 generation in the photo-Fenton system of the MCA-
CN/WO3 catalyst.

The energy band structures of MCA-CN/WO3 obtained by UV-Vis DRS are shown in
Figure 12. For such an energy band structure, there are usually two possible charge transfer
mechanisms: (1) type II heterojunctions and (2) Z-scheme heterojunctions [38]. Supposing
there is a type II heterojunction between MCA-CN and WO3, photogenerated holes are
transferred from the VB of WO3 to the VB of MCA-CN, while photogenerated electrons
are transferred from the CB of MCA-CN to the CB of WO3 with a positive potential (grey
dashed line in Figure 12). However, due to the lower reduction potential of H2O2/HO2•
(E0 = 1.65 V. NHE) than the VB potentials of MCA-CN (1.49 eV) [39], the holes on the VB
of MCA-CN cannot decompose H2O2 into HO2•. This is not consistent with the above
conclusion that 1O2 is produced by HO2•. For a Z-scheme heterojunction, the electrons on
the CB of WO3 are transferred to the VB of MCA-CN (solid blue line in Figure 12), and the
VB potential of WO3 (3.12 eV) is lower than H2O2/HO2• (E0 = 1.65 V. NHE), allowing the
production of HO2•. The above analysis suggested that the charge transfer mechanism of
MCA-CN/WO3 was Z-scheme.
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A possible photo-Fenton-like catalytic mechanism for MB degradation on the MCA-
CN/WO3 composite was proposed, as illustrated in Figure 12 and the following equations.
Under visible light irradiation, both WO3 and MCA-CN were activated, along with the
generation of electron–hole pairs. Electrons from the CB of WO3 transferred spontaneously
to the VB of MCA-CN to recombine with the holes from MCA-CN. Accordingly, most of
the electrons were accumulated on the CB of MCA-CN, while the predominated holes were
inhabited on the VB of WO3. In this way, holes and electrons were separated effectively
(Equation (6)), which attributed to the Z-scheme heterojunction between WO3 and MCA-
CN nanosheets. In the traditional Fenton system, radicals can be generated through the
decomposition of H2O2 catalyzed by Fe2+/Fe3+ [40]. Similarly, the conversion between W6+

and W5+ could promote the decomposition of H2O2 [16]. W6+ gained an electron to form
W5+, and W5+ decomposed H2O2 into 1O2 by the oxidation of h+ (Equations (7) and (8)). In
addition, HO2

• was produced by the reaction between H2O2 and W6+ (Equation (9)), sub-
sequently recombined to form 1O2 (Equation (10)). Ultimately, the plentiful active species
1O2 decomposed MB into CO2, H2O and degradation intermediates (Equation (11)) [41,42].

MCA-CN/WO3 + hν→ h+ + e− (6)

W6+ + e− →W5+ (7)
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2H2O2 + W5+ + h+ →W6+ + 2H2O + 1O2 (8)

H2O2 + W6+ →W5+ + HO2
• + H+ (9)

HO2
• + HO2

• → H2O2 + 1O2 (10)

MB + 1O2 → CO2 + H2O (11)

To investigate the degradation pathways of MB in the photo-Fenton-like process,
the intermediate products at 30 min of the reaction were determined using LC-MS. The
structures of the intermediates were obtained through the Nist standard database and are
listed in Table S2 (Supplementary Materials) and Figure S3 (Supplementary Materials),
showing the mass spectrum of intermediates. Degradation pathways are shown in Figure 13.
Among the molecules of MB, the C-S molecular bond has the smallest bond energy and
is easy to break. The N of the C-N bond is also susceptible to be oxidated because of its
low electronegativity. Under the attack of 1O2, the bond between the methyl group and C
was cracked. In pathway 1, the MB was changed into intermediate A when S was oxidized
to S=O. The intermediate A was transformed to intermediate B when the C-N bonds
broke. Then, the C-S bond broke and intermediate B was transformed to intermediate
C. In pathway 2, the MB was changed into intermediate D owing to the cracking of C-S
bonds. With the strong oxidation capacity of 1O2 and •OH, intermediate D is oxidized to
form intermediate E. As the reaction continued, intermediate C and intermediate E would
decompose into small molecule organic acids, SO4

2−, NO3
−, CO2 and H2O.
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3.5. Stability of MCA-CN/WO3 Catalyst

The stability of a catalyst is one of the most important indexes of its practicability. A
cycling experiment was conducted to evaluate the reusability of MCA-CN/WO3. As shown
in Figure 14a, even after five cycles, the MCA-CN/WO3 catalyst exhibited high catalytic
performance, degrading 85% of the MB in 30 min. The XRD spectra of the five cycles of
MCA-CN/WO3 used were carried out (Figure 14b). Compared with the XRD patterns of
the fresh MCA-CN/WO3 catalyst, the diffraction peak of MCA-CN/WO3 after five cycles
did not change greatly, indicating the good stability and reusability of the MCA-CN/WO3
catalyst.
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4. Conclusions

In this study, MCA-CN/WO3 catalysts were prepared by thermal treatment for MB
degradation in photo-Fenton-like processes. The removal efficiency of MB using MCA-
CN/WO3 reached 98% in 30 min, of which the rate constant was about 12.4, 4.7 and
2.1 times higher than that of ME-CN, MCA-CN and ME-CN/WO3. Such enhanced catalytic
performance was mainly attributed to the Z-scheme heterojunction between MCA-CN and
WO3, which accelerated the charge transfer and inhibited the recombination of electrons
and holes. In addition, the nanosheet structure and large specific surface area shortened the
charge transfer distance and provided abundant active sites, thus improving the catalytic
performance of MCA-CN/WO3. The introduction of WO3 enhanced the visible light
absorption capacity and further promoted the separation of electron–hole pairs. All of
these advantages facilitated the decomposition of H2O2 to produce 1O2 for the degradation
of MB. This study provided a reference to prepare a WO3-loaded porous carbon nitride
nanosheet catalyst for MB degradation in the photo-Fenton-like process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w14162569/s1, Figure. S1 Removal rate of MB by absorption. Figure. S2 XRD patterns of
MCA-CN/WO3, 300 ◦C MCA-CN/WO3 and 450 ◦C MCA-CN/WO3. Figure. S3 Different retention
time of LC-MS spectrum: (a) 5.75min, (b) 5.13 min, (c) 4.96min, (d) 2.77 min and (e) 2.45 min. Table S1
Summary of the photo-Fenton degradation of pollutants over g-C3N4-based photocatalysts. Table S2
Retention time, mass spectra and chemical structure of main degradation intermediates of MB. For
more details, please see [5,20,43–46].
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