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Abstract: In the arid areas of Northwest China, especially in the Tianshan Mountains, the scarcity 
of meteorological stations has brought some challenges in collecting accurate information to de-
scribe the spatial distribution of precipitation. In this study, the applicability of TRMM3B42, GPM 
IMERG, and MSWEP V2.2 in different regions of Tianshan Mountain is comprehensively evaluated 
by using ten statistical indicators, three classification indicators, and variation coefficients at differ-
ent time–space scales, and the mechanism of accuracy difference of precipitation products is dis-
cussed. The results show that: (1) On the annual and monthly scales, the correlation between GPM 
and measured precipitation is the highest, and the ability of three precipitation products to capture 
precipitation in the wet season is stronger than that in the dry season; (2) On the daily scale, TRMM 
has the highest ability to estimate the frequency of light rain events, and MSWEP has the highest 
ability to monitor extreme precipitation events; (3) On the spatial scale, GPM has the highest fitting 
degree with the spatial distribution of precipitation in Tianshan Mountains, MSWEP is the closest 
to the precipitation differentiation pattern in Tianshan Mountains; (4) The three satellite products 
generally perform best in low and middle longitude regions and middle elevation regions. This 
study provides a reference for the selection of grid precipitation datasets for hydrometeorological 
simulation in northwest arid areas and also provides a basis for multi-source data assimilation and 
fusion. 

Keywords: TRMM3B42; GPM-IMERG; MSWEP V2.2; Tianshan Mountains; performance evalua-
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1. Introduction 
Obtaining accurate spatial distribution of precipitation plays an important role in a 

wide range of fields, including agriculture, ecosystem, and water resource management 
[1]. However, it is very challenging to obtain high-quality precipitation estimates at an 
accurate spatial–temporal resolution, especially in high-altitude mountainous areas, 
where measurements are often insufficient [2–4]. As the largest mountain system in semi-
arid and arid regions of Central Asia [5], the Tianshan Mountains play an important role 
in determining climate processes in the entire Central Asian region and regional climate 
system [6–8]. As it is far away from the surrounding ocean, Central Asia has little precip-
itation and a dry climate. The glaciers and snow in the Tianshan Mountains are important 
water resources in Central Asia and are affected by precipitation changes [5,9–11]. Global 
warming accelerates the hydrological cycle [12,13]. By changing the redistribution of wa-
ter energy in the atmosphere, precipitation in the Tianshan Mountains not only has an 
important impact on climate change in the glacier region but also affects the natural eco-
logical environment and social and economic activities [14–17]. The terrain of this area is 
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complex, and the altitude difference is large, which results in the high heterogeneity of 
precipitation in the Tianshan Mountains with elevation [17,18], from low mountain de-
serts of <100 mm/year to windward slope high mountains of >900 mm/year. However, 
there are very few observation stations in the Tianshan mountain area. A total of 70% of 
meteorological stations are located in the low mountain belt and piedmont plain of the 
northern and southern slopes of the Tianshan Mountains, and there are few stations in the 
middle- and high-altitude areas [19]. Therefore, the precipitation results of spatial inter-
polation based on point distribution station data such as Climate Research Unit (CRU) are 
not absolutely reliable for the hydrological and ecological research of the Tianshan Moun-
tains and dry lands in Central Asia [18]. 

Over the past few decades, people have made great efforts to develop consistent and 
reliable high-resolution precipitation datasets on a regional or global scale [20–23]. At pre-
sent, there are more than 20 global or near-global grid precipitation datasets, and they are 
constantly updated (http://ipwg.isac.cnr.it/data/datasets.html), which provides important 
information for hydrological research in the global and data scarce areas (such as Tianshan 
Mountains). However, these precipitation datasets are uncertain due to the data source 
itself, the spatial–temporal resolution, and the algorithms used in the data development 
process [24,25]. Among them, the GPM product was launched in 2014 as an upgrade of 
TRMM, and currently, there are few studies on the evaluation of its product performance 
[26]. Duan et al. [25], and Huffman et al. [27], conducted a preliminary comparison of 
IMERG and TRMM monthly precipitation products. Their research shows that the two 
products are similar on land. Liu [28] made a further comparison on a global scale and 
found that IMERG had a significant advantage over TRMM in detecting heavy monsoon 
rainfall. However, another study in Asia [29] showed that 75% of measuring stations con-
sidered IMERG to be worse than TRMM at heavy rain detection. In addition, the Multi-
Source Weighted Ensemble Precipitation (MSWEP) recently produced by European re-
searchers [30] has been widely used in ecological/hydrological studies [31–34]. Several 
studies have shown that the characterization ability of MSWEP to retrieve surface precip-
itation is often higher than that of TRMM, CMORPH, GPM, and other global precipitation 
data [34,35]. When precipitation datasets are used as inputs to hydrological simulations 
[36,37], uncertainties in satellite products may propagate to hydrological variables (such 
as runoff) [38,39]. Therefore, it is increasingly necessary to evaluate the performance of 
different source precipitation datasets [40,41] and their impact on hydrological research, 
selecting suitable precipitation products according to the study area. 

In the previous research, the applicability evaluation of precipitation datasets (or 
other climate data) in high-cold mountainous areas is usually completed through data 
comparison; that is, the precipitation products are compared with the measured data to 
identify the rainfall patterns and other characteristics of different time and space [42,43]. 
For example, Wang [44] and Li [45] et al. took the Qilian Mountains as the research object. 
In the study comparing the applicability of the Weather Research and Forecast (WRF) re-
analysis products with TRMM and the fifth generation of atmospheric reanalysis by the 
European Centre for Medium-Range Weather Forecasts (ERA5) [46,47], they found that 
there are great differences in the estimation of annual and seasonal precipitation in differ-
ent precipitation datasets at high latitudes; Similar conclusions were reached in the 
Tianshan Mountains [48]. This illustrates the value of cross-comparisons of datasets to 
provide in-depth details on the performance of precipitation indicators data important for 
hydrological and climatic studies. However, these evaluations generally have the follow-
ing shortcomings: (1) Most studies analyze the applicability of precipitation products in 
the study area based on a short time scale, ignoring the test of the possible characteristics 
of precipitation in high-altitude mountainous areas over a long time series [11]; (2) The 
inversion degree of precipitation products on the spatial–temporal heterogeneity of pre-
cipitation in the study area is ignored [49,50]. Especially in the Tianshan Mountains, with 
complex terrain, the spatial and temporal distribution pattern of precipitation is relatively 
complex. Focusing only on the inversion accuracy of the spatial distribution of 
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precipitation from satellite data is difficult to reflect the variation trend of the spatio-tem-
poral scale of precipitation and the details of local precipitation in the mountains [51,52]; 
(3) The lack of analysis on the source mechanism of estimation differences of precipitation 
products from different sources may not provide a reference for the application of precip-
itation products in other high-cold mountains with similar geographical conditions [52–
55]. Therefore, these assessments are not always available or reliable [24,55]. 

In addition, the research on different satellite products in the Tianshan area is very 
limited. Wang used 24 meteorological stations in the Tianshan mountains for comparative 
analysis and verified the applicability of TRMM monthly precipitation data in the 
Tianshan Mountains [56]. Ji Xuan et al. verified the performance of TRMM daily precipi-
tation data in the Central Tianshan Mountains by using 15 meteorological stations around 
the Central Tianshan Mountains [56]. Zhao et al. analyzed the spatial distribution of pre-
cipitation in the Tianshan Mountains by using the precipitation estimation method of the 
TRMM satellite combined with a rainfall gauge [52]. All the above studies show that 
TRMM data can accurately estimate precipitation in Tianshan Mountains. However, the 
above assessment is based on the applicability of a single satellite product in the Tianshan 
region, which limits the selection and comparison of precipitation products. 

In previous studies, the whole Tianshan Mountains are often studied as a research 
area, and there is a lack of discussion on the spatial variability of precipitation in different 
regions of the Tianshan Mountains [18,57,58]. The area of the Tianshan Mountains is large, 
and the precipitation has typical spatial multi-scale and nonlinear characteristics. There is 
no systematic investigation of the precipitation in different elevations and areas in the 
Tianshan Mountains. Therefore, this study aims to comprehensively evaluate the quality 
of raster precipitation products from three different sources in the Tianshan Mountains. 
By taking the measured data of 36 meteorological stations as a comparison, the regional 
precipitation estimation accuracy of TRMM3B42, GPM-IMERG, and MSWEP V2.2 satel-
lite products was evaluated. The study period is set as January 2000 to December 2019, 
which is the overlapping period of three satellite missions. Although the number of sta-
tions limits the representativeness of the actual precipitation pattern in mountainous ar-
eas, this paper discusses the precipitation pattern at different time scales of day, month, 
season, and year, as well as the spatial scale of the four sub-regions of the Tianshan Moun-
tains, and it is still possible to evaluate whether the multi-source satellite products can 
reflect the spatial pattern and temporal change of precipitation. The purpose of this study 
is to improve the understanding of the suitability and uncertainty of satellite precipitation 
products in the Tianshan Mountains and evaluate whether the upgrading of precipitation 
products from different sources can improve the ability to capture light and solid precip-
itation in the Tianshan region of the dry land of Central Asia. 

2. Materials and Methods 
2.1. Study Region 

The Tianshan Mountains system (39°30′–45°45′ N, 74°10′–96°15′ E) straddles the bor-
der between China and Kyrgyzstan and is the largest mountain system in central Asia 
[11]. This study focused on the Tianshan Mountains in China, where some meteorological 
stations are available (Figure 1a). The Tianshan Mountain area accounts for two-thirds of 
the total length of the mountain system, with a length of about 1700 km and a central 
width of about 350 km. Considering the availability of station data and the availability of 
DEM, part of the Tianshan Mountains in China was selected as the research area; the alti-
tude of the research area varies greatly, ranging from 321 m to 7426 m. The complex to-
pography of mountains and basins makes the region inaccessible to marine airflow, re-
sulting in an obvious temperate continental arid climate, characterized by extreme tem-
peratures in winter and summer and uneven precipitation heights, ranging from <100 
mm/year in low mountain deserts to >900 mm/year in windward slopes of high mountains 
[18,19]. Because of the hydrometeorological conditions and geospatial constraints in the 
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mountainous area [18], the K-nearest neighbor method [59] was adopted to divide the 
Tianshan Mountains into 4 sub-regions, as shown in Figure 1b. According to the observed 
precipitation data from 2000 to 2019, South Tianshan Mountain is adjacent to the 
Taklimakan Desert in the south. Due to the interception of water vapor by the peaks on 
the north slope, the average annual precipitation in this area is the least (203 mm/a); The 
North Tianshan Mountain mainly includes the Ili River Valley and the main peak area in 
the middle of Tianshan Mountain. The elevation fluctuates greatly (630–5607 m), and it is 
located on the windward slope. The annual average precipitation is the highest (424 
mm/a); The West Tianshan Mountain is located at the mountain confluence, including the 
highest peak area (7426 m), with annual precipitation of 308 mm/a; The East Tianshan 
Mountains mainly include the Turpan Hami basin in the east of Tianshan Mountains and 
some mountains on the north slope. The average altitude is lower than that of the North 
Tianshan Mountains and the South Tianshan Mountains. Affected by the northwest mon-
soon in winter, a large amount of precipitation is formed on the north slope, with average 
annual precipitation between the two (269 mm/a). The spatial resolution of this study is 
unified as 0.1° grid division (Figure 1b). 

 

Figure 1. (a) Geographical location and Extent and topography of the Tianshan Mountains; (b) 
Boundary of sub–regions, location of stations and their annual precipitation. The number of stations 
considered for each region: West: 6; North: 11; South: 8; East: 11. 

2.2. Data 
All the research data in this paper have passed the quality test, and precipitation 

products used in this study include GPM IMERG, TRMM 3B42, and MSWEP (Table 1). 
MSWEP is a global precipitation dataset developed by Beck et al. [5], which integrates 
surface rainfall gauges and a variety of satellites, reanalyzes precipitation information, 
and corrects it by combining partial runoff and potential evapotranspiration data. 
MSWEP has the advantages of relatively high spatial resolution (0.1 × 0.1°) and long time 
series (1979–2017). Despite the high resolution of MSWEP products, MSWEP may not per-
form as well as TRMM precipitation products in Central Asia and the nearby Tibetan Plat-
eau [34,60]; this may be because the MSWEP fusion algorithm has not fully played its 
potential to improve the accuracy of precipitation monitoring in some high-altitude areas 
[32,61], while the TRMM based on microwave algorithm has certain advantages in cap-
turing precipitation particles in the Tibetan plateau [62,63]. In this study, TRMM Version 
7 data (3B42V7) with a temporal resolution of 3 h and a spatial resolution of 0.25° were 
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used. The TRMM product combines multiple satellite observations, including (the first) 
space-based precipitation radar, infrared and PM sensor data, and precipitation observa-
tions from the Global Precipitation Climate Center (GPCC) [60]. The TRMM project was 
terminated in April 2015 and replaced by the GPM mission. In this study, the IMERG Final 
Precipitation L3V06 Global Satellite Precipitation Grid dataset was used, which also had 
the advantage of high spatio-temporal resolution (0.1°, 0.5 h) [64]. The public time span of 
four datasets (2000–2019) is selected as the research period. The station data involved in 
this study come from the Information Center of the National Meteorological Administra-
tion (http://data.cma.cn/). Among them, considering that the daily precipitation data are 
the core data for objectively evaluating the performance of remote sensing precipitation 
products, the researchers screened the stations with intact daily observation precipitation 
data from 2000 to 2019, and finally, through consistency test and deviation correction 
[65,66], selected 36 representative weather stations. 

Table 1. Data overview. 

Dataset Type 
Time 

Resolution 
Space 

Resolution 
Time 
Range Coverage Source 

Daily dataset of 
Surface 

Climatological Data 
for China (V3.0) 

Observation 
data from 

ground stations 
1 d - 1951–- China 

http://data.cma.cn/data/cd
cdetail/dataCode/A.0012.0

001.html 

TRMM3B42 

Combined 
measurements 

of satellite 
estimated 

precipitation 

3 h 0.25 × 0.25° 1998–2019 Global https://gpm.nasa.gov/data/
directory 

GPM IMERG(V06) 
Final Run 

Multi-satellite 
joint retrieval 

of precipitation 
data 

0.5 h 0.1 × 0.1° 2000– Global https://gpm.nasa.gov/data/
directory 

MSWEP (V2.2) 

Multi-source 
fusion of 

precipitation 
observation 

data 

3 h 0.1 × 0.1° 1979–2019 Global http://www.gloh2o.org 

2.3. Research Methods 
2.3.1. Temporal and Spatial Aggregation of Satellite Precipitation Products 

Since the spatial and temporal resolutions of satellite precipitation products used are 
inconsistent, data need to be aggregated to a unified spatial and temporal resolution for 
facilitating comparative analysis. In terms of time resolution, because the precipitation 
product is based on UTC Universal Time [67], and the observation data of meteorological 
stations are Beijing Time (UTC + 8), the satellite datasets with different time resolutions 
are converted into Beijing Time by adding 8 h, and then the corresponding time periods 
are selected and accumulated into daily data. In terms of spatial resolution, all data are 
unified to 0.1°, in which the 0.25° TRMM3B42 satellite precipitation products are 
resampling by bilinear interpolation; the resampling method of bilinear interpolation can 
realize the conversion of information and retain the information of TRMM satellite prod-
ucts to the maximum extent [68]. After unifying TRMM to the same spatial resolution as 
MSWEP and GPM, all data had to be unified under the same projection and geographic 
coordinate system (GCS_WGS_1984) through raster calculation, and the unit (mm) of all 
products was unified through raster calculation. Then, the spatial data of satellite 
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products with the same coverage as the research area are extracted by ArcGIS tool. When 
analyzing the monthly and annual precipitation changes, various data with uniform spa-
tial–temporal resolution are cumulatively summed and averaged grid by grid according 
to time units to obtain data with different time scales. 

2.3.2. Comparison of Applicability of Precipitation Products 
There are generally two methods to compare the applicability of precipitation prod-

ucts. One is based on the comparison of surface data, the grid data with the spatial reso-
lution of precipitation products are obtained through the spatial interpolation of meas-
ured data, and the grid data are used as the real precipitation to evaluate the precipitation 
products; Second, based on point data comparison, the measured precipitation series of 
the station are compared with the nearest precipitation product grid data. In this paper, 
the first method is used to compare and analyze the spatial distribution differences of 
different precipitation data. In this study, the special spatial interpolation software 
ANUSPLIN [69] is used to interpolate the precipitation of 36 stations. In recent years, do-
mestic and foreign scholars have mainly used kriging, co-kriging, spline function, inverse 
distance interpolation, and a variety of statistical regression methods based on geograph-
ical spatial characteristics to build software models to fit the spatial statistical characteris-
tics of meteorological elements [70,71]. ANUSPLIN interpolation software is based on par-
tial thin plate smoothing splines [71,72], which introduces influence factors as covariants 
to build a linear sub-model, and then automatically determines the model coefficients ac-
cording to the data. It is a relatively mature special meteorological element interpolation 
tool [69]. The introduction of elevation as a covariate in this study can not only effectively 
make up for the lack of high-altitude station [73] data but also can interpolate polyhedral 
spatial data at the same time, especially for long-time series meteorological data [74]. The 
interpolation results and satellite precipitation results are respectively superimposed for 
comparative analysis. The second method is used to evaluate the accuracy of multi-time 
scale precipitation series. Six statistical indexes, including correlation coefficient (CC), fre-
quency bias (BIAS), mean absolute error (MAE), mean error (ME), root mean square error 
(RMSE), and standard deviation ratio (SDR), are used to reflect the degree of consistency 
between precipitation products and ground measured data. Probability of detection 
(POD), false alarm ratio (FAR), and critical success index (CSI) are used to evaluate the 
recognition ability of precipitation products to daily precipitation events. Coefficient of 
variation (CV) is used to measure the spatial and temporal variability of precipitation. The 
calculation formula and optimal value of each indicator are shown in Table A1 of the Ap-
pendix A. 

CC is used to evaluate the degree of linear coincidence between two kinds of data, 
which is generally defined as follows: 0.8 < CC ≤ 1.0 means very strong correlation; 0.6 < 
CC ≤ 0.8 implies a strong correlation; 0.4 < CC ≤ 0.6 means moderate correlation; 0.2 < CC 
≤ 0.4 implies weak correlation; 0.0 ≤ CC ≤ 0.2 indicates extremely weak or irrelevant [29]; 
BIAS describes the deviation direction and degree of the forecast model, which can elim-
inate the influence of precipitation at different stations [31]. MAE can avoid the problem 
of mutual cancellation of errors and estimate the proximity of satellite products to obser-
vation data [32]. ME can use sample statistics to infer the overall accuracy and reflect the 
systematic error of the data [75]. RMSE reflects the sample deviation between satellite 
products and observation data and is more sensitive to large errors. SDR reflects the de-
gree of dispersion between data individuals [18]. The higher the POD is, the lower the 
probability of missing precipitation events is; the lower the FAR is, the lower the proba-
bility of precipitation events being wrongly forecast is; the higher the CSI is, the stronger 
the comprehensive detection ability of precipitation products on precipitation time is. CV 
is also known as the “standard difference rate”, which is the ratio of standard deviation 
to mean and a statistic to measure the degree of variation of observed variables. In this 
paper, the coefficient of variation (CV) of annual and seasonal precipitation for each sat-
ellite product and measured precipitation grid point in the study area is calculated, which 
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is used to analyze and compare the spatial distribution of the coefficient of variation of 
annual and seasonal precipitation. 

At present, the 27 core extreme climate indices proposed by the International Expert 
Group on Climate Change Detection and Indicators (ETCCDI/CRD) are widely applied in 
identifying hydro-climate extremes [76]. We have selected four of them that are often used 
to study the characteristics of extreme precipitation [77,78] in high-cold mountains to an-
alyze the extreme precipitation in the Tianshan Mountains (Table A2). They are CDD, 
CWD, SDII, and RX1D. CDD refers to the longest consecutive days with daily precipita-
tion less than 1 mm, which can effectively reflect the continuous drought in the study area. 
CWD refers to the longest consecutive days with daily precipitation greater than or equal 
to 1 mm, which is very important to reflect the wetness of the study area [79,80]. RX1D 
represents the maximum daily precipitation in a year, which reflects the possibility of ex-
treme precipitation in a year to some extent [80,81]. SDII refers to the ratio between the 
total amount of precipitation greater than or equal to 1 mm and the number of days, which 
can reflect the ordinary daily precipitation intensity [79,81]. 

2.3.3. Comparison Method between Satellite Data and Rainfall Station Data 
Referring to the methods of Zambrano et al. [82] and Sharifi et al. [83], the “site-pixel” 

method was used for comparative analysis of satellite precipitation products and site ob-
servations. It can be divided into the following three situations: (1) when the rainfall sta-
tion completely falls on the pixel of the satellite image grid, the station data and the image 
metadata are directly used for comparison; (2) When the rainfall station falls between two 
pixels or the Angle between four pixels (edge < 0.01°), the mean values of two pixels or 
four pixels were compared with the rainfall station data; (3) When there are two or more 
rainfall stations in a pixel, the average value of all stations in the pixel is calculated and 
compared with the value of the pixel. 

3. Results 
Precipitation has obvious spatial–temporal differences. The applicability and accu-

racy of precipitation satellite data are mainly reflected in its sensitivity and accuracy in 
capturing the spatial–temporal differences of precipitation. Therefore, this study will com-
pare the three precipitation satellite data (TRMM3B42 product is resampled with 0.1° res-
olution, GPM IMERG satellite product, and MSWEP) with the measured data of meteor-
ological stations from two perspectives of time and space, respectively, and analyze their 
applicability in the Tianshan Mountains. On the time scale, the estimation accuracy of 
precipitation satellite products will be analyzed from three scales of year (includes wet 
and dry seasons), month (includes the four seasons), and day. On the spatial scale, the 
spatial variation of satellite precipitation estimation accuracy in different regions of the 
mountain area and the influencing factors of the estimation accuracy are mainly analyzed. 

3.1. Precipitation Estimation Accuracy at Different Time Scales 
3.1.1. Annual Scale Accuracy Assessment 

Due to the significant difference in annual variation of precipitation in the Tianshan 
Mountains [12,13], according to the application of the index station method [84,85], and 
with reference to the annual distribution of multi-year average precipitation and consec-
utive maximum precipitation months of representative stations in the Tianshan Moun-
tains [18], the wet season is determined from April to August, and the dry season is de-
termined from September to March of the next year. The index station method is by se-
lecting observation stations that cover the whole study period and have almost no lack of 
measurement; the wet season is divided according to the monthly average precipitation 
of each station during the study period [86,87]. This section evaluates the different perfor-
mances of the three precipitation products in wet and dry seasons; the annual, wet, and 
dry season precipitation of TRMM, GPM, and MSWEP are evaluated on an annual scale. 
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This section analyzes the applicability of the three products in the Tianshan Mountains 
based on the ground measured point data and the corresponding grid point data extracted 
from precipitation products. SDR, CC, and RMSE of the three precipitation products rel-
ative to the observation data of meteorological stations are plotted using the Taylor chart 
(Figure 2). Based on the annual, wet and dry season precipitation data of 36 stations, the 
average value of performance indexes of multiple stations in different areas of the 
Tianshan Mountains was calculated, and the Taylor diagram that could comprehensively 
reflect SDR, CC, and RMSE was drawn. The position of each point on the Taylor diagram 
indicates the degree of matching between satellite precipitation product data and precip-
itation of ground rainfall stations. As shown in Figure 2, the distance from the precipita-
tion product dot to the origin in the figure represents the SDR of the data. The distance 
between the precipitation product dot and the observation site is the RMSE of the precip-
itation product data relative to the observation value (which has been normalized). The 
intersection of the extension line of the origin and precipitation product dot with the 1/4 
circle is the CC of precipitation products and observed value [88]. CC cannot objectively 
reflect the degree of difference in precipitation values measured by satellite products and 
rainfall stations. Therefore, BIAS and MAE between them should be considered, as shown 
in Table 2. 

From different time scales, the three precipitation products showed a strong correla-
tion with the wet season observation data in most areas of the Tianshan Mountains (West, 
North, and South), with CC generally greater than 0.8. The annual scale came in second 
place; CC was the worst in the dry season. MAE also showed that the three products are 
very close to the measured data in the wet season, but the difference is large in the dry 
season. The performance differences of the three precipitation products are as follows, as 
can be seen from Figure 2; in most cases, the distance between the dots of the three pre-
cipitation products and the observation stations from near to far is GPM, MSWEP, and 
TRMM, which also indicates that the order of accuracy of the three in capturing the annual 
precipitation in Tianshan Mountains is GPM > MSWEP > TRMM. 

From different regions, the correlation between the three precipitation products and 
the measured data at the annual scale has some similarities (Figure 2). All the products 
had higher correlation coefficients (CC > 0.8) in the West with abundant precipitation and 
flat terrain. In the South and North, where the height difference changes greatly, it ranks 
second. The correlation was lower (CC < 0.7) in the East with large terrain fluctuation. 
BIAS reflects that TRMM and GPM generally underestimate precipitation in different re-
gions at different times, and MSWEP reflects a similar overestimation of measured pre-
cipitation at annual and dry season scales. On the other hand, among the three products, 
MSWEP has the most accurate description of precipitation differentiation in different re-
gions, and SDR is generally greater than 0.9. However, the SDR of GPM is less than 0.7 in 
the annual and wet seasons, which is lower than the other two, indicating that its descrip-
tion of precipitation variation range needs to be improved. It can be seen that the precip-
itation in the Tianshan Mountains has the characteristics of uneven spatial and temporal 
distribution [59], which leads to the differences in the applicability of satellite products at 
different time scales and different spatial scales. The accuracy evaluation of the annual 
scale range can only reflect the general characteristics of the three products, and the 
smaller time scale (monthly scale and daily scale) can help to achieve a more detailed and 
multi-dimensional accuracy evaluation. 



Water 2022, 14, 2566 9 of 32 
 

 

 
Figure 2. Evaluation indicators Taylor diagram of precipitation products in different regions of an-
nual scale (a,d,g,j), dry season (b,e,h,k) and wet season (c,f,i,l). West Tianshan (a,b,c); North 
Tianshan (d,e,f);South Tianshan (g,h,i);East Tianshan (j,k,l). 
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Table 2. Annual scale evaluation indexes of precipitation products BIAS and MAE. 

Time Scale Product 
BIAS/% MAE/mm 

West East South North West East South North 

Wet 
Season 

TRMM −7.58 −9.58 −5.89 −9.69 18.09 15.03 47.77 35.48 
GPM −3.27 −7.87 −8.90 −3.36 18.48 41.37 59.84 46.84 

MSWEP −9.22 −5.82 −4.83 2.99 20.53 41.36 66.24 66.75 

Year 
TRMM −15.08 −17.41 −17.31 −10.88 27.88 32.03 89.67 36.71 
GPM −5.48 −10.71 −9.50 −5.07 36.78 80.72 67.87 52.75 

MSWEP 1.23 10.95 15.33 19.66 41.71 62.38 69.79 68.48 

Dry Season 
TRMM −18.25 −20.82 −19.86 −15.67 68.15 128.35 107.84 92.46 
GPM −14.56 −15.36 −15.78 −10.85 56.55 126.95 175.88 98.76 

MSWEP 7.54 18.82 29.32 32.85 75.90 74.76 123.05 144.76 

3.1.2. Monthly Scale Accuracy Assessment 
In this section, daily precipitation is accumulated on a monthly scale based on point 

data to evaluate the accuracy of precipitation products. Figure 3 shows the distribution of 
main error evaluation indexes of monthly precipitation grid data of TRMM, GPM, and 
MSWEP in each region. As can be seen from Figure 3, the correlation degree between the 
three precipitation products and measured precipitation in different regions is in descend-
ing order: West region > South region > East region > North region. TRMM (CC = 0.78) 
and MSWEP (CC = 0.83) perform best in Southern region, and the CC of GPM is as high 
as 0.95 in West region. Compared with TRMM and MSWEP, GPM here shows greater 
advantages in the correlation coefficient with the measured precipitation than the annual 
mean scale (Figure 2). The reason may be that the orbit inclination of the GPM satellite has 
increased from 35° to 65°, which not only expands the detection coverage area but also 
improves the product time resolution [89]. Compared with the small fluctuation of the 
average precipitation for many years, the precipitation in Tianshan Mountains has the 
characteristics of uneven distribution within the year [50]. Therefore, GPM products can 
show more detection advantages on a monthly scale. Except that MSWEP shows a certain 
degree of overestimation in the North, the BIAS of the three data shows an underestima-
tion of the measured precipitation, which has similar characteristics to the BIAS change 
pattern of the wet season precipitation of the three products (Table 2), which may be be-
cause the annual precipitation of Tianshan Mountain mainly comes from the wet season 
[7]. In order to further analyze this intra-year difference, Figure 4 compares the monthly 
distribution of the main error evaluation indicators corresponding to TRMM, GPM, and 
MSWEP precipitation products (average value from June 2000 to December 2019). 
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Figure 3. Comprehensive analysis of CC, BIAS and RMSE for monthly scale evaluation of precipi-
tation products. 

As can be seen from Figure 4, all satellite products correctly reflect the general pattern 
of annual variation of precipitation observed at each monitoring station during the study 
period. RMSE and MAE of the three products generally present a u-shaped distribution 
in each month of the year, with the lowest values from June to August (RMSE < 10, MAE 
< 10). This shows once again that the three precipitation products have good detection 
rates for wet season precipitation events in the year. In the dry season (September to 
March of the next year), the detection rate was worse (RMSE > 15, MAE > 20). 

The deviations of the three products varied greatly in each month of the year, but the 
estimation ability of the three products showed the same seasonal characteristics: the three 
sets of products all showed slight underestimation of spring and summer precipitation 
(average BIAS value from March to August: TRMM: −1.8%; GPM: −1.2%; MSWEP: −0.5%); 
TRMM, GPM, and MSWEP seriously underestimated and overestimated the precipitation 
in winter respectively (average BIAS from December to January: TRMM: −6.2%; GPM: 
−5.8%; MSWEP: + 5.1%). This is consistent with the results that the three products in Table 
2 show underestimation of wet season precipitation in most regions (BIAS < 0) and differ-
ent BIAS of dry season precipitation (TRMM, GPM < 0; MSWEP > 0). The RMSE of the 
three sets of products was also low in summer and relatively high in winter and spring 
(Figure 4). In general, the estimation ability of precipitation of the three sets of products 
was different with the change of season. In winter and early spring, the study area is 
mainly affected by the Siberian air mass [1,60], and the weather is dry and cold, which is 
manifested as micro-precipitation and snowfall with very small intensity. In addition, the 
year-round snow cover in the high-altitude mountainous area causes great interference to 
the detection of precipitation by microwave-based satellite products [60,65]. In summer 
and autumn, air masses with moisture from the Atlantic Ocean flow over the complex 
terrain of the Tianshan Mountains, forming convective rain with heavy rainfall intensity, 
especially in summer, when the satellite products can better capture the summer precipi-
tation when there is less snow and ice cover. 



Water 2022, 14, 2566 12 of 32 
 

 

 

 

 
Figure 4. Comprehensive analysis of long-term monthly precipitation error indicators RMSE, MAE, 
ME and BIAS of (a) TRMM, (b) GPM and (c) MSWEP. In the box plot, the solid black line represents 
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the median value of RMSE, the square represents the average value, respectively, and the black 
point represents the outliers. 

3.1.3. Daily Scale Accuracy Assessment 
Based on point data, POD, FAR, CSI and BIAS are used to evaluate the estimation 

accuracy of daily precipitation events for three precipitation products in different areas of 
the Tianshan Mountains. 

Figure 5 shows the box diagram of the spatial distribution of POD, FAR, CSI, and 
BIAS of the precipitation products of each satellite for the observed values of meteorolog-
ical stations in each region. From the perspective of the whole research area, the FAR of 
each satellite product shows an increasing characteristic from southwest to northeast, and 
POD and CSI generally show a decreasing trend from southwest to northeast. In the West-
ern, Southern, and Eastern regions, MSWEP has the lowest FAR, especially in the rela-
tively arid Eastern region, which has a large gap compared with other products, proving 
that rare precipitation in arid regions is difficult to be detected, while MSWEP has an out-
standing ability to detect a small amount of precipitation in arid regions, and GPM has a 
higher FAR than TRMM and MSWEP in different regions, indicating that it has a higher 
probability of incorrectly predicting precipitation events. Compared with the other two 
products, the POD and CSI values of MSWEP in each climate region are significantly 
closer to the optimal value 1, indicating that MSWEP has higher accuracy, especially the 
CSI is much higher than other products. On the whole, MSWEP is obviously superior to 
the other two products in precipitation classification performance. Although GPM shows 
a high probability of the wrong prediction of daily precipitation events on FAR, at the 
same time, the POD of TRMM in different zones is not as good as the other two products, 
and its error index range changes greatly (the box size reflects the data range), indicating 
that the detection ability of TRMM and GPM for daily precipitation events is not very 
different. As shown in Figure 5, the data basically conform to a normal distribution, so the 
obtained law has a certain credibility. 

However, POD and CSI are mainly used to evaluate the recognition ability of precip-
itation products for daily precipitation events, and there is a lack of research on the devi-
ation between precipitation products and measured daily precipitation values [64]. There-
fore, BIAS is used in this section to reflect the deviation degree of precipitation products 
from the measured daily precipitation. As can be seen from Figure 5, although MSWEP 
can accurately estimate daily precipitation events, it overestimates daily precipitation to 
varying degrees in most regions (West, South, and North) and slightly underestimates it 
in East. In different regions, GPM products improved the underestimation of TRMM 
products to some extent, and compared with MSWEP, GPM was closest to the measured 
daily precipitation values. 

Based on the performance of the three products under the four indicators, we find 
that the estimation error of GPM for daily precipitation values is relatively low, which is 
consistent with the accuracy comparison results in the annual scale (Figure 2) and the 
monthly scale (Figure 3); MSWEP shows relatively high detection ability for the occur-
rence of daily precipitation events, which may be due to the fact that there are a large 
number of extreme precipitation events in the Tianshan Mountains in the northwest arid 
region [90]. MSWEP adopts a Budyko-based framework and global runoff observation to 
help it monitor precipitation events that are not easy to capture [91]. 
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Figure 5. Statistical analysis of POD, FAR, BIAS and CSI of different precipitation products in dif-
ferent regions. In the box plot, the solid black line represents the median value, the square represents 
the average value, and the four horizontal lines from top to bottom are the upper edge line, upper 
quartile, lower quartile, and lower edge, respectively, and the hollow black point represents the 
outliers, and the scatter and curve reflect the normal distribution of data. 
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3.1.4. Comparison of Frequency Distribution of Precipitation Intensity 
In order to further test the different detection capabilities of precipitation products 

for daily precipitation events, we compared the frequency distributions of daily precipi-
tation with different intensities. Figure 6 shows the precipitation data of all stations and 
the distribution of each dataset in different rainfall ranges. Rainfall classification is based 
on the classification standard of precipitation intensity grade issued by the National Me-
teorological Administration [54]. TRMM, GPM, and MSWEP underestimated the days 
without rain in the study area (4.6~14.3% and −13.7~19.2% and 9.5~12.6%) in different re-
gions; However, the number of light rain days was overestimated in different degrees 
(+4.8% to +16.1%, +15.4% to +22.7% and +9.9% to +15.0%). For moderate rain and rain-
storm, except that GPM in Western Tianshan overestimates the number of moderate rain 
days (+0.28%), satellite precipitation is underestimated to varying degrees in other cases; 
MSWEP is the best for rare heavy rain and above precipitation. GPM precipitation prod-
ucts can occasionally monitor extreme precipitation, while TRMM precipitation products 
can not be detected in all regions. From the perspective of each region, except the Eastern 
part of the Tianshan Mountains, TRMM performed best in detecting the frequency of rain-
less events, followed by MSWEP and GPM (the average difference with the observation 
is: TRMM (5%) < MSWEP (15%) < GPM (25%). MSWEP performs better than TRMM and 
GPM (the average difference with the observation is: MSWEP (10%) < TRMM (15%) < 
GPM (20%)). in the detection of precipitation frequency of different magnitude in the East-
ern Tianshan region with scarce precipitation, which is consistent with the conclusion 
from Figure 5 that MSWEP has an outstanding ability to detect precipitation in the arid 
region. 

In general, TRMM performed best in estimating the frequency distribution of days 
with no rain and days with light rain. MSWEP has the best performance for a rainstorm 
and superior precipitation. As for the precipitation of moderate rainfall level, the fre-
quency of the three products is not very different. 

 

Figure 6. Frequency distribution of daily precipitation of different magnitudes in (a) West Tianshan, 
(b) North Tianshan, (c) South and (d) East Tianshan. 

3.1.5. Evaluation of Extreme Precipitation Monitoring Capability 
In the 21st century, the northwest arid region has changed from warm and dry to 

warm and wet [90], and the frequency of extreme precipitation in the Tianshan Mountains 
has increased [7]. Therefore, the monitoring ability evaluation of extreme precipitation is 
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also necessary for the applicability comparison of precipitation products on a daily scale. 
In order to analyze the monitoring ability of TRMM, GPM, and MSWEP for extreme pre-
cipitation events during the study period (2000~2019), RClimDEX software [92] is used to 
calculate the extreme climate indices of satellite observation data of ground observation 
stations and corresponding grid points site by site. Figure 7a–l shows the scatter density 
correlation diagram of three satellite products and observation data under each extreme 
climate indices. 

 

Figure 7. Density scatter of four extreme precipitation indices CDD (a,e,i), CWD (b,f,j), SDII (c,g,k) 
and RX1D (d,h,l) for precipitation products. TRMM (a–d); GPM (e–h); MSWEP (i–l). 

The results show that the CC values of the four groups of extreme climate indices of 
MSWEP products are greater than those of GPM and TRMM products, and the RMSE 
values of all extreme climate indices of MSWEP products are also smaller than those of 
GPM and TRMM, indicating that the fitting effect between the extreme climate indices of 
MSWEP products and the measured values of stations is better, which can better monitor 
the occurrence of extreme precipitation. For CWD and CDD indexes, the CC value of the 
CDD of the three products is relatively high, while the CC value of the CWD index is 
relatively low, and the correlation is relatively poor. In particular, the CC value of CWD 
in TRMM products is 0.47, indicating that the number of days of continuous wetting ana-
lyzed by TRMM products will be very different from the actual situation, and the results 
are not of reference significance; For SDII and RX1D indexes, the BIAS of the three prod-
ucts is less than 0, which shows that the precipitation intensity and maximum precipita-
tion are underestimated. Among them, the relatively good performance is that MSWEP 
slightly underestimates the RX1D index (−8.02%), which can be traced back to the results 
shown in Figure 6: among the three products, MSWEP has the highest detection rate of 
precipitation at rainstorm level; The CC of TRMM and GPM products and SDII and RX1D 
indexes are at a low level (CC < 0.5), indicating that they have little reference significance 
for regions where extreme precipitation occurs, and surface data are missing.  

By analyzing the performance of the three products from the perspective of extreme 
precipitation monitoring, it can be seen that the monitoring results of MSWEP products 
for extreme precipitation events are more in line with the actual values. This verifies our 
conjecture in Section 3.1.3; that is, the high detection ability of MSWEP for daily precipi-
tation comes from the good detection of extreme precipitation events. 

3.2. Precipitation Estimation Accuracy at Spatial Scale 
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3.2.1. Spatial Distribution Characteristics of Precipitation in the Tianshan Mountains 
In order to analyze the spatial distribution characteristics of precipitation in the 

Tianshan Mountains, ANUSPLIN interpolation software [69,93] was used, and three 
kinds of daily precipitation products were superimposed by the grid. The spatial distri-
bution of precipitation and inter-annual variation coefficient in the measured years (Fig-
ures 8a and 9a), dry season (Figures 8e and 9e), and wet season (Figures 8i and 9i) in the 
Tianshan Mountains, as well as the annual (Figure 8b–d), dry season (Figure 8f–h) and 
wet season (Figure 8j–l) precipitation distributions and corresponding precipitation dif-
ferentiation patterns (Figure 9b–d,f–h,j–l) of the three products were obtained. From the 
perspective of the spatial distribution of annual precipitation, the three precipitation prod-
ucts can roughly reflect the spatial distribution characteristics of measured precipitation, 
that is, the decreasing trend from northwest to southeast, indicating that satellite products 
can roughly reflect the spatial differences of precipitation in mountainous areas caused by 
air flow and topographic changes [37,38]. Here, we integrated the quantity classification 
in the legend of Figure 8 and the precipitation range of different products, compared the 
spatial distribution map of different products with the interpolation map of measured 
precipitation, and roughly obtained the order of magnitude range of differences between 
products and measured precipitation. The performance differences of the three precipita-
tion products are as follows: TRMM (Figure 8b) underestimates the annual precipitation 
(379–683 mm) in different regions; MSWEP (Figure 8d) overestimates the precipitation in 
the South and North regions of the Tianshan Mountains (683–950 mm); GPM (47–727 mm) 
has improved the underestimation reflected by TRMM to varying degrees in various sub-
regions (Figure 8c), especially in the West (Table 2 can also be seen), which shows a high 
similarity with the measured annual precipitation (4–726 mm) as a whole. As the distri-
bution of annual precipitation in the Tianshan Mountains is affected by complex geo-
graphical location and water vapor sources in different periods (Figure 8d–f), the distri-
bution of precipitation varies greatly in the wet season (Figure 8i) and dry season (Figure 
8e); Although the spatial variation range of the precipitation of TRMM (11–262 mm) and 
GPM (6–364 mm) in the dry season is higher than the measured interpolation result (2–
172 mm), BIAS shows that TRMM and GPM generally underestimate the measured pre-
cipitation from Table 2 and Figure 4. This difference may come from the fact that Section 
3.1 reflects the mean of the stations, which leads to the average of a few high precipitation 
values (west of the North region) in the dry season in the region. For the dry season pre-
cipitation in most regions of the Tianshan Mountains, this underestimation is more com-
mon (Figure 8f,g show the general underestimation by TRMM and GPM of precipitation 
in the 120–172 mm range shown in Figure 8e); TRMM and GPM underestimated the pre-
cipitation in the wet season (Figure 8j,k) significantly less than that in the dry season (Fig-
ure 8f,g), and MSWEP overestimated the precipitation in the dry season (Figure 8h) sig-
nificantly higher than that in the wet season (Figure 8l), which is consistent with the con-
clusion in Figure 2. 

From the spatial distribution of CV, the annual precipitation (Figure 9a) and wet sea-
son (Figure 9i) precipitation in the Tianshan mountains show low interannual variation (0 
< CV < 16%) in most regions. MSWEP is the best reflection of this spatial differentiation 
pattern among the three precipitation products (Figure 9d,l). For the dry season precipi-
tation with abundant interannual changes (3 < CV < 57%), the differentiation pattern of 
the three products (Figure 9f–h) is quite different from the measured precipitation. This is 
consistent with the results of the poor retrieval effect of the three products on the dry 
season precipitation in the study area (Figure 8e–h). The reason may be that the dry season 
(September–March) is mainly in winter and early spring, and the snow cover on the 
mountain surface leads to strong scattering, while the satellite products based on the Mi-
crowave algorithm are difficult to distinguish the frozen snow surface and clouds, and 
even misclassify them into cumulonimbus clouds, which limits the ability of the satellite 
products to capture precipitation particles. Consistent with the research conclusion of 
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Feidas, excluding the interference of snow and cold air in winter, satellite products based 
on infrared sensors can better detect strong convective precipitation in the wet season [22]. 

 

Figure 8. Spatial distribution of precipitation in station interpolation (a,e,i), TRMM (b,f,j), GPM 
(c,g,k) and MSWEP (d,h,l). Annual scale (a–d); Dry season (e–h); Wet season (i–l). 

 

Figure 9. Spatial distribution of CV in station interpolation (a,e,i), TRMM (b,f,j), GPM (c,g,k) and 
MSWEP (d,h,l). Annual scale (a–d); Dry season (e–h); Wet season (i–l). 

3.2.2. Spatial Accuracy Assessment of Precipitation in Tianshan Mountains 
In order to further compare the inversion accuracy of the three products on the spa-

tial distribution of precipitation in the Tianshan Mountains, this paper makes a further 
study on the correlation and error distribution in this section. The satellite annual average 
precipitation data and the measured annual average precipitation data are compared and 
analyzed in space, and the distribution map of the relative deviation of satellite precipita-
tion and measured annual precipitation BIAS, CC, and RMSE is obtained (Figure 10). 
From the perspective of BIAS, the distribution pattern of TRMM and GPM deviations in 
most regions is similar, ranging from −40% to 20%, showing an underestimation of the 
measured annual precipitation; The performance differences of the three precipitation 
products are as follows: GPM has significantly improved the abnormal overestimation of 
TRMM in a few areas in the South and East regions (50% < BIAS < 100%), indicating that 
GPM satellite has a better ability to capture precipitation information in the Tianshan 
mountains than TRMM, which is also reflected in Table 2. The BIAS of MSWEP in most 
areas is more than 20%, showing an overestimation of the measured precipitation, which 
is consistent with the research results in Section 3.2.1; in particular, the high-value area in 
the BIAS distribution pattern of MSWEP is similar to the spatial distribution of dry season 
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precipitation of MSWEP (Figure 8h), indicating that MSWEP overestimates the measured 
precipitation mostly from the dry season. The three precipitation products show a strong 
correlation with the measured precipitation in most areas of the West (CC > 0.8), which is 
consistent with the conclusion in Figure 2. The sim TRMM, MSWEP and GPM show a 
correlation from small to large with the measured precipitation in most areas of the north-
eastern Tianshan Mountains (CCT < 0.8 < CCM < 0.9 < CCG < 1.0). In the South region, 
TRMM and MSWEP show a similar correlation (0.6 < CC < 0.9), and GPM shows abnormal 
values (CC < 0.6) in the western part of the South, which may be related to the fact that 
there is only one available station observation value in the western part of the South, and 
the interpolation results are easy to cause deviation [93]. RMSE is used to highlight the 
large error in the dataset [17]. GPM (Figure 10h) significantly improves the large error 
value (RMSE < 30) shown by TRMM (Figure 10g) in most regions of Tianshan Mountain. 
MSWEP has large error areas (RMSE > 80) in the North, South, and East regions, which 
may be the reason for its general overestimation of precipitation in different regions of the 
Tianshan Mountain (Figure 10c). Compared with MAE (Table 2), RMSE can better high-
light the widespread overestimation of MSWEP on the annual precipitation in the study 
area, which indicates that the data must be revised before being applied to further hydro-
logical and meteorological simulation studies. 

Through comprehensive comparison, GPM is more in line with the distribution of 
annual precipitation in the Tianshan Mountains, and MSWEP is more in line with the 
spatial differentiation pattern of precipitation. In the future, it is considered to combine 
the two data to improve the estimation accuracy of measured spatial precipitation. 

 

Figure 10. Spatial distribution of BIAS (a–c), CC (d–f) and RMSE (g–i) between precipitation prod-
ucts and measured precipitation interpolation results. TRMM (a,d,g); GPM (b,e,h); MSWEP (g–i). 

3.3. Factors Influencing the Accuracy of Satellite Precipitation Products 
Since the Tianshan mountain area is a long and narrow mountain area in the east–

west direction, with a large longitude span (74°10′~96°15′ E) and elevation span (321~7426 
m), meanwhile, considering the limitation of observation data [11,12] and the special ge-
omorphic structure [18,54] and climatic characteristics of the Tianshan Mountains 
[50,51,54], elevation and longitude are selected as the influencing factors. The influence of 
longitude and elevation distribution on the accuracy of satellite precipitation products in 
the study area is evaluated based on the ground measured point data and the correspond-
ing grid point data extracted from precipitation products. 

Based on the observation data, the detectability of TRMM, GPM, and MSWEP to 
daily precipitation events is evaluated by using POD, FAR, and CSI. Figure 11 shows the 
spatial distribution of precipitation detection capability indicators at each station. It can 
be seen that MSWEP has not only the highest POD but also the lowest FAR, so the key 
success indicator CSI is also the highest at each station: that is, MSWEP has the best de-
tection capability for precipitation events; there is not much difference between GPM and 
TRMM, which is consistent with the conclusion in Figure 5. The three precipitation prod-
ucts show a poor detection rate for daily precipitation events in low-longitude and low-
altitude areas, which may be because satellite products that are in the high-altitude mainly 
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detect precipitation events at the top of the atmosphere [18,28]. For most low longitude 
areas (near the Ili River Valley) and other low-altitude areas, the infrared sensors of satel-
lite products may miss precipitation information near the ground, resulting in the omis-
sion of precipitation events [94]. It is worth noting that the detection capability of GPM 
seems to be significantly worse at high-altitudes (Elevation > 2400 m) and Longitude (Lon-
gitude > 87° E). The reason may be that the multi-frequency passive microwave imager 
(GPM microwave imager, GMI) carried by GPM is specially designed for small amounts 
of precipitation [95], which brings hope to improving the low rainfall intensity overesti-
mation phenomenon in TRMM [60]. However, there is still a lot of room for improvement 
for the extreme precipitation in high-altitude mountainous areas and the trace or even no 
rain in high-longitude arid areas (mainly located in the Turpan-Hami Basin in the East 
region). Therefore, for satellite precipitation assessment in complex terrain and high-alti-
tude areas, more detailed research is still needed to analyze the source of error so as to 
provide reliable reference information for sensor improvement and algorithm inversion. 

 

Figure 11. Scatter diagram and fitting lines of daily precipitation detection indicators and longitude 
(a–c) and elevation (d–f) of three products. 

In order to further evaluate the influence of topography on the accuracy of precipita-
tion estimation, the spatial distribution of precipitation error was analyzed by combining 
DEM in the study area. Taking the longitude and altitude of meteorological stations as 
independent variables and the CC and |BIAS| between the precipitation data of three 
satellites at different time scales and the measured data of stations as dependent variables, 
the polynomial regression analysis is carried out. The regression results are shown in Fig-
ure 12a–p. 

It can be clearly seen that the accuracy indicators of the three products basically have 
the same trend, but there are some differences in different time scales. The correlation 
coefficient decreases with the increase in longitude. |BIAS| increase with the increase in 
longitude. This may be because the low-longitude area mainly covers the West region of 
the Tianshan Mountains, while the high-longitude area mainly covers the East region of 
the Tianshan Mountains. The three products have good applicability in the West region 
with abundant precipitation, while the Turpan-Hami Basin in the East region is far away 
from the ocean and has closed terrain. The dry and hot subtropical continental air mass 
makes the weather in the East dry and hot [7], accelerating the evaporation of atmospheric 
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water. Coupled with the blocking of mountains and the dissipation of air resistance dur-
ing water vapor transport, it is difficult for water vapor at the top of the atmosphere to 
completely fall to the ground, resulting in an overall error in precipitation products. This 
is proved by the accurate evaluation of the Taylor diagram (Figure 2) and the monthly 
scale evaluation diagram (Figure 3). This is in contrast to the fact that the three products 
are not dominant in capturing daily precipitation events in low-longitude areas (Figure. 
11), possibly because, although some near-surface precipitation events are missed by the 
satellite product [94], most missed precipitation events are likely to be widespread micro-
precipitation events (Figure 6). For the West region with abundant precipitation (the main 
region of the low-longitude region), satellite products still have good precipitation value 
detection performance [35,36], especially MSWEP (Figure 12j,k,o), which is good at mon-
itoring heavy rain events (Figure 6). Meanwhile, in the correlation diagram between an-
nual precipitation (Figure 12i) and precipitation in the dry season (Figure 12o), there is a 
poor correlation phenomenon in some stations in the low-longitude area, which may be 
due to the large absolute error of precipitation products on precipitation in the West in 
the dry season (Table 2). The relationship between |BIAS| and elevation basically presents 
a strong cubic relationship; with the increase in elevation, |BIAS| shows a decrease-in-
crease -less fluctuation change; CC increases with the increase in elevation. Except in the 
dry season, it reaches a large correlation (CC > 0.75) in the middle- and high-altitude areas 
(2500–3000 m), which may be because the satellite products detect precipitation infor-
mation at the top of the atmosphere based on microwave and infrared sensors, rather than 
the precipitation information near the ground. As a result, precipitation estimates from 
some satellite products may evaporate before reaching the surface or even not fall to the 
surface at all [94], resulting in incorrect estimates of precipitation at lower elevations. 
However, the correlation peak value of precipitation in the dry season decreased to 1500 
m above sea level, which may be because the water vapor source in the dry season was 
mainly dominated by the westerly circulation [18]. It passes through the western section 
of the North of Tianshan Mountains to form the main precipitation in the dry season (Fig-
ure 8e), and the high precipitation value in this region was captured by the three products 
(Figure 8f–h). During the wet season, the westerly circulation moves northward [18], caus-
ing a lot of precipitation. The western section of the North region is mainly distributed in 
plain areas and near river valleys (with a lower altitude), while the northern section is 
located in peak gathering area (with a higher altitude), indicating that the three products 
are also sensitive to the identification of the maximum precipitation altitude zone. For the 
micro precipitation in high-altitude mountainous areas, although GPM shows a low de-
tection rate for daily precipitation events (Figure 11), the V06 version of IMERG, based on 
the optimization of the system algorithm and the upgrading of the sensor level, improves 
the estimation error of the micro precipitation in a long-time scale (month, year) [46,96]. 
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Figure 12. Scatter correlation diagram and fitting lines of monthly, annual, dry and wet season pre-
cipitation detection indicators and longitude (a,c,e,g,i,k,m,o) and elevation (b,d,f,h,j,l,n,p) of the 
three products. Monthly scale (a–d); Annual scale (e–h); Dry season (i–l); Wet season (m–p). 

The elevation range of the stations selected in this study is 179–3539 m, and the ele-
vation range of the study area is 321–7426 m. Although the research conclusion has some 
limitations, it still describes the variation law of precipitation product accuracy with 
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topography to a certain extent. In conclusion, the deviation between the three products 
and the measured precipitation is small in the low and middle longitude areas, and the 
correlation between the three products and the measured precipitation is strong in the 
middle-altitude areas. This may be because the high longitude and altitude areas in the 
study area have been iceberg areas for many years [18,54], and most solid precipitation 
exists, indicating that TRMM, GPM, and MSEWP are similar to most satellite precipitation 
inversion products, their estimation ability of solid precipitation is still insufficient [14]. 
However, compared with the three, GPM, as an up-graded product of TRMM, has a better 
ability to estimate the annual precipitation in low- and middle-altitude areas (Figure 12j,l). 
MSWEP performs relatively well at high altitudes. In order to further verify the correla-
tion between different precipitation products and measured precipitation in different al-
titude ranges, this study uses the natural breakpoint method [97] to grade the station ele-
vation and uses the classification results to conduct zoning statistics on the three products 
and the multi-year average measured precipitation, as well as the CC and BIAS, and ob-
tain the statistical values of different elevation ranges (Figure 12). According to the natural 
breakpoint method and the elevation range of the station, the low-altitude area is divided 
into 179–738 m, the medium-altitude area is divided into 739–1574 m, and the high-alti-
tude area is 1575–3539 m. 

It can be seen from Figure 13 that the three products all show high CC (TRMM: 0.79; 
GPM: 0.88; MSWEP: 0.74) and low BIAS (−1.34%, −0.86%, +3.79%) with the measured pre-
cipitation in the middle-altitude mountainous areas, indicating that the three sets of pre-
cipitation products have good applicability in the middle-altitude areas. This is basically 
consistent with the results in Figure 11. With the increase in altitude, TRMM and GPM 
tend to underestimate precipitation. However, compared with TRMM, GPM significantly 
improves the underestimation of measured precipitation; MSWEP shows overestimation 
of measured precipitation in different altitude areas, but it shows higher accuracy than 
TRMM and GPM in high-altitude areas (CC = 0.92, BIAS = +3.5%), which may be due to 
the scarcity of station data in high-altitude areas. As a multi-source product integrating 
station network density, satellite precipitation inversion accuracy, and numerical predic-
tion of precipitation results [30], MSWEP reduces the estimation error of precipitation in 
high-altitude areas accordingly. 

 

Figure 13. Comparison of average precipitation of three sets of satellite products in different eleva-
tion zones. Note: Measured data, TRMM, GPM and MSWEP are in turn from left to right in each 
elevation zone. 
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4. Discussion 
Tianshan mountain area is characterized by complex topography and landforms and 

the inherent north–south and east–west heterogeneity of precipitation distribution. Previ-
ous studies on the performance evaluation of precipitation products mainly have the fol-
lowing shortcomings: On the one hand, there is no comparison of the limitations of pre-
cipitation products from different sources. For example, Guo Hao et al. [73] discussed the 
role of different satellite precipitation estimation (LSPE) in arid zone climate monitoring, 
but the mechanism behind the precipitation estimation with different high spatial and 
temporal resolutions provided by different satellite products was not thoroughly dis-
cussed. On the other hand, most of the previous studies used short-term data to evaluate 
the spatial distribution of precipitation in the Tianshan Mountains. For example, Chi, 
Zhang [17], and Wu, Lei [72] only compared the applicability of TRMM and GPM prod-
ucts on a short time scale to the inversion of precipitation in The Tianshan Mountains, 
ignoring the periodicity of precipitation in the high-cold mountains in a long time series 
and the spatial difference of precipitation in complex terrain. Therefore, this study uses 
the 20-year observation data of 36 observation stations in four sub-regions of the Tianshan 
Mountains and nearby areas as samples to study the spatial–temporal performance of 
three different sources of satellite precipitation estimation products (TRMM, IMERG, and 
MSWEP) on multiple time scales. The mechanism analysis of different products from dif-
ferent sources and the study of longer time series and hetero-differentiation make our 
results more convincing than previous research results. 

4.1. Accuracy Difference between the Three Products 
The results show that the three satellite precipitation products can capture the spatial 

pattern of precipitation in the Tianshan Mountains at different time scales. However, a 
common significant weakness of these three precipitation products is that the estimation 
deviation of the precipitation in the dry season in the Tianshan Mountains is large (Table 
2). Ying et al. [98] also found a similar performance of precipitation products in Nepal. 
TRMM and GPM IMERG are precipitation combination products from IR and PMW sen-
sors, while MSWEP is data from multiple PMW sensors [33]. It is worth mentioning that, 
on the one hand, the PMW sensor cannot detect a large amount of snow melt water in the 
dry season; On the other hand, the infrared sensor can not distinguish multi-layer rain 
clouds in the dry season when there is less rain [33]. 

The accuracy difference between the three precipitation products is that in the 
Tianshan Mountains, GPM IMERG is superior to TRMM 3B42 and MSWEP products in 
cumulative precipitation estimation at all time scales. Although the previous precipitation 
evaluation in most regions of China showed that the performance of GPM products might 
be inferior to that of TRMM products in winter [99,100], our study showed that IMERG 
products performed better than the other two satellite products in precipitation estimation 
in all seasons, with more balanced seasonal performance (Figure 4). Similarly, studies near 
the Qinghai Tibet Plateau show that GPM IMERG has significantly better CC and lower 
BIAS than the previous generation of TRMM3B42 [83]. Like our studies, these studies also 
found that the detection BIAS of GPM on precipitation has been improved (Figure 5). This 
improvement is helpful in restoring precipitation in the low mountain and dry land of 
Central Asia. These improvements can be attributed to the new Ka-band (35.5 GHz) of 
GPM, which enhances its ability to capture precipitation events [29]. 

It is worth noting that the results of this study do not indicate that GPM products 
will be superior to other products in all mountainous areas. A study on precipitation in 
arid areas found that IMERG did not significantly improve compared with TRMM 3B42 
[29]. Although studies in India showed that IMERG was significantly superior to TMPA 
in detecting heavy monsoon precipitation [64], our study has not found that the ability of 
GPM to detect daily precipitation events of different intensities in the Tianshan Mountains 
has been significantly improved (Figure 6) [101]. In fact, TRMM is superior to GPM in 
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detecting no rain and light rain events in arid areas (Figure 6); MSWEP shows a high level 
of detection ability for extreme precipitation than GPM (Figure 7), which is consistent with 
Yuan et al. ‘s study [29] that 75% of stations’ detection results for heavy rain show that 
GPM products are worse than MSWEP. Previous studies have shown that GPM tends to 
underestimate convective rain, especially rainstorm accumulation [25]. This weakness 
limits the effectiveness of GPM in mountainous areas. At the same time, our study shows 
that the MSWEP product has a better ability to capture the spatial variability of precipita-
tion under complex terrain in the Tianshan mountains than GPM IMERG (Figure 9), 
which may be related to the fact that MSWEP simultaneously integrates multi-source pre-
cipitation data such as ground station precipitation, satellite observation precipitation, 
and reanalysis data. 

4.2. Precipitation Differences in Different Regions of the Tianshan Mountains 
Due to the scarcity of station data in high-cold mountains [22,35], this study com-

pared the correlation between station interpolation results and spatial grid data of satellite 
products to explore the differences in precipitation distribution and the degree of spatial 
differentiation in different regions of the Tianshan Mountains. 

For precipitation in different regions of the Tianshan Mountains, the interpolation 
results of satellite precipitation products and annual precipitation at observation sites all 
show similar spatial patterns (Figure 8), that is, a consistent trend of decreasing from north 
to south and west to east, which is consistent with the research conclusions of Zhang [17], 
Massari [102], Wei et al. [81]. It fully reflects the spatial differences of precipitation caused 
by air flow and complex topographic changes in the Tianshan Mountains: Since water 
vapor in Central Asia mainly comes from westerly circulation, large-scale circulation and 
the mountain barrier effect form an obvious continental gradient, so the precipitation rate 
gradually decreases from northwest to southeast [18]. The results of station interpolation 
and GPM (which is the highest correlation with measured precipitation among the three 
products) showed that the maximum annual precipitation occurred near the Yili Valley 
region in the western part of the North Tianshan Mountains (Figure 8a), with annual pre-
cipitation exceeding 600 mm. However, the annual precipitation in the East and South 
regions is basically less than 100 mm, so it is called the “dry pole” of the Tianshan Moun-
tains [77]. This is because the northwest of the mountain area is located on the windward 
slope of the prevailing westerly wind belt, and the west flow over the troposphere is 
smooth all year round, leading to more precipitation in the northwest of the mountain 
area all year round. However, on the leeward south slope, blocked by the mountains, the 
moisture decreases from west to east. The spatial differentiation degree of precipitation in 
the Tianshan Mountains is opposite to the spatial distribution of precipitation. Figure 9a 
shows that although most of the mountains in the West and North regions of the Tianshan 
Mountains have small precipitation variation (CV < 6%), there are still areas with large 
inter-annual precipitation variation (CV > 10%) in the East and South regions of the 
Tianshan Mountains and the desert edge of the Turpan-Hami Basin, which makes water 
resources management in the eastern region of the Tianshan Mountains more difficult 
[77]. Of the three products, MSWEP comes closest to this pattern of differentiation (Figure 
9d). However, in the wet season, the monsoon circulation from the Pacific and Indian 
oceans also brings southward water vapor flux, and the difference in precipitation gradi-
ent between the North region and South region weakens (Figure 9i) [77]. 

Our analysis shows that the satellite precipitation products can not only reflect the 
influence of large-scale circulation on the spatial and temporal patterns of precipitation in 
the study area but also provide additional evidence for the influence of the topography of 
different regions in the Tianshan Mountains on the observed precipitation gradients in 
the Central Asian dryland. 
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4.3. Application Prospect of Precipitation Products 
Due to the sparse distribution of meteorological stations in the Tianshan Mountains, 

which are mainly distributed in the low mountain area, there may be a large deviation in 
analyzing precipitation characteristics in the mountainous area only by spatial interpola-
tion of rain gauge data [78]. Therefore, eco-hydrological studies in central Asia, including 
the Tianshan mountains, must rely on precipitation products as precipitation inputs 
[101,103]. According to our evaluation results in the Tianshan Mountains, GPM not only 
has a good correlation with the measured precipitation at different time scales (Section 
3.1) but also has a high estimation accuracy for the spatial distribution of precipitation in 
the mountains (Section 3.2). Previous studies have also shown that, compared with CRP 
data, precipitation products such as GPM not only have a higher spatial resolution (10 km 
VS. 40 km) but also have higher accuracy in precipitation estimation in central Asian 
mountains [19]. The major rivers/lakes in the arid region of Central Asia also depend 
mainly on the Tianshan Mountains for water. Therefore, as a new generation of precipita-
tion observation satellite, GPM can be used as a meteorological driver for large-scale land 
surface processes and ecological simulation. At the same time, considering the obvious 
difference in estimation performance of GPM products under the influence of different 
terrain factors (Section 3.3), terrain factors can be used to correct them in specific applica-
tions so as to improve the accuracy of GPM products. 

However, relying on a single precipitation product usually cannot avoid systematic 
errors caused by its data source [22,24,25]. GPM does not perform as well as MSWEP 
products in describing precipitation differentiation in mountainous areas (Figure 9) and 
detecting extreme precipitation events (Figure 7). According to the research of Xuan [32], 
MSWEP can more scientifically analyze the spatiotemporal variation of precipitation in 
areas lacking data. In future research work, in addition to evaluating the applicability of 
precipitation products, it is also necessary to provide a platform with a good spatial and 
temporal resolution for precipitation prediction and analysis by fusing precipitation prod-
ucts from different sources. For the arid areas in Northwest China with great topographic 
and geomorphic changes, such as the Tianshan Mountains, we need to combine the exist-
ing satellite precipitation products with the topographic and geomorphic factors in the 
study area to carry out sustainable water resources management and precipitation sea-
sonal forecast [21,32]. By integrating climate forecast (as preliminary forecast), satellite 
radar precipitation observation (as spatial data), and site measured data (as detection 
data), combined with topographic and geomorphic data, a multi-scale geographic 
weighted regression model such as MGWR [78] is used to conduct appropriate deviation 
correction and construct a precipitation prediction platform. The dataset provided by the 
precipitation platform can also be used as the background field to cope with drought 
events or extreme precipitation events. 

5. Conclusions 
In this study, the precipitation estimation accuracy of TRMM (3B42V7), GPM 

(IMERGV6), and MSWEP (V2.2) in different regions and time scales in the Tianshan 
Mountains was systematically evaluated by combining quantitative and categorical eval-
uation methods. The time series of the study is from 2000 to 2019. In analyzing the results, 
we also consider the influence of elevation and longitude on the suitability of precipitation 
products. The main conclusions are as follows: 
(1) At the annual scale, the three precipitation products showed a strong correlation with 

the measured precipitation; During the year, the estimation ability of precipitation in 
the wet season was stronger than that in the dry season. TRMM showed an underes-
timation of the measured precipitation, GPM improved the underestimation, and 
MSWEP showed an overestimation. 
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(2) At the daily scale, TRMM and MSWEP had the best detection rates for light rain 
events and extreme precipitation events, respectively. The deviation between GPM 
and daily precipitation is the smallest. 

(3) At the spatial scale, the three precipitation products can roughly reflect the distribu-
tion characteristics of the measured precipitation, that is, the trend of decreasing from 
northwest to southeast, and the correlation between GPM and the measured precip-
itation is the best. In different regions, the detection rate of precipitation in the West 
region was the highest, and the detection rate of precipitation in the East region was 
the worst. MSWEP is the closest to the precipitation differentiation pattern in the 
Tianshan Mountains. 

(4) The three precipitation products showed high accuracy in low longitude areas and 
middle elevation mountain areas; In comparison, MSWEP has the highest applicabil-
ity in high-altitude mountain areas. 
In general, this study used statistical methods to evaluate the accuracy of three pre-

cipitation products in different sub-regions of the Tianshan Mountains and assessed the 
monitoring ability of precipitation events through categorical analysis. It is found that the 
GPM precipitation product is the closest to the measured precipitation values at different 
time scales, and the MSWEP can best reflect the spatial distribution pattern of precipita-
tion in different regions. It is suggested to comprehensively use the estimated values of 
the two products to understand the precipitation trend in the Tianshan Mountains. This 
conclusion provides a reference value for multi-source monitoring fusion and multi-
source algorithm fusion of data products in the arid mountainous area of Northwest 
China. At the same time, the deviation analysis of precipitation products also provides a 
reference for data product developers to improve the precision of products. 
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Appendix A 

Table 1. Precision evaluation indexes of precipitation products. 

Index Name Formula Ideal Value 

Root Mean Square 
Error (RMSE) RMSE = ඨ∑ (S୧ − G୧)ଶ୬୧ୀଵ n  0 

Mean Error (ME) ME = 1n ෍(S୧ − G୧)୬
୧ୀଵ  0 

Mean Absolute Error 
(MAE) 

MAE = 1𝑛 ෍(|S୧ − G୧|)௡
௜ୀଵ  0 

Correlation 
Coefficient (CC) 

CC = ∑ (S୧ − Sത)(G୧ − Gഥ)௡௜ୀଵට∑ (S୧ − Sത)ଶ௡௜ୀଵ ට∑ (G୧ − Gഥ)ଶ௡௜ୀଵ  1 

Frequency Bias 
(BIAS） BIAS = ∑ (S୧ − G୧)௡௜ୀଵ∑ G୧୬୧ୀଵ ∗ 100% 0 

Probability of 
Detection (POD) POD = HH + M 1 

False Alarm Ratio 
(FAR) 

FAR = FH + F 0 

Critical Success Index 
(CSI) 

CSI = HH + M + F 1 

Standard Deviation 
Ratio (SDR) 

SDR = ට∑ (S୧ − Sത)ଶ୬୧ୀଵට∑ (O୧ − Oഥ)ଶ୬୧ୀଵ  1 

Coefficient of 
Variation (CV) 

CVୗ = ට భ౤షభ ∑ (ୗ౟ିୗത)మ౤౟సభୗത × 100% or CVୋ = ට భ౤షభ ∑ (ୋ౟ିୋഥ)మ౤౟సభୋഥ × 100% 100 

1 Note: The n is the length of precipitation series; Si and Gi are TRMM/GPM/MSWEP grid precipitation data and site 
measured precipitation data respectively. Sത and Gഥ correspond to the mean values of time series of two precipitation 

data respectively. H is the number of precipitation events detected simultaneously by precipitation products and 
ground measured data; M is the number of precipitation events detected by the site but not detected by precipitation 
products; F refers to the number of precipitation events that are not detected by the station but are falsely reported by 

precipitation products. In this paper, the threshold of precipitation is determined to be 0.1 mm/day. 

Table 2. Name and meaning of extreme climate indices. 

Name Code Definition Unit 

Consecutive Dry Days CDD 
The longest consecutive days with  

daily precipitation < 1 mm 
d 

Consecutive Wet Days CWD 
The longest consecutive days with  

daily precipitation ≥ 1 mm 
d 

Simple Daily Precipitation Intensity Index SDII 
The ratio of the total amount of  

precipitation ≥ 1 mm to the number of days 
mm/d−1 

Annual Maximum 1-day Precipitation RX1D Annual maximum daily precipitation mm 
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