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Abstract: Dam deformation is an intuitive and reliable monitoring indicator for dam structural
response. With the increase in the service life of the project, the structural response and environmental
quantity data collected by the structural health monitoring (SHM) system show a geometric growth
trend. The traditional hydraulic-seasonal-time (HST) model shows poor performance in dealing with
massive monitoring data due to the multidimensional data collinearity problem and the inaccurate
temperature field simulations. To address these problems, this study proposes a data-driven dam
deformation monitoring model for dealing with massive monitoring data based on the light gradient
boosting tree (LGB) and Bayesian optimization (BO) algorithm. The proposed BO–LGB method
can mine the underlying relationship between temperature changes and dam deformation instead
of simple harmonic functions. Moreover, LGB is used to simulate the relationship between high-
dimensional environmental quantity data and dam displacement changes, and the BO algorithm is
used to determine the optimal hyperparameter selection of LGB based on massive monitoring data.
A concrete dam in long-term service was used as the case study, and three typical dam displacement
monitoring points were used for model training and validation. The experimental results have
indicated that the method can properly consider the collinearity in variables, and has a good balance
in modeling accuracy and efficiency when dealing with high-dimensional large-scale dam monitoring
data. Moreover, the proposed method can explain the contribution difference between different input
variables to select the factors with a more significant influence on modeling.

Keywords: dam safety monitoring; parameter tuning; forecasting model

1. Introduction

There are more than 98,880 dams in service in China, and about 40–50% of these
dams were built in the 20th century [1]. These dams suffer from historical problems like
poor design and construction standards, insufficient strength of dam materials, and poor
construction technology [2]. With the increase in service life, the mechanical properties of
materials inevitably decline, and then structural reliability also declines [3].

Dam structural health monitoring (SHM) is an effective monitoring technique for dam
safety by imitating the self-sensing and self-diagnosis capability of humans [4–6]. Sensors
are arranged in the dam body and its foundation to monitor various physical quantities
related to dam structural response, such as deformation, settlement, crack opening, seep-
age, etc. [7,8]. As one of the most commonly used monitoring indicators, dam deformation
is regarded as a direct response to dam structures [9–14]. The plumb line (PL) and inverted
plumb line (IP) systems are often embedded in the dam body and its foundation to monitor
the horizontal displacement for concrete dams. Other monitoring methods, such as tension
lines and laser collimation, are also used for the observation of horizontal displacements.
With the increase in the dam service period, dam prototype monitoring data continuously
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accumulate and superimpose, resulting in a huge amount of monitoring data [15]. Thus,
it is desirable to develop advanced tools to mine useful information related to the dam
displacement changes from these massive monitoring data.

The construction of a dam behavior prediction, monitoring, and interpretation model
is of great significance for improving the management level of dam daily service [5,16–19].
The most popular data-based method for dam safety monitoring is based on the hydraulic-
seasonal-time (HST) model first proposed by Willm and Beaujoint [20]. The basic assump-
tion of the HST model is that dam structural response (e.g., dam deformation) can be
represented as the linear combination of three effects, including hydraulic, temperature,
and time effects [14]. However, practical application has proven that the conventional
HST model still suffers from some problems. Firstly, the actual thermal effect cannot
be accurately simulated through sinusoidal functions, and the multicollinearity between
hydraulic and temperature effects is difficult to be considered by the HST model [21,22]
To solve these problems, a series of variations of HST models were proposed in the past
few decades. For example, Hu et al. [23] proposed a hydrostatic-thermal-crack-time model
to interpret dam displacements for concrete dams with a large-scale horizontal crack on
the downstream face. Among these, the hydraulic-thermal-time (HTT) model has been
proven as an effective method for considering the actual temperature field [24]. By adding
the monitoring data of thermometers embedded in the dam body and foundation, HTT
can more accurately simulate the thermal effect of dam structural response. However, a
large number of thermometers are embedded in the dam body and its foundation, and it is
difficult to select suitable thermometer data that show similar variations to the structural
response [3]. Moreover, the input variables of the HTT model are usually high-dimensional
data, and conventional statistical methods cannot fully consider the collinearity between
factors when dealing with high-dimensional collinearity [24].

In the past few decades, with the rapid development of artificial intelligence (AI), machine
learning (ML) techniques have been applied in the dam safety monitoring field [23,25–27]. A
series of ML-based data-driven techniques have been introduced to build dam safety moni-
toring models [28–30]. For example, Ribeiro et al. [31] utilized four ML modeling methods,
including recurrent neural network, LSTM, auto-regressive integrated models of seasonal
moving average (SARIMA), and SARIMA with exogenous variables (SARIMAX) to predict
concrete dam long-term deformation. Liu et al. [31] proposed a coupling prediction model
for dam long-term displacement prediction based on the long–short memory network.
Li et al. [25] developed a new distributed time series evolution model for dam deformation
prediction based on constituent elements. However, most of the existing studies focus only
on a small amount of monitoring data. With the increase in dam service life, the prototype
monitoring data continuously accumulate and superimpose [32–34]. Thus, it is desirable to
propose a scheme suitable for big data mining and modeling. Moreover, improving model
transparency and the interpretability of prediction results is also a trend in the development
of dam monitoring models.

To overcome these problems, this study developed a data-driven dam deformation
monitoring and interpretation model using the light gradient boosting machine (LGB) and
Bayesian Optimization (BO). Specifically, actual prototypical temperature data is introduced
to represent the temperature variables instead of simple harmonic functions. Then, the LGB
is used to deal with high dimensional long-term monitoring data and mine the underlying
relationship of dam deformation behavior. Then, the Bayesian optimization (BO) algorithm
is used to determine the optimal parameter in the massive environmental monitoring
data. A concrete dam in service for long-term periods was used as the case study, and
three typical dam displacement monitoring points were used as the research objects. A
series of state-of-the-art methods including statistical and ML methods were used as the
benchmark methods. The evaluation of model performance was carried out from three
aspects, including short-term and long-term prediction accuracy, and the model calculation
efficiency and time cost. Moreover, the model interpretation capability for the contribution
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rate of factors affecting dam displacement was evaluated to improve the transparency of
the monitoring model.

The rest of the paper was organized as follows: Section 2 gives a brief introduction to
the methodology of LGB, BO algorithm, and evaluation indicators. Then, the flowchart of
the proposed BO–LGB framework for dam deformation behavior prediction and interpreta-
tion is described. In Section 3, a gravity dam in long-term service was used as the case study.
The actual thermometer data collected from the dam body and its foundation was used for
base model training. Section 4 discusses the model training and parameter optimization
process. Then the model performance in short-term and long-term prediction is evaluated
and compared with various state-of-the-art benchmark methods. Finally, the advantages
and the limitations of the proposed framework have been discussed in Section 5.

2. Methodology

Figure 1 shows the flowchart of the proposed dam deformation monitoring and
interpretation framework. Firstly, different from the conventional HST model, actual
dam temperature field prototype monitoring data was introduced for model training. To
deal with the problem of high-dimensional monitoring processing, LGB was proposed to
mine the underlying relationship between environmental variables and dam deformation.
Next, the BO parameter tuning algorithm was used to determine the optimal parameter
of the proposed method. A concrete dam in long-term service was used as the case study,
and three typical monitoring points were used to validate the model’s effectiveness. A
series of state-of-the-art methods in dam safety monitoring were used as the benchmark
methods for model validation. Moreover, the evaluation of the importance rate of different
environmental factors was also verified.
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Figure 1. The flowchart of the proposed framework.

2.1. Dam Deformation Statistical Monitoring Model

As the most intuitive and reliable monitoring index, the dam deformation monitoring
model has received extensive attention recently [9]. The dam horizontal displacement
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data can be denoted as the following three variables, including hydraulic variable, thermal
variable, and time-varying variable.

δ = δH + δT + δθ (1)

The hydraulic variable can be denoted as follows:

δH =
n

∑
i=1

ai Hi (2)

where H represents the upstream water level before the dam, n= 3 for the gravity dam,
and n= 4 for the arch dam.

The thermal variable is caused by the temperature changes of the dam body and
its foundation. It is usually represented by the combination of simple harmonic peri-
odic functions.

δT =
N

∑
i=1

(
b1i sin

2πit
365

+ b2i cos
2πit
365

)
(3)

where N is usually selected as 2 and t denotes the cumulative days from the measurement
date to the initial date.

The actual engineering operation research indicates that the temperature variable is
the main factor affecting the deformation variation of the arch dam. However, it is difficult
to accurately simulate the dam temperature field by purely relying on simple harmonic
functions. A more efficient and reliable solution is to utilize the prototypical thermometer
data embedded at different elevations of the dam. The thermal variable can be denoted as
follows [35].

δT(t) =
L

∑
i=1

biTi (4)

where Ti represents the observed temperature data collected from the thermometers and L
denotes the number of thermometers embedded in the dam body and its foundation.

The time-varying variable reflects the creep influence of dam concrete. They are
denoted as follows.

δθ = c1θ + c2 ln θ (5)

where θ = t/100, and c1 or c2 denote the time-varying factor regression coefficient.

2.2. LGB

A series of tree-based methods, such as random forest [36], and XGBoost [37,38],
have been used for dam behavior prediction. Compared with deep learning techniques,
tree-based techniques have some significant advantages, such as higher interpretability for
prediction results and strong processing capability for unbalanced data. However, with the
advent and development of the big data era, both the feature dimension and the sample
size of monitoring data show a significant increasing trend. The efficiency and scalability
are unsatisfactory when dealing with high-dimension features and large-scale instances to
estimate the possible split points, which are ineffective and time-consuming for big data
prediction [39] data problems. This can mainly be attributed to these models having to scan
all the data.

In this study, an improved tree-based technique, called LGB, was introduced to build
dam monitoring models that are suitable for massive monitoring data. LGB is an open-
access gradient boosting framework based on the decision tree to increase the model
efficiency and reduce calculation burden, which was first proposed by Ke in 2017 [24]. It
combines two novel techniques, including gradient-based one side sampling (GOSS) and
exclusive feature bundling (EFB) to improve the model efficiency when dealing with big
data and data with huge feature dimensions.
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Assuming there is a dam monitoring dataset X = {(xi, yi)}n
i=1. The basic aim of LGB

is to find an approximation f̂ (x) to a certain function f ∗(x) to minimize the specific loss
function L(y, f (x)) . The details can be described as follows.

f̂ = argmin f Ey,X L(y, f (x)) (6)

A series of regression trees
T
∑

t=1
ft(X) are integrated to give the final estimation result.

The formula can be denoted as

fT(X) =
T

∑
t=1

ft(X) (7)

The regression trees can be represented in the following type, which are

wq(x), q ∈ {1, 2, . . . , J} (8)

where J denotes the number of leaves, denotes the decision rules in trees, and is used to
represent the sample weight of leaf nodes. In this step, LGB can be trained in the following
form as follows.

Γt =
n

∑
i=1

L(yi, Ft−1(xi) + ft(xi)) (9)

This object function can be further simplified by removing the constant term in
Equation (9), which are denoted as follows.

Γt ∼=
n

∑
i=1

(
gi ft(xi) +

1
2

hi f 2
t (xi)

)
(10)

where gi and hi represent the first and the second order gradient statistics of the loss function.

Γ∗T = −1
2

J

∑
j=1

(
∑

i∈Ij

gi

)2

∑
i∈Ij

hi + λ
(11)

Γt =
j

∑
j=1

∑
i∈Ij

gi

wj +
1
2

∑
i∈Ij

hi + λ

w2
j

 (12)

w∗j = −
∑

i∈Ij

gi

∑
i∈Ij

hi + λ
(13)

where Al =
{

xi ∈ A : xij ≤ d
}

, Ar =
{

xi ∈ A : xij > d
}

, B_{l} =
{

xi ∈ B : xij ≤ d
}

, and
Br =

{
xi ∈ B : xij > d

}
.

From the above-mentioned analysis, it can be inferred that the selection of hyperpa-
rameters will significantly influence the modeling performance and prediction accuracy of
LGB. Thus, it is desirable to carefully select the number of hyperparameters to be adjusted
and the parameter ranges when using LGB for dam safety monitoring modeling.

2.3. Bayesian Optimization and Cross-Validation

Model hyperparameter tuning is an important model training process for most ML-
based algorithms. These hyperparameters can be further categorized into the parameter
that defines the model structure itself and the parameter required by the objective function
and optimization algorithm. Among them, model structure parameters will influence
the results in both the training and the prediction stage, which is also the main research
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target. It is necessary to manually set these values during the training phase, and the whole
process will consume a lot of time and labor costs to obtain good results through trial and
error. Thus, it is desirable to automatically determine the value of hyperparameters for the
construction of dam prediction and monitoring models.

Assuming the dam monitoring data D1:t = {(x1, y1), (x2, y2), . . . (xt, yt)}, the objec-
tive function can be denoted as f , and then the posterior distribution probability can be
represented as follows.

p( f |D1:t) =
p(D1:t| f )p( f )

p(D1:t)
(14)

where p( f ) represents the prior probability distribution of f ; p(D1:t| f ) denotes the likeli-
hood distribution of y and p(D1:t) denotes the marginalized likelihood distribution of f .

The probabilistic surrogate model and acquisition function are two main components
of the BO algorithm. Specifically, the probabilistic surrogate model consists of the prior
probability model and the observation model. By updating the probabilistic surrogate
model, the posterior probability distribution can cover data information. The acquisi-
tion function can be obtained according to the posterior probability distribution, and the
main aim is to determine the most probable evaluation point to minimize the loss in the
evaluation point sequence.

Figure 2 shows the intuitive diagram of the K-fold cross-validation. As can be seen
from the figure, the original data is firstly divided into the training and validation sets. The
training set is used for base model training, and the validation set is used to test the model
prediction capability. The detailed step of K-fold cross-validation can be seen as follows.

Step 1: The training set is randomly divided into K disjoint subsets;
Step 2: The 1st and K-1th subsets are used as the training set, and the Kth subset is used as

the verification set. Then, the prediction accuracy of the K group subset is calculated;
Step 3: The second to Kth group subsets are used as the training set, and the first group

subset is used as the verification set to obtain the prediction accuracy of the Kth group
subset test;

Step 4: The average prediction accuracy of the above K model is taken as the performance
index of the model under K-fold cross-validation.
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3. Case Study
3.1. Project Description

An arch dam that has been in operation for many years was used as the case study.
Figure 3 shows the top view of the arch dam used in this case study. The construction
of this project was started in 1968, and completed in 1971. Then, the dam was further
heightened by 6.5 m in 1976 after experiencing flooding. From April 1999 to May 2000, the
project was reinforced. The left and right abutments were grouted for leakage control and
corresponding management facilities were implemented.
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The control drainage area of the dam site is 165 km2, and the annual average rainfall is
650 mm. The design flood level of the dam is 481.75 m, and the dam foundation elevation
is 389.5 m. The total storage capacity of the reservoir is 16.6 million m3. The dam is a
concrete gravity arch dam with a fixed center and variable radius. The dam crest arc length
is 154.28 m, and the dam crest central angle is 80◦. The outer radius is 110.5 m, and the dam
crest elevation is 490.5 m. The maximum dam height is 202 m, and the dam crest thickness
is 4.5 m.

To monitor the environmental loads related to dam structural behavior, a series of
sensors were embedded in the dam body and its foundation to monitor physical quantities,
such as temperatures, water level, and rainfall. Figure 4 shows the layout of parts of
thermometer monitoring points in the typical dam section. As can be seen from the
image, thermometers are arranged along the dam to monitor the temperature variation in
different elevations.

Deformation is the most intuitive monitoring indicator of structural behavior changes
in arch dams. A plumb line system is utilized to monitor the horizontal displacement
of the dam body and its foundation in different elevations. Figure 5 shows the typical
monitoring point layout of PL and IP in this project. A total of two PL monitoring points
and one IP monitoring point are utilized to measure the dam body deformation relative to
the dam foundation.
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3.2. Data Collection and Preprocessing

In this study, actual temperature monitoring data was used for data-driven model
construction. To monitor the actual temperature field distribution and the temperature
changes in different parts, a series of thermometers are embedded. In this study, the actual
monitoring data from a total of 30 thermometers was utilized for model construction.
Figure 6 shows the process line diagram of environmental variables (i.e., water level and
temperature) from 2006 to 2018. It can be seen from the figure that both water level and
temperature data show regular changes in the annual cycle. However, it can also be seen
that the monitoring data of different thermometers have significant differences in ampli-
tude, which is mainly due to the differences in their buried positions and corresponding
monitoring targets. Figure 7 shows the visual display of dam displacement time series of
three typical monitoring points, including PL01, PL02, and IP01. It can be seen from the
figure that the fluctuation of the displacement monitoring data of the PL is significantly
larger than that of the inverted vertical line, which is mainly due to the monitoring of the
displacement of the dam body and the displacement of the dam foundation monitored by
the IP.
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3.3. Experiment Environment Setting and Parameter Tuning

The software environment of the experiment and the configuration of the correspond-
ing parameters is shown as follows. The proposed BO–LGB and benchmark methods were
coded based on Python, and all the experiments were implemented on a PC server. The
server configuration is Intel 7700 k,1 GPU is Nvidia GTX1070, and memory is 16 GB.

The selection of setting parameters will significantly affect the model performance
of LGB. Table 1 shows the main six parameters of LGB that mainly determine the fitting
capability of LGB and the corresponding parameter optimization scale. The details about
these parameters can be seen as follows. n_estimator determines the depth of the tree,
and a high value can enhance the model learning capability, but a too large value may
also lead to model overfitting phenomenon. max_depth controls the maximum depth
of the tree, which is capable of handing model overfitting. The parameter setting of
f eature_ f raction_rate determines the subsampling of features. The combination imple-
mentation of both f eature_ f raction_rate and bagging_ f raction can accelerate the model
calculation process and reduce overfitting.

Table 1. The parameter optimization objects in LGB.

Parameters Parameter Optimization Range

n_estimator [10, 500]
num_leaves [10, 100]

min_child_samples [1, 20]
max_depth [1, 100]

f eature_ f raction_rate [0.5, 0.9999]
bagging_ f raction [0.5, 0.9999]

To further evaluate the model performance of the proposed method, a series of sta-
tistical and ML-based methods were utilized as the benchmark methods. These methods
include the HST model, support vector machine (SVM), artificial neural network (ANN),
random forest regression (RF), and gaussian process regression (GP). It should be noted
that, except for the HST model, the input variables of the other benchmark methods were
based on HTT models, i.e., hydraulic, thermal, and time-varying variables. The random
search optimization algorithm was used to find the optimal parameters and training and
validation data were the same as the proposed method.

In this study, three quantitative evaluation indicators, including correlation coefficients
(R2), mean absolute error (MAE), and root mean squared error (RMSE) were introduced
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to assess the prediction performance of the proposed and the benchmark models. The
formulas of these indicators can be represented as follows.

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (15)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (16)

RMSE =

√
1
n

n

∑
i=1
|yi − ŷi|2 (17)

where ŷi is the predicted value of the i-th sample, yi is the corresponding actual value for
total n samples, and y = 1

n ∑n
i=1 yi.

4. Results Discussion
4.1. Project Description

In this study, two PL monitoring points and one IP monitoring point were used to
validate the model prediction capability of the proposed model. A BO parameter tuning
strategy was used to determine the optimal parameters of LGB. Figure 8 shows the visual
display of BO optimization results for the three monitoring points. Table 2 shows the
corresponding parameter optimization results. It can be seen from the table that the
optimal parameter can be obtained after 25, 84, and 27 iterations for monitoring points
PL1, PL2, and IP1. The correlation coefficients in the validation sets are 0.9446, 0.9853, and
0.8608, respectively.
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Table 2. The parameter optimization results of BO for LGB.

n_Estimators num_Leaves min_Child_Samples Max_Depth Feature_Fraction Bagging_Fraction

PL01 474 19 9 50 0.96 0.67
PL02 500 10 20 73 0.5 0.5
IP01 424 48 17 2 0.73 0.89

4.2. Model Generalization Capability Evaluation

In this study, the model performance evaluation was mainly carried out considering
three parts: prediction accuracy for both short-term and long-term prediction periods, and
the prediction efficiency for large-scale monitoring data.

4.2.1. Short-Term Prediction Performance Evaluation

Short-term prediction of dam displacement is an important basic work for dam safety
management. To verify the predictive performance of the proposed model, a series of
comparative models, including RD_LGB, HST, ANN, SVM, RF, and GP, were used as
the benchmark methods. Table 3 shows the quantitative evaluation comparison of the
proposed and comparative methods in three monitoring points. It can be inferred from
the table that the proposed method shows better short-term prediction performance in
terms of all three quantitative evaluation indicators. Moreover, it can be seen that the
prediction accuracy of the BO–LGB model is significantly higher than the RD–LGB model.
This indicates that the BO algorithm can easily find the optimal solution under a limited
number of iterations. Figure 9 shows the visual comparison of the prediction results of
the proposed and comparative method. From the figure, it can be seen that the prediction
values of the BO–LGB model are closer to the actual observed values.

Table 3. The comparison of short-term dam displacement prediction performance of the proposed
and benchmark methods.

Proposed RD_LGB HST ANN SVM RF GP

PL01
R2 0.9600 0.9238 0.9490 0.9103 0.8739 0.9243 0.9323

MSE 0.1920 0.2689 0.1950 0.2532 0.3171 0.2666 0.2440
MAE 0.1622 0.2226 0.1378 0.2057 0.2598 0.2106 0.1882

PL02
R2 0.9703 0.9638 0.9621 0.9607 0.3334 0.9289 0.9608

MSE 0.1751 0.1928 0.2072 0.1981 0.7291 0.2806 0.2104
MAE 0.1327 0.1641 0.1591 0.1423 0.6231 0.2474 0.1589
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Table 3. Cont.

Proposed RD_LGB HST ANN SVM RF GP

IP01
R2 0.9855 0.9836 0.8879 0.8796 0.5692 0.8499 0.9354

MSE 0.0269 0.0284 0.0688 0.0678 0.1198 0.0764 0.0528
MAE 0.0217 0.0227 0.0633 0.0573 0.1120 0.0663 0.0480
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4.2.2. Long-Term Prediction Performance Evaluation

With the increase of the dam service period, the monitoring data related to the dam
operation period continues to increase. Table 4 shows the quantitative result evaluation
of the proposed and comparative methods in dam long-term displacement prediction.
Figure 10 shows the intuitive display of the proposed and comparative methods in long-
term prediction. It can be inferred that the proposed BO–LGB shows significant advantages
in dam displacement sequence long-term prediction. Thust is can be concluded that,
benefiting from the comprehensive application of the BO algorithm and the five-fold cross-
validation technology, the proposed model can fully mine the underlying information
related to dam displacement changes in the limited monitoring data.

Table 4. Performance comparison of the proposed and comparative methods in long-term dam
displacement prediction.

Proposed RD_LGB HST ANN SVM RF GP

PL01
R2 0.9067 0.8703 0.8669 0.8833 0.8656 0.8746 0.8703

MSE 0.3044 0.3708 0.3354 0.3354 0.3306 0.3440 0.3708
MAE 0.2472 0.3158 0.2801 0.2758 0.2578 0.2793 0.3158

PL02
R2 0.9724 0.8505 0.8390 0.8737 0.9454 0.9454 0.8737

MSE 0.1804 0.4542 0.4753 0.4179 0.2559 0.2559 0.4179
MAE 0.1490 0.4151 0.4348 0.3723 0.1942 0.1942 0.3723

IP01
R2 0.7792 0.7734 0.2823 0.3622 0.6911 0.6186 0.3518

MSE 0.1064 0.0932 0.2139 0.1853 0.0968 0.1114 0.1976
MAE 0.0825 0.0770 0.2028 0.1736 0.0793 0.0925 0.1884
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Figure 10. Intuitive comparison of the prediction results of the proposed and benchmark methods at
the typical three monitoring points. (a) PL01, (b) PL02, and (c) IP01.
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4.3. Model Interpretability Assessment

A significant feature of the HTT model is the high dimension of the factor. Figure 11
shows the visual display of factor importance in input variables for the three monitoring
points. It can be seen from the figure that the water level factor is the most important
factor affecting the dam displacement changes for all three monitoring points. Moreover,
temperature data has a significant impact on the dam displacement changes. However,
the monitoring points embedded in different positions are affected by the temperature
variation. Thus, it is desirable to select the thermometers with a high relationship with dam
deformation according to the interpretation results of BO–LGB.
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5. Conclusions

In this study, a dam displacement prediction, monitoring, and interception model was
proposed based on LGB and BO algorithms. Different from the conventional HST model,
the proposed method directly takes the prototypical dam environmental monitoring data
as the input variables. LGB is combined with the BO algorithm to build a dam deformation
monitoring and interpretation model using long-term prototypical monitoring data. The
main contributions of this paper are summarized as follows.

1. The proposed BO–LGB model shows strong capability when dealing with the long-
term dam monitoring data both in modeling accuracy and efficiency;

2. The proposed method achieves remarkable performance in a variety of dam displace-
ment prediction scenarios (both in short-term prediction and long-term prediction);

3. The proposed method can analyze the main factors affecting dam displacement
changes based on prototypical monitoring data.

However, some limitations should also be addressed. First of all, the research object of
this study was a concrete dam, but other dam types like earth-rock dams or face rockfill
dams should also be used as research items. Secondly, since dam displacement is an uncer-
tain process affected by many factors, the stimulation of the uncertainty is an important
research content. There is a certain degree of correlation between different dam monitoring
points. The main research in the future is to consider the correlation between multiple
monitoring points and other types of dams.
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