
Citation: Atwell, A.K.; Bouldin, J.L.

Effects of Agricultural Intensity on

Nutrient and Sediment Contributions

within the Cache River Watershed,

Arkansas. Water 2022, 14, 2528.

https://doi.org/10.3390/w14162528

Academic Editor: Jongkwon Im

Received: 20 July 2022

Accepted: 15 August 2022

Published: 17 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Effects of Agricultural Intensity on Nutrient and Sediment
Contributions within the Cache River Watershed, Arkansas
Amelia K. Atwell 1,2,* and Jennifer L. Bouldin 2

1 Wofford College Biology Department, Wofford College, Spartanburg, SC 29303, USA
2 Environmental Sciences Graduate Program, Arkansas State University, State University,

Jonesboro, AR 72467, USA
* Correspondence: atwellak@wofford.edu

Abstract: Streams in agricultural lands tend to serve as a conduit for nutrient pollution. These streams
are often modified and have reduced riparian zones, resulting in agriculture being the leading cause
of nonpoint source pollution into streams of the United States. Eutrophication within the Gulf of
Mexico has been attributed to nutrient and sediment contributions from watersheds within the
greater Mississippi River Basin. One such watershed, the Cache River Watershed (CRW) located
in northeast Arkansas, was assessed to determine the impacts of agricultural intensity on water
quality at a local scale. The objective of this study was to determine the influence of agricultural
activity on nutrient and sediment contributions to the CRW. Following American Public Health
Association guidelines, physicochemical parameters, turbidity, and total nutrients (nitrogen and
phosphorus) were analyzed weekly from October 2017–September 2020 at 12 subwatersheds of
four varying agricultural intensities (low, low moderate, moderate high, high). Results indicate
that physicochemical parameters increase (pH, conductivity, temperature) or decrease (dissolved
oxygen) with increased agricultural intensity. Similarly, turbidity and total nutrients also increase
(significantly for turbidity and total phosphorus) with increased intensity. Contributions of sediment
and nutrients in the CRW not only influence local stream health but also contribute to hypoxia in the
Gulf of Mexico.

Keywords: agricultural intensity; total nutrients; turbidity; nonpoint source pollution; Cache
River Watershed

1. Introduction

In the United States, the leading cause of nonpoint source (NPS) pollution into fresh-
water streams is agriculture [1]. Streams draining agricultural lands tend to have increased
water temperatures, erosion, sediment, and nutrient inputs when compared to similar-sized
forested streams [2–4]. Since river systems act as conduits for sediment and nutrients, the
increased loads in subwatersheds can be cumulative within the river system, resulting in
eutrophication within the freshwater system as well as marine-receiving systems [5–9].
Eutrophication, the process by which an influx of nutrients causes algal blooms in a water-
body that subsequently die off, leading to a reduction in oxygen within the water column,
has led to “dead zones” along the coastlines of the United States with the Gulf of Mexico
(GOM) being the largest [10–12]. Over 70% of the sediment and nutrients entering the
GOM originated from upstream agricultural sources within the greater Mississippi River
Basin, including Arkansas [13].

Agriculture in Arkansas accounts for 40% of all land use, with a mixture of pastureland
and row crops contributing to water quality impairments across the state and the greater
Mississippi River Basin [14,15]. While pastureland is found throughout the state, row crop
agriculture is primarily located along the eastern portion of the state within Mississippi
River Alluvial Plain (MSRAP) Ecoregion. Excessive sediment and nutrients from the
MSRAP have been attributed to NPS pollution within the state and eutrophication in the
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GOM [16]. One area of particular interest for contributions of sediment and nutrients
within the MSRAP is the Cache River Watershed (CRW).

The CRW, located in northeast Arkansas (Figure 1A,B), is a narrow and long watershed
(29 km in maximum width and 230 km in length) that flows in a southwestern direction,
originating in southeastern Missouri and terminating at the White River confluence near
Clarendon, Arkansas [17]. The CRW is highly agricultural with nearly 70% of land use
in row crop agriculture, encompassing eight of the top 18 rice-growing counties in the
United States [18]. Due to the vast amount of agriculture in the watershed, stream seg-
ments of the Cache River, the Bayou DeView (its major tributary), and smaller tributaries
have been listed as impaired for not meeting state water quality standards since the mid-
2000s [19–26]. Because of the economic importance of the watershed and continued water
quality impairments stemming from agriculture, it is important to investigate the impacts
of agricultural intensity on sediment and nutrient contributions. Historical studies have
shown elevated levels of nutrient and sediment present within the CRW; however, those
studies focused on subwatershed level assessments and/or were conducted on a monthly
(3 year) or weekly (10 week) basis, likely missing variations a 3year, weekly monitoring
project could detect [27–30]. The objective of this study was to determine how agricultural
intensity upstream of a sampling site affects physicochemical parameters and contribu-
tions of sediment and nutrients in 12 subwatersheds of the CRW with varying levels of
agricultural activity.
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2. Materials and Methods

Physicochemical parameters (pH, conductivity, temperature, dissolved oxygen (DO)),
turbidity, and total nutrients (phosphorus and nitrogen) were monitored weekly from Octo-
ber 2017–September 2020 at 12 subwatersheds (HUC 12) of the CRW with varying levels of
agricultural intensity (Table 1). Sampling sites were located at the nearest confluence of the
tributary and the Cache River and water samples were taken during a variety of water flow
conditions, including both baseflow and stormflow. By using the percentage of agricultural
land use above the sampling site, as determined by satellite imagery from the 2011 United
States Geological Survey’s National Land Cover Database, subwatersheds fell into one of
four categories: low (<40%; n = 2), low moderate (41–70%; n = 3), moderate high (71–90%;
n = 4), and high (>90 %; n = 3; Figure 1C) [31]. Agricultural intensity was determined using
the following equation:

Table 1. Land use of 12 tributaries Upper Cache River Watershed, Arkansas. Site names are listed
along with hydrologic unit codes (HUC), total drainage area (km2), the percentage of urban, forested,
agricultural drainage area upstream (US; km2), non-agricultural area downstream (DS; km2), calcu-
lated % agriculture US of the sampling site, and agricultural intensity classification [31]. Calculated %
agriculture US was determined by the following equation: 100 × (Agricultural Land Use Area
Upstream/(Total Drainage Area–Non Agricultural Area Downstream)).

Site Name Site
Code

HUC
(08020302-)

Total
Drainage % Urban % Forested Agricultural

Area US
Non-Agr
Area DS

Calculated %
Agriculture US

Agricultural
Intensity

Big Creek Ditch BCDI -0503 69.52 16.92 27.90 24.42 20.85 50.18 Low Moderate
Beaver Dam Ditch BDDI -0207 100.17 3.10 0.31 84.91 8.24 92.35 High
Big Gum Lateral BGLA -0202 117.41 3.37 0.31 90.52 14.24 87.73 Moderate High

East Slough EASL -0105 130.89 4.20 0.04 65.96 51.90 83.51 Moderate High
Kellow Ditch KEDI -0208 63.33 3.84 0.12 38.17 21.88 92.07 High

Lost Creek Ditch LCDI -0502 153.31 17.84 17.13 27.63 66.40 31.79 Low
Little Cache River Ditch LCRD -0102 105.87 6.48 24.08 68.99 1.68 66.21 Low Moderate

Number 26 Ditch NTSD -0301 134.28 5.64 18.68 78.90 18.30 68.03 Low Moderate
Scatter Creek SCCR -0601 50.40 5.91 66.24 10.77 1.88 22.12 Low
Skillet Ditch SKDI -0401 76.10 5.85 0.56 54.46 12.22 86.80 Moderate High

West Cache River Ditch WCRD -0303 48.66 4.05 0.13 43.89 0.93 91.95 High
Willow Ditch WIDI -0305 113.71 2.75 0.55 64.77 38.86 86.53 Moderate High

Agricultural Intensity = 100 × (Agricultural Land Use Area Upstream/(Total Drainage
Area–Non Agricultural Area Downstream))

Water for physicochemical measurements as well as turbidity and total nutrient analy-
ses was collected weekly (n = 148–156) via a bucket lowered from a bridge into the thalweg,
the deepest portion of the stream channel with the greatest flow. Physicochemical mea-
surements were taken in situ using a Thermo Scientific Orion Star A329 multi-probe meter
(Thermo Fisher Scientific, Waltham, MA, USA). Subsamples of approximately 45 mL (total
nutrients) and one liter (turbidity) of unfiltered water were collected, stored on ice, and
transport back to Arkansas State University’s Ecotoxicology Research Facility for analy-
ses. Samples for total nutrient analysis were stored in a −20 ◦C freezer for a maximum
of 6 months and analyzed within 24 h of thawing. Analysis of total nutrients followed
American Public Health Association (APHA) methods 4500-NO3F for total nitrogen (TN)
and 4500-PB for total phosphorus (TP) where samples were digested prior to analysis on
a Skalar San++ Flow-through Analyzer (Skalar, Buford, GA, USA) [32]. Turbidity samples
were refrigerated at 4 ◦C and processed within 48 h using a Hach 2100P Turbidimeter (Hach
Company, Loveland, CO, USA), following APHA method 2130-B.

State standard criteria for “channel altered Delta streams” physicochemical parameters
and turbidity was utilized as exceedance values, while total nutrients were calculated using
the 75th percentile for ecoregion waterbodies since a numeric state standard has not been
established [33,34]. Means were calculated by averaging each week’s sampling event for
each intensity. The weekly means were then averaged for 156 weeks. Statistical analyses
were performed using R and R Studio with an alpha level of 0.05 [35]. Data was tested
for normality and transformations to reach normality were utilized. If normality could
not be achieved, a non-parametric method was utilized. For parametric comparisons of
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parameter means among agricultural intensities, ANOVA and Tukey post hoc analysis were
employed, while Kruskal–Wallis with a Wilcoxson rank sum post hoc analysis was used for
non-parametric comparisons. Additionally, a Pearson’s correlation analysis (Spearman’s
rank if non-parametric) was performed to determine if any relationship existed among the
parameters with agricultural intensity.

3. Results

Physicochemical parameters were normal; however, turbidity and total nutrients were
not normally distributed and normality could not be reached via transformations. Because
of this, the non-parametric Kruskal–Wallis test followed by a Pairwise Wilcoxson Sum
Rank test were used to determine significant differences among agricultural intensities. All
mean physicochemical parameters were within state guidelines and there was a significant
increase for pH and conductivity (χ2 = 46.3, df = 3, p < 0.001; χ2 = 185.4, df = 3, p < 0.001,
respectively) from low to high agricultural intensity, and a significant decrease in DO
(χ2 = 80.55, df = 3, p < 0.001; Table 2). Agricultural intensity was positively correlated with
pH (r = 0.608, p = 0.036) and conductivity (r = 0.910, p < 0.001) and negatively with DO
(r = −0.674, p = 0.016; Figure 2). Temperature did not exhibit a significant difference among
agricultural intensities, nor was there a significant correlation, but there was a general
increase from low to high agricultural intensity.

Table 2. Mean values and range for physicochemical water quality (pH, conductivity, dissolved
oxygen (DO), water temperature), turbidity, and total nutrient parameters (total phosphorus (TP),
total nitrogen (TN)) measured from October 2017 to September 2020 at four agricultural intensities of
the Cache River, Arkansas. Means in bolded italics represent values above state criteria [33].

Intensity pH Conductivity
(µS/cm) DO (mg/L) Temp (◦C) Turbidity

(NTU) TP (mg P/L) TN (mg N/L)

Low
(n = 2)

7.03
(6.20–8.23)

162
(58–460)

9.7
(4.7–13.8)

16.5
(1.0–31.0)

44.4
(4.2–460)

0.285
(0.087–1.500)

0.501
(0.151–3.600)

Low Moderate
(n = 3)

7.26
(6.23–8.32)

246
(61–640)

9.2
(6.0–13.7)

17.1
(1.3–31.9)

118.7
(14.7–843)

0.563
(0.162–2.711)

0.988
(0.199–6.328)

Moderate High
(n = 4)

7.24
(6.10–8.40)

291
(59–663)

8.6
(4.1–13.7)

17.4
(0.8–31.8)

203.8
(16.0–1803)

0.293
(0.124–0.922)

0.565
(0.071–3.707)

High
(n = 3)

7.32
(6.13–8.81)

329
(64–849)

8.6
(3.6–15.7)

17.4
(1.1–32.6)

170.6
(11.0–946)

0.292
(0.121–0.829)

0.631
(0.045–9.074)
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Figure 2. Relationship between physicochemical parameters and agricultural intensity in the Cache
River Watershed, Arkansas, sampled weekly from October 2017 to September 2020.

Similarly, mean turbidity increased from low to high intensity; however, the moderate
high intensity had the greatest mean nephelometric turbidity unit (NTU). Mean and median
NTUs for all agricultural intensities were below the 250 NTU criteria set for “channel altered
Delta” streams by the Arkansas Pollution Control and Ecology Commission (APCEC);
however, significant differences existed among sites (χ2 = 346.8, df = 3, p < 0.001) [33].
No statistical similarities existed among agricultural intensities, as all were significantly
different from one another (p ≤ 0.02; Figure 3). Turbidity and agricultural intensity were
not significantly correlated with one another (rs = 0.522, p = 0.082). Throughout the 3-year
sampling period, the 250 NTU criteria set by the APCEC was exceeded >20% of the time in
moderate high- and high-intensity areas, below the 25% criteria.
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sity. For TP, all agricultural intensities exceeded state criteria (0.240 mg P/L) and the low 

Figure 3. Box and whiskers plot with outliers excluded of turbidity among agricultural intensities
in the Cache River Watershed, Arkansas sampled weekly from October 2017 to September 2020.
The solid black line represents the median turbidity, the asterisk represents mean turbidity, the
solid lines above and below the box represent the 75th and 25th percentiles, and the black dashed
line represents the 250 NTU limit. Differences in lowercase letters indicate a significant difference
(α = 0.05) among intensities.
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State criteria for total nutrients, as defined by the 75th percentile for the “channel
altered Delta” streams, was determined to be 0.760 mg N/L for TN and 0.240 mg P/L
for TP. Significant differences existed among agricultural intensities for TN (χ2 = 97.14,
df = 3, p < 0.001) and TP (χ2 = 90.95, df = 3, p < 0.001). The low moderate intensity had
a significantly greater (p < 0.001) mean value of TN than any other intensity (Figure 4A).
Mean TN values for the low, moderate high, and high intensities were statistically similar
(p ≥ 0.85) to one another with an increase in concentration from the low (0.501 mg N/L) to
high intensity (0.631 mg N/L). Low moderate was the only agricultural intensity to have
a mean TN value exceed state limits (0.760 mg N/L) and was nearly 2× greater than the low
intensity. For TP, all agricultural intensities exceeded state criteria (0.240 mg P/L) and the
low moderate intensity had a significantly greater (p < 0.001) mean value and was almost
double that of any other agricultural intensity (Figure 4B). Unlike TN, the low agricultural
intensity had a significantly lower (p ≤ 0.003) mean TP value, while the moderate high and
high intensities were statistically similar (p = 0.48) to one another. Agricultural intensity
was not correlated with TN (rs = −0.070, p = 0.834) or TP (rs = 0.340, p = 0.279).
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Figure 4. Box and whiskers plot with outliers excluded of total nitrogen (TN; (A)) and total phos-
phorus (TP; (B)) values among agricultural intensities in the Cache River Watershed, Arkansas
sampled weekly from October 2017 to September 2020. The black dashed lines represent the state
75th percentile standard of 0.760 mg N/L TN (A) and 0.240 mg P/L TP (B) and the asterisk repre-
sents mean TN and TP. Differences in lowercase letters indicate a significant difference (α = 0.05)
among intensities.
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4. Discussion

While within state criteria, mean physicochemical parameters exhibited a significant
increasing trend, or decreasing for DO, from low to high agricultural intensity. Increases in
mean pH and conductivity are likely driven by the underlying geology of the subwater-
sheds and subsequently the agricultural intensity, as exhibited by the positive correlations
found in the present study [36,37]. Moderate high- and high-intensity subwatersheds are
located entirely within the MSRAP Ecoregion while subwatersheds in the low and low
moderate intensities are located partially (predominantly for low intensity) within the
Crowley’s Ridge Ecoregion and have less agricultural land use due to the underlying soils
and topography of the land (Table 1). The MSRAP has relatively flat topography and soils
are clayey and poorly drained, while Crowley’s Ridge Ecoregion soils are generally well
drained and loose with steeper slopes than the surrounding MSRAP [38,39]. Since the
topography and soils are better suited for row crop agriculture in the MSRAP, there are
likely more fertilizers (and therefore ions) entering the waterways which subsequently
can lead to the increase in pH and conductivity in the moderate high and high intensi-
ties [40,41]. Though not significant, the increase in mean water temperature alongside
agricultural intensity is likely due to the increase in agricultural (and subsequent decrease
in forested) land use. Studies have reported that streams in forested settings have water
temperatures 3–4 ◦C lower than those in agricultural settings [3,42,43]. This increase in
water temperature is likely contributing to the significant decrease in DO from low to high
agricultural intensity due to the inverse relationship between the two parameters [44].

Landscape metrics, such as agricultural intensity or land use percentage, have ex-
plained increases in not only physicochemical parameters but also turbidity, which sup-
ports results from the present study [45,46]. In the present study, mean turbidity of low-
agricultural-intensity sites (with greater forested land use) was 26% less than high-intensity
sites (little to no forested land), similar to results reported in Piedmont Ecoregion streams
of North Carolina [47]. While the mean turbidity in the high intensity was significantly
greater than the low intensity, it was also significantly lower than the moderate high in-
tensity, which had the greatest mean turbidity. The moderate high-intensity sites were
influenced greatly by one subwatershed, East Slough (EASL) with a mean turbidity of
339 NTU, exceeding state criteria and over 100 NTU greater than the next highest turbidity
(Table 3). Excluding EASL establishes a mean turbidity of 158.7 NTU for the moderate high
intensity. This exclusion results in a stepwise increase in mean turbidity from low to high
agricultural intensity. Other factors associated with agriculture that may have led to the
increase in turbidity include: dredging to clear stream bank vegetation and large woody
debris for unimpeded water flow, channel modification for drainage pipes from adjacent
agricultural lands, and the use of heavy equipment [48–52].

Table 3. Mean values and ranges for physicochemical water quality (pH, conductivity, dissolved
oxygen (DO), water temperature), turbidity, and total nutrient parameters (total phosphorus (TP),
total nitrogen (TN)) measured from October 2017 to September 2020 at 12 tributaries of the Cache
River, Arkansas. Means in bolded italics represent values above state criteria [33].

Site pH Conductivity (µS/cm) DO (mg/L) Temp (◦C) Turbidity (NTU) TP (mg P/L) TN (mg N/L)

BCDI 7.02
(6.31–7.75)

217
(52.7–920)

8.8
(4.7–13.0)

17.7
(0.6–33.2)

56.9
(7.68–962)

1.032
(0.173–4.862)

1.405
(0.197–6.328)

BDDI 7.25
(6.08–8.55)

333
(46.3–799)

8.3
(3.8–13.8)

16.8
(0.2–30.2)

139.5
(6.37–1070)

0.262
(0.081–0.512)

0.606
(0.088–5.729)

BGLA 7.29
(5.99–8.92)

271
(19.4–859)

8.9
(2.1–14.0)

16.9
(0.0–32.4)

185.1
(9.36–1194)

0.285
(0.103–0.752)

0.569
(0.041–4.934)

EASL 7.19
(5.93–8.45)

243
(47.3–625)

8.5
(4.2–14.7)

16.4
(0.0–31.5)

339.3
(14.1–3384)

0.325
(0.107–3.158)

0.632
(0.020–6.639)

KEDI 7.47
(6.22–9.68)

337
(71.3–1023)

9.1
(2.8–25.7)

17.7
(0.7–33.7)

147.3
(2.93–1256)

0.307
(0.081–1.866)

0.847
(0.020–25.142)

LCDI 7.29
(6.31–8.66)

202
(40.5–725)

9.7
(2.5–13.9)

18.8
(1.9–36.6)

60.4
(4.04–812)

0.355
(0.101–2.736)

0.404
(0.020–6.006)
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Table 3. Cont.

Site pH Conductivity (µS/cm) DO (mg/L) Temp (◦C) Turbidity (NTU) TP (mg P/L) TN (mg N/L)

LCRD 7.34
(6.08–9.17)

267
(47.7–673)

9.2
(5.7–14.7)

15.5
(0.1–29.3)

210.4
(17.8–2428)

0.290
(0.111–0.841)

0.739
(0.040–8.088)

NTSD 7.41
(6.13–9.40)

241
(48.6–809)

9.7
(3.9–15.4)

18.5
(0.7–34.1)

93.3
(7.54–1260)

0.280
(0.085–1.295)

0.700
(0.020–5.715)

SCCR 6.78
(5.93–8.46)

123
(38.9–300)

9.6
(5.9–14.0)

14.2
(–0.1–26.7)

28.4
(3.05–377)

0.215
(0.070–0.886)

0.598
(0.134–3.020)

SKDI 7.34
(6.16–8.48)

344
(56.3–849)

8.6
(4.2–14.3)

18.4
(0.9–34.0)

151.2
(5.61–2280)

0.279
(0.045–1.618)

0.483
(0.020–3.475)

WCRD 7.26
(6.10–8.66)

327
(47.4–963)

8.5
(1.6–15.3)

18.1
(0.9–34.6)

218.8
(9.80–2168)

0.306
(0.124–0.678)

0.466
(0.020–4.079)

WIDI 7.17
(6.20–8.38)

305
(65.7–762)

7.6
(1.8–13.1)

17.8
(0.5–31.7)

139.8
(5.44–1824)

0.284
(0.129–0.602)

0.579
(0.060–4.868)

For TN and TP, there was a general increase in mean concentrations from low to high
agricultural intensity, though the low moderate intensity was greatest for both nutrients.
With TN, the low, moderate high, and high intensities were all statistically similar with
a slight numerical increase from low to high. These results support a previous study within
the CRW that found unaltered sites (sites with intact riparian zones and predominantly
surrounded by forested lands) had less TN than altered sites (surrounded by row crops with
minimal riparian zones), though the difference was not significant [28]. Other studies have
also exhibited an increase in nitrogen (TN or other forms) with increased agricultural land
use [53,54]. Unlike TN, TP exhibited a significant increase from low to high intensity, again
with the exception of low moderate intensity, which had the greatest mean concentration. In
the greater Mississippi River Basin, over 40 % of phosphorus in the GOM have origins from
row crop agriculture [13]. Decreased forested lands and increased agricultural land use, or
fertilizer application on agricultural lands, also increases TP concentrations [45,55,56]. Both
TN and TP had 2× greater concentrations in the low moderate agricultural intensity than
any other intensity and were heavily influenced by one site, Big Creek Ditch (BCDI). BCDI
has historically had elevated levels of TN and TP and is likely influenced by urban activities
(i.e., the presence of a wastewater treatment plant and fertilizer application to fields at
sporting complexes) within the subwatershed [57–62]. Excluding TP concentrations from
BCDI results in a similar level (0.285 mg P/L) to other agricultural intensities, however,
when excluding this site for TN, means remained greater (0.709 mg N/L) in the low
moderate than any other intensity.

5. Conclusions and Future Perspectives

Agricultural intensity has a clear impact on physicochemical parameters as well as
contributions of sediment and nutrients to waterways. Demonstrated by a correlative rela-
tionship, the increase in pH (7.03–7.32) and conductivity (162–329 µS/cm), with subsequent
decrease in DO (9.7–8.6 ◦C), are most likely driven by the landscape features (soil type and
topography) and alterations (riparian removal) that have enabled the increased agricultural
activity at the higher intensities of this study. Although no significant correlation was found
with agricultural intensity, these landscape features and alterations also influenced the
significant increase in turbidity (44–171 NTU) from lower agricultural intensities. Increases
in both TN and TP (0.285–0.292 mg N/L and 0.501–0.631 mg P/L) were evident as well,
though only significantly for TP, indicating agricultural intensity may play a role in nutrient
contributions in the CRW. Using agricultural intensity as an indicator of areas that are likely
contributing more sediment and nutrients into river systems may enable a more targeted
approach for future studies in the CRW as well as worldwide.

For sediment and nutrient contributions, two subwatersheds were identified as con-
tributing more to turbidity (EASL) or TN and TP (BCDI). Further investigations into these
subwatersheds, such as sampling other access points upstream of the present study sites,
would be beneficial to help determine probable sources or areas of sediment and/or nu-
trient contributions. Subsequently, best management practices should be implemented in
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problematic areas to alleviate the loss of sediment and nutrients from agricultural fields.
Reductions of sediment and nutrients into the CRW would not only help to improve water
quality conditions on a local scale but would ultimately reduce contributions to the GOM.
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