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Abstract: Hydrological modelling at a catchment scale was conducted to investigate the impact of
climate change and land-use change individually and in combination with the available streamflow in
the Painkalac catchment using an eWater Source hydrological model. This study compares the perfor-
mance of three inbuilt conceptual models within eWater Source, such as the Australian water balance
model (AWBM), Sacramento and GR4J for streamflow simulation. The three-model performance was
predicted by bivariate statistics (Nash–Sutcliff efficiency) and univariate (mean, standard deviation)
to evaluate the efficiency of model runoff predictions. Potential evapotranspiration (PET) data, daily
rainfall data and observed streamflow measured from this catchment are the major inputs to these
models. These models were calibrated and validated using eight objective functions while further
comparisons of these models were made using objective functions of a Nash–Sutcliffe efficiency (NSE)
log daily and an NSE log daily bias penalty. The observed streamflow data were split into three
sections. Two-thirds of the data were used for calibration while the remaining one-third of the data
was used for validation of the model. Based on the results, it was observed that the performance of the
GR4J model is more suitable for the Painkalac catchment in respect of prediction and computational
efficiency compared to the Sacramento and AWBM models. Further, the impact of climate change,
land-use change and combined scenarios (land-use and climate change) were evaluated using the
GR4J model. The results of this study suggest that the higher climate change for the year 2065 will
result in approximately 45.67% less streamflow in the reservoir. In addition, the land-use change
resulted in approximately 42.26% less flow while combined land-use and higher climate change will
produce 48.06% less streamflow compared to the observed flow under the existing conditions.

Keywords: eWater source catchment modelling; Digital Elevation Model (DEM); GR4J rainfall–
runoff model

1. Introduction

Precise forecasts of catchment streamflow are needed to help the water authority to
make a better decision on water planning and management. In Australia, the small amount
of rainfall water becomes runoff and yearly variance in streamflow is greater than in other
countries [1,2]. In addition to climate change, land-use change is also caused by human
activity that can impact the quantity and quality of runoff [3]. Climate modelling indicates
that south-east Australia will be drier in the future [4]. Hydrological models are important
tools for the planning, design and management of water resource systems. Currently,
several hydrological models have been greatly used for obtaining the appropriate solutions
for numerous environmental problems of catchments. According to Legesse [5], hydrologi-
cal models can be classified into three categories: empirical or black-box; physically-based
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distributed or white-box; and conceptual or grey-box models. The empirical models do
not consider the governing physical laws of the process involved and only relate input to
output through some transform function [6]. The distributed models have the ability to
present the spatial variability of processes, boundary conditions and parameters to some
degree; however, they are minimal due to the excessive need of data and computational
time [7]. On the other hand, conceptual models represent the effective response of an
entire catchment, without attempting to characterise the spatial variability of the response
explicitly; however, they normally need fewer inputs to model streamflow in response to
precipitation conceptually with acceptable accuracy [8]. Regardless of their lumped nature,
these conceptual models are used in a wide range of hydrological applications, such as the
estimation of catchment runoff, analysing the impact of climate and land-use change on
runoff, and support water engineers and hydrologists for managing the water resources.

However, the selection of suitable models for the hydrologic assessment is one of
the significant aspects of modelling practices, especially in data-sparse environments.
In addition, one of the most difficult aspects of managing the water systems is bringing all
of the management tools together on a single platform. Currently, single platforms such
as the Source modelling platform developed by eWater limited, Australia accommodate
all the details of the catchment; different rainfall–runoff models are used for hydrological
studies [9,10]. Around 11 rainfall–runoff models are included in the Source framework,
including three rainfall–runoff models, such as GR4J, the Australian water balance model
(AWBM) and Sacramento used in this study. The selected conceptual models are commonly
used in Europe, the USA and Australia to predict runoff; they can be used for land-use
and climate change impact on streamflow [1,11]. These three rainfall–runoff models were
selected due to being simple conceptual rainfall–runoff models [12]. GR4J and AWBM have
a simple structure and faster calibration processes [13]. The AWBM model has been used to
model the effect of climate change on streamflow in Australia [14]. The Sacramento model
has been studied extensively and used in forecasting runoff [15]. The GR4J model has been
proven to be more effective than complex models such as TOPMODEL, IHACRES, etc. [7].

Information on streamflow is a vital component of most aspects of water resource man-
agement. The enhanced streamflow forecasting capability will provide multiple benefits,
including improved water-use efficacy via better anticipation of river inflows, an enhanced
ability to predict the volumes and timing for flood events, and a related reduction in
operational losses due to over releases from water storage [10]. Catchment characterisation,
land-use and land-cover are some of the key factors affecting the performance of rainfall–
runoff modelling [3]. The runoff generation process in a rural or regional catchment is
different to that of an urban catchment. This is because the land-use change could sig-
nificantly modify the hydrological processes and, therefore, affect the runoff generation
process [16]. In urban catchments, the runoff may not be blocked by any significant re-
tention process, as the runoff paths are predefined by manmade sewer and stormwater
management systems; however, in rural or regional catchments, runoff paths are evolved
from natural conditions, such as topography and land use [17]. Generally, urban catch-
ments are predominantly impervious areas resulting in a quick peak during a storm event.
On the other hand, rural or regional catchments are dominated by permeable surfaces with
a wide range of vegetation cover; hence, they are subject to more substantial runoff losses
and low peak flows in comparison to urban catchments [3,16].

Painkalac catchment is located on Painkalac Creek, which separates the townships of
Aireys Inlet and Fairhaven, along the Great Ocean Road, in Victoria, Australia; it is managed
by Barwon Water and Corangamite Catchment Management Authority (CMA). In the
Corangamite region, more than 70% of the land is used for agriculture and the weather
in this region is expected to be drier and hotter in the future than today. Furthermore,
the population in the region is expected to grow by 1.5% per annum and this will lead to
a higher water demand in future [18]. Therefore, in response to climate change, possible
land-use change, water allocation (agriculture, environmental flow, recreation activities)
and for better planning operation and management of water resources, the development of
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a short-term water quantity model is crucial for the water management authority. Better
streamflow forecast and extra lead-time will assist CMA and Barwon Water to make an
optimised decision and have better operational management.

The purpose of this study is to develop a water quantity model using eWater Source
for the Painkalac catchment to enhance its water operation and management. In this study,
the capability of conceptual models, such as GR4J, AWBM and Sacramento in the Painkalac
catchment, were studied. Potential evapotranspiration (PET), rainfall and streamflow are
the major inputs to these models. The key aims of the study are to: (i) assess the efficiency of
selected conceptual rainfall–runoff models in the Source platform; (ii) select an appropriate
conceptual model for the Painkalac catchment; and (iii) analyse the impact of climate,
land-use change and combined scenarios (climate and land-use change) on runoff.

This study is mainly focused on the development of a methodology for the selection of
a most appropriate hydrological model for a catchment based on catchment characteristics
and available data. The application of a developed methodology was demonstrated on
a local catchment. It is hoped that the developed methodology can be applied by water
professionals in any part of the globe for similar application.

2. Methodology

The overall methodology incorporated the tasks: (1) understand the study area/catchment;
(2) define the aim of the study; (3) select available suitable hydrological models for study
and comparison to investigate the best model for the study area; (4) collect data for model
development, calibration and validation; (5) conduct hydrological modelling for the area us-
ing selected models; (6) identify the most suitable model for the area; (7) develop scenarios
for analysis; (8) conduct hydrological modelling for developed scenarios; and (9) conduct
analysis of the results. The application of methodology is demonstrated below.

2.1. Study Area

Painakalac catchment is located along the Great Ocean Road at the south-west of
Geelong, Victoria. Its close-by towns are Aireys Inlet and Fairhaven. A location map
of the Painakalac catchment is shown in Figure 1a and the land-use distributions for
the Painakalac catchment are shown in Figure 1b. In May 2016, these towns (Aireys
Inlet and Fairhaven) were connected to the Geelong water supply system; since then,
the reservoir is used for environmental flow and recreation purposes [19]. The reservoir
has a capacity of 409 mega litres (ML) of water, which is collected through this catchment
system. The catchment has a total area of 3420 hectares, where approximately 96% of the
land is forest while the remaining 4% is classified as other (free hold) [20]. Furthermore,
the natural environment of the Painkalac reservoir can be used for walking and picnics,
besides other recreational purposes, which will eventually benefit the community socially
and economically [21]. In order to optimise the use of water for the environment, while still
maintaining sufficient water levels in a reservoir for the recreational benefits, the integrated
management of water in this catchment is very important.

2.2. Source Model Catchment Configuration

Source is Australia’s National Hydrological Modelling Platform (NHMP), developed
by eWater, Australia, which is the outcome of nationwide collaboration and more than
20 years of scientific research. Source has been embedded with different functions, such as
incorporating different climate, geographic and water policy settings for both Australian
catchments and international climate conditions. It has the capability of both catchment
and river basin modelling [23,24]. The structure of the model is flexible for modelling all
types of water resource systems to help in planning, management and operation for urban
and rural catchment and river basins. The Source is used to model both water quantity
and water quality constituents (catchment models) to improve day-to-day operations (river
operational models), to develop a better understanding of the effects of water resource
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policies on system storages, flows and water sharing (river system models), and to optimise
the urban supply systems (urban models) [9].

Figure 1. (a) Location and area map of the Painkalac catchment; (b) land-use map of the Painkalac
catchment adapted from [22].

There are four major steps involved in the Source modelling: model development,
calibration/validation, running the model and finally, analysis of the results. Three rainfall–
runoff models (AWBM, GR4J and Sacramento) commonly used in Source were selected
to estimate catchment water yield and runoff characteristics [10]. These models can be
calibrated utilising observed streamflow in the gauged catchments using available objective
functions and optimisation methods in the Source framework [7]. The catchment can
be delineated into sub-catchments with spatially explicit inputs and lumped outputs.
Source platform supports two types of a model setup, such as schematic and geographic.
Catchment scenarios are usually developed with a geographic wizard that follows a step-
by-step procedure to model the rainfall–runoff of the processes of a catchment.

The first step is to prepare a catchment digital elevation model (DEM) that is to be
loaded for creating a geographic model in Source [25]; see Figure 2. The DEM can be
extracted as an ASC file format from the Geoscience website (Figure 2 in blue) and after
processing in QGIS by using Model Fill Sinks, can show the desired catchment boundary
(Figure 2 in Yellow). Following this, the catchment outlet is selected by the Shapefile of
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the QGIS via Source. For the precise location, the coordinate system of the outlet can be
identified via Google; it can then be converted to the Source coordinate system. Source
itself can draw out the river network system by identifying the minimum number of sub-
catchments; for the purpose of this study, three sub-catchments were selected. The next step
is to configure the catchment for rainfall–runoff modelling. In this study, the effectiveness
of the GR4J, Sacramento and AWBM models in the Source rainfall–runoff framework
were assessed. The following sections provide detailed descriptions of these models.
The calibration and validation experiments were performed in catchment mode in the
Source platform to analyse the efficiency of the above three rainfall–runoff models available
in the Source platform for the Painakalac catchment.

Figure 2. Depiction of the drainage lines of the Painkalac catchment.

2.2.1. GR4J Model

Gr4J is a daily time-step running lumped conceptual model. It has the ability to
calculate soil moisture. The GR4j model is an upgraded version of GR3J, which was created
by Edijatno and Michel. The model’s origins may be linked back to France, and it has since
been researched all around the world [13,26]. It has the advantages of tracking high flow
better than the other two models, Sacrament and AWBM [7]; moreover, it takes less time
in calibration and validation due to its simplicity. However, this model is not effective in
capturing lower flows.

The GR4J rainfall–runoff model produces streamflow by putting the rainfall and
evapotranspiration data in the model. The detailed processes of the model and its equations
are presented in the reference [27]. The GR4J model generally had four parameters: X1,
X2, X3 and X4. However, Source GR4J comprises 6 parameters, including the above four
and additionally, K and C (see Table 1 below). These two parameters are used to isolate
the base flow and quick flow in the model without affecting the model simulation results.
The use of these two parameters is optional [28]. For this study, the default values of K
(0.95) and C (0.15) were used [29]. The X1 Parameter is a production store that is located at
the surface of the soil, where rainfall can be stored; in addition, evapotranspiration and
percolation can happen in this store. The type of store soil can influence the capacity of
the store and a small amount of porosity in the soil can increase the size of the production
storage. The water exchange coefficient (X2) can influence the routing store, where the
negative result caused the water to move to the depth of the aquifer whilst when there was
a positive result, the water moved from an aquifer to routing storage. The routing storage
X3 is the quantity of water that can be stored into soil voids; the humidity and type of soil
can influence routing store capacity. X4 shows the duration of conversion of rainfall to
streamflow and is created by the peak of flood hydrograph on the GR4J model [30].
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Table 1. Parameters in GR4J and their default values are adapted from [27].

Parameter Description Units Default Range

X1 Capacity of the production soil
(SMA) store mm 350 1–1500

X2 Water exchange coefficient none 0 −10.0–5.0

X3 Capacity of the routing store mm 40 1–500

X4 Time parameter for
unit hydrographs days 0.5 0.5–4.0

K
Filter parameter (as in the
observed catchment runoff

depth model)
none 0.95 0–1

C
Shape parameter (as in the
observed catchment runoff

depth model)
none 0.15 0–1

2.2.2. Australian Water Balance Model (AWBM)

The Australian water balance model (AWBM), which was developed in the early 1990s,
is one of Australia’s most widely used rainfall–runoff models. Two primary versions of
AWBM are available. One version is designed for daily water yield and low flow study,
while the other is designed for hourly flood runoff simulation. A version of the daily water
yield model for use on ungauged catchments was released in the start of 2003 [31].

This model is a lumped conceptual model primarily designed for river basin manage-
ment in Australia. The detailed processes of the model and its equations are presented in
the reference [32]. The AWBM is a simple rainfall–runoff model that associates rainfall and
evapotranspiration to streamflow. This model has five water stores in which three surface
stores are used to model partial areas of streamflow while the other two stores are a base
flow store and surface streamflow routing store, respectively. Table 2 illustrates the AWBM
model parameters and their descriptions. Each partial area has its own storage capacity as
C1, C2 and C3. The partial areas A1, A2 and A3 show the modeller defined functional unit
or soil classification and the sum of them should be equal to 1. For every time step of the
model, the rainfall is put into surface stores; then the evapotranspiration is deducted from
each store individually. Excess rainfall is forming as a result of daily rain spills and these
rainfalls are distributed between the base flow store and surface routing store. The amount
of water to be released to each store is represented by the base flow index (BFI) parameter.
The aggregate runoff is based on total surface water and base flow [7]. The base flow
recession constant (KBase) calculates the rate of discharge of water from the base flow store
while the surface flow recession constant (KSurf) calculates the rate of discharge of water
from the surface runoff routing storage [33]. The AWBM rainfall–runoff model produces a
better runoff result for larger catchment and medium flows [7] while this model is not so
effective in a smaller catchment.

Table 2. Parameters in AWBM and their default values adapted from [32].

Parameter Explanation Units Default

A1 Fractional area of surface store 1
(part of the catchment) 0.134

A2 Fractional area of surface store 2
(part of the catchment) 0.433

A3 Fractional area of surface store 3
(part of the catchment) 0.433

C1 Capacity surface store 1 mm 7

C2 Capacity surface store 2 mm 70
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Table 2. Cont.

Parameter Explanation Units Default

C3 Capacity surface store 3 mm 150

BF1 Base flow index (portion of extra runoff going
into the base flow store) 0.35

KBase Base flow recession constant (portion of
moisture depth left as per time-step) 0.95

KSurf Surface flow recession constant (portion of
moisture depth left as per time-step) 0.35

2.2.3. Sacramento Rainfall–Runoff Model

The Sacramento model was developed by Burnash et al. [34] for the United States
National Weather Service and the California Department of Water Resources; since then,
this modelling tool has been used extensively across the world. Its performance was also
enhanced by structurally modifying the model from earlier experiments. The Sacramento
model has worked successfully in a variety of climates, including humid, arid and semi-arid
conditions [15,34]. This model generates daily runoff by the input of daily rainfall and
potential evapotranspiration data. This model has five stores and sixteen parameters to
model the runoff, where the stores and parameters are illustrated in Table 6. The detailed
processes of the model and its equations are presented in the reference [35]. The Sacramento
rainfall–runoff model is considered a complex model compared to the GR4J and AWBM
models. The Sacramento model represents the soil as two layers, which are considered
conceptually hydrological active zones. The Sacramento model can classify the catchment
into permeable and impermeable areas. The impermeable area generates runoff for any type
of rainfall whilst the permeable area generates runoff from heavy rainfall. The catchment
soil was divided into two layers, where a thin layer is considered in the upper zone while
a much thicker layer is considered in the lower zone. The thin layer is comprised of a
tension (UZTW) and free water store (UZFW), while the thick layer is comprised of a
tension store (LZTW) and two water stores (LZFWP, LZFWS). These tension and free
water storages react to produce soil moisture conditions and five elements of runoff [7,36].
In tension water stores, water is accumulated between soil layers via surface tension and
water is removed only with the help of evapotranspiration. Whilst in free water storage,
water can move in a perpendicular direction and sideways within the soil; in addition,
it can be discharged via the upper zone as interflow and in the lower zone as base flow.
The depletion coefficients (LZPK, LZSK and UZK) calculate the rate of discharge from
these free water storages; the percolation of water from the upper to lower free water
stores is determined through the parameters PFREE, REXP and ZPERC. The runoff from
the impermeable area is calculated by the PCTIM and ADIMP parameters; the runoff loss
through the whole process is calculated through the SIDE, SSOUT and SARVA parameters.
The Sacramento model uses the unit hydrographs (UH1-UH5) to show the fraction of
flow present at the channel outlet at selected time intervals. The final parameter RSERV
is the amount of water in the lower zone free water stores, which is not available for
transpiration. The streamflow forecast from the Sacramento model is via a combination
of different impermeable areas, surface runoff, interflow and base flow. The impermeable
surfaces produce quick runoff from rainfall without a time delay while the time wait can
be in days for interflow, weeks for base flow and several months for primary base flow [35].
According to Maolin, the Sacramento model provides a better result in a dry season and
when the river has reduced flow; it overestimates the flow during a wet season [15].

2.3. Catchment, Streamflow and Climate Data

For the Painkalac catchment, the streamflow data were taken from station number
235,257, located at a latitude of −38.44 and a longitude of 144.05. The rainfall and PET data
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are taken from the station located at a latitude of −38.45 and a longitude of 144.05, which is
closest to the catchment area.

The three major input data for all the models are evapotranspiration (PET), daily
rainfall and streamflow. Trend analysis of the data was conducted before the models were
run over the configured run time using a single analysis procedure. The required data,
such as rainfall and PET data, are obtained from the Queensland Government website [37],
while the streamflow data are downloaded from the Bureau of Metrology, Australia (BOM)
website. However, these data sets do not have any missing data; this makes the running
process smooth. The data for rainfall and potential evapotranspiration are available from
the years 1989–2019 while the observed streamflow data is available from 1999–2019. Two-
thirds of the available streamflow data were used for calibration while the last one-third
of the data was used for validation [11]. Figure 3 below depicts the time series data for
the streamflow (from 1999–2019), rainfall and PET (1999–2019). The maximum observed
streamflow during 2013 is 391 ML/d. The maximum rainfall during 2005 is 80.70 mm/d
while the minimum rainfall is 0.10 mm during 1999. The maximum PET during 2013 is
9.40 mm/d while the minimum PET is 0.30 during 1999.

Figure 3. PET, rainfall and observed streamflow time series chart.

2.4. Model Calibration and Validation

One of the advantages of the Source platform is auto-grouping the parameters for
producing Meta parameters, which allows the user to group the parameters. This could
be applied for the whole of the catchment regardless of catchments or functional units;
it enables the running of the calibration stage without difficulty. The calibration is per-
formed via many steps, such as uploading streamflow data, selecting objective functions
and optimisation methods.

The objective function measures the over goodness-of-fit between the simulated flow
and observed flow; thus, it produces the calibration accuracy value of rainfall–runoff
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models. It also interprets the observed and modelled outputs into a single number [11].
For this study, all the available objective functions were used during the calibration process.
They are the Nash–Sutcliffe efficiency (NSE) daily, NSE monthly, NSE monthly and bias
penalty, NSE daily and flow duration, NSE daily and log flow duration, NSE daily and
bias penalty, NSE log daily and NSE log daily bias penalty. The NSE is a model evaluation
coefficient that is widely used in all hydrological (and other) modelling research [28].
The Nash–Sutcliffe efficiency is a normalised calculation that determines the size of residual
variance in relation to observed data variance. It measures how well-simulated data
matches observed data and runs from −∞ +1, with +1 indicating a perfect fit. As a result,
the closer the Nash values are to +1, the better the streamflow prediction and model
performance [38]. According to the research of 63 expert hydrologists, NSE monthly values
of 0.6 or higher are “usually adequate” for monthly runoff simulations; however, another
research by Yu and Zhu [14] adopted an NSE value of 0.7 or greater as acceptable for the
performance of model simulation.

The iterative optimisation search algorithm is used for finding the best parameters val-
ues of the rainfall–runoff model. The Source model provides two methods for optimisation,
which are shuffled complex evolution (SCE) and uniform random sampling. A test analysis
was undertaken for more than 200 catchments in south-east Australia and found that there
is an advantage for using a local optimiser (Rosenbrock) after a global optimiser (SCE) for
adjusting a calibrated parameter [11]. The SCE algorithm is an efficient global optimiser
that tries to search the entire perimeter space and can be slow for large models. The second
algorithm, Rosenbrock, is a gradient-based virtual algorithm; it is a local optimiser and is
quicker [39]. In this study, the SCE following the Rosenbrock optimisation method was
used for the model development. The combination of these two algorithms speeds up the
optimisation processes [40]. The simulation is then used in the final stage by utilising the
best parameter set, which is determined by objective functions.

During the validation process, the calibrated model parameter is used to simulate
runoff for an independent period different from the calibration period. The validation step
confirms the ability of the model to forecast streamflow outside the calibration period [41].
Hence, the Source model uses the calibrated parameters of the rainfall–runoff model for
the validation steps; further observed and modelled flow can be compared. A validation
accuracy value can be observed as well.

3. Model Results

The above said three models, AWBM, GR4J and Sacramento, were calibrated using
Source version 4.7.0 for the Painkalac catchment. The calibration and validation accuracy
results for the three utilised rainfall–runoff models for the Painkalac catchment with
different objective functions are shown in Table 3. The purpose of using all the available
objective functions and all the optimisation methods was: to select the best objective
function and optimisation method for attaining higher calibration and validation accuracy
values for the models; and finally, to estimate a good runoff volume. From Table 3, the NSE
log daily objective function produces the best result (higher NSE) for the selected three
models. It is clear that GR4J is performing better compared to AWBM or Sacramento in both
the calibration and validation periods. The GR4J rainfall–runoff model performed better in
all the statistical parameters. The NSE value was 0.54 for AWBM, 0.65 for Sacramento and
0.74 NSE for the GR4J model. During the validation process, GR4J also performed better in
terms of NSE log daily than AWBM and Sacramento, which was above 0.85. According to
the obtained results, all of the models provide positive results for the Painakalac catchment
in this study. However, it is learned that the GR4J model performs better in terms of
calibration accuracy value and prediction compared to the Sacramento and AWBM models.
Based on this result, the GR4J model was selected to study different scenarios (land-use
change, climate change and combined land-use and climate change impact on streamflow
forecast) using NSE log daily as an objective function.
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Table 3. The comparison of the three models, GR4J, AWBM and Sacramento, for the calibration and
validation accuracy values.

AWBM Rainfall–Runoff
Model

Sacramento Rainfall–Runoff
Model

GR4J Rainfall–Runoff
Model

Objective Functions Calibration
Accuracy

Validation
Accuracy

Calibration
Accuracy

Validation
Accuracy

Calibration
Accuracy

Validation
Accuracy

NSE daily and flow duration 0.50 0.69 0.59 0.72 0.62 0.61

NSE daily and log flow duration 0.51 0.69 0.63 0.66 0.37 0.25

NSE daily 0.21 0.47 0.35 0.52 0.37 0.40

NSE monthly 0.52 0.81 0.62 0.83 0.72 0.79

NSE daily and bias penalty 0.19 N/A 0.33 0.52 0.32 0.39

NSE monthly and bias penalty 0.48 0.79 0.62 0.82 0.69 0.78

NSE log daily 0.56 0.72 0.66 0.79 0.74 0.84

NSE log daily bias penalty 0.50 0.67 0.56 0.72 0.70 0.68

Further comparisons of these models are shown in Table 4, where the GR4J model
again performed better in all the univariate statistics, such as mean and standard deviation.
Since the NSE log daily objective function focuses on the lower flow [42], the standard
deviation and mean values are lower than the observed flow. The statistical characteristics
of the observed and simulated discharges with all three models are summarised in Table 4.

Table 4. Comparison of the three-model performance predicted by univariate statistics.

Objective
Function

Calibration/Validation
Period Attribute AWBM Sacramento GR4J Observed Perfect Model

Situation

NSE log
daily

26 March
1999–30 October 2012

(calibration)

Nash–Sutcliff
efficiency 0.56 0.66 0.74 1

Mean (ML/d) 2.10 2.13 2.12 3.90

Standard
deviation
(ML/d)

7.12 5.91 8.77 17.82

NSE log
daily

Validation period
31 October 2012 to

4 March 2019 (validation)

Nash–Sutcliff
efficiency 0.72 0.79 0.84 1

Mean (ML/d) 3.063 2.98 2.96 5.00

Standard
deviation
(ML/d)

10.081 8.22 10.85 18.94

3.1. Calibration and Validation of Selected Models

The calibrated parameters are produced after the calibration of a model, where the
default parameter values of the rainfall–runoff models are optimised. The calibrated
parameters of each rainfall–runoff model were compared with the default parameters and
discussed in the sections below.

3.1.1. AWBM Model Calibration and Validation

For this model, the calibration period is from 26 March 1999 (the available two-
thirds of the observed data) to 30 October 2012; the objective function used NSE log daily.
The calibrated parameter of the AWBM rainfall–runoff model is shown in Table 5. It can be
seen from Figure 4a that the modelled flow for calibration was estimated as less compared
to the observed flow; the actual observed flow is 19,398 ML while the predicted modelled
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flow is 10,460 ML, which is approximately 46% less than the observed flow. In addition,
the calibration accuracy value is 0.56 (see Table 5). This shows that the quality of the model
is not acceptable while according to hydrologists, an NSE of 0.6 or more provides adequate
model performance [28].

Table 5. Calibrated parameters of the AWBM rainfall–runoff model.

Objective
Function Parameters Default Values Calibrated

Parameters
Parameters

Range

NSE log Daily

A1 0.13 0.11 0–1

A2 0.43 0.20 0–1

KBase 0.95 0.67 0–1

KSurf 0.35 0.98 0–1

BFI 0.35 0.51 0–1

C1 7 49.79 0–50

C2 70 109.22 0–200

C3 70 191,312 0–500

Calibration accuracy 0.56 0–1

Validation accuracy 0.72 0–1 
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The validation period is from 31 October 2012 to 4 March 2019. It can be seen from
Figure 4b that the validation accuracy value is 0.72 and the predicted modelled flow is
around 38.8% less than the observed flow; this shows that the AWBM model estimated an
acceptable flow for the validation period.

3.1.2. Sacramento Model Calibration and Validation

The calibration period for the Sacramento model is similar to the AWBM model,
which is from 26 March 1999 to 30 October 2012. The model produced a calibration
accuracy value of 0.66; in addition, the modelled flow underestimated approximately
45.27% less streamflow, which can be seen from Figure 5a. The calibration accuracy
value suggests that the model performance is better compared to the AWBM model [28];
however, for catchment water modelling, the higher and closer the NSE value is to 1,
the better the model performs. The calibrated parameters are shown below in Table 6 below.
The validation period for the Sacramento model is 31 October 2012 to 4 March 2019 (the
remaining one-third of the data). The model estimated the validation accuracy value as
0.79 and the estimated modelled flow as around 40.32% less compared to the observed flow
(see Figure 5b). The NSE value shows that the model is capable of estimating flow outside
the calibration period.

Table 6. Calibrated parameters of the Sacramento rainfall–runoff model.

Objective
Function Parameters Description Default

Values
Calibrated
Parameters

Parameters
Range

NSE log
Daily

LZTWM Lower zone tension water maximum: only
evapotranspiration can remove water form this store. 130 96.38 75–300

LZFSM Lower zone free water supplemental maximum: the largest
volume from which a supplemental base flow can be obtained. 25 119.33 15–300
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Table 6. Cont.

Objective
Function Parameters Description Default

Values
Calibrated
Parameters

Parameters
Range

NSE log
Daily

LZFPM Lower zone free water primary maximum: the maximum
capacity from which a primary base flow can be extracted. 60 600 40–600

LZSK The amount of water in LZFSM that drains as a daily base flow. 0.05 0.03 0.03–0.20

LZPK The amount of water in LZPK that drains as a daily base flow. 0.01 0.01 0.001–0.015

RSERV The percentage of free water in the lower zone that is not
accessible for transpiration. 0.3 0.20 0–0.40

SIDE The ratio of non-channel base flow (deep recharge) to channel
(visible) base flow. 0 0.80 0–0.80

UH1 The first component of the unit hydrograph, i.e., the fraction
of simultaneous runoff that has not been delayed. 1 0.33 0–1

UH2
The second component of the unit hydrograph, i.e.,

the fraction of instantaneous runoff that has slowed down by
one time step.

0 1 0–1

UH3 The third component of the unit hydrograph, i.e., the fraction
of instantaneous runoff that has slowed down by two time steps. 0 1 0–1

UH4
The fourth component of the unit hydrograph, i.e.,

the fraction of instantaneous runoff that has slowed down by
three time steps.

0 0.70 0–1

UH5 The fifth component of the unit hydrograph, i.e., the fraction
of instantaneous runoff that has slowed down by four time steps. 0 0.57 0–1

UZTWM

Upper zone tension water maximum: the maximum volume
of water stored by the top zone between the field capacity and
wilting point that can be lost from the soil surface by direct

evaporation and evapotranspiration. Before any water in the
top zone is moved to other storages, this storage gets filled.

50 51.14 25–125

UZFWM
Upper zone free water maximum: this store serves as both a
source of water for interflow and a driving force for water

transfer to deeper levels.
40 75 10–75

UZK The percentage of water in UZFWM that drains as interflow
on a daily basis. 0.3 0.47 0.2–0.5

ZPERC The maximal percolation rate is defined as a proportional rise
in PBase. 40 300 0–80

REXP An exponent that determines the rate of change in the
percolation rate as lower zone water storage changes. 1 3.09 0–3

PCTIM The portion of the basin that is continuously impermeable
and is adjacent to stream channels, contributing to direct runoff. 0.01 0.01 0–0.05

SARVA
A decimal fraction that represents the portion of the basin

that is generally covered by streams, lakes and vegetation that
can cause evapotranspiration to reduce streamflow.

0 0.02 0–0.10

SSOUT The amount of flow that can be carried by porous material in
the streambed. 0 0.01 0–0.10

ADIMP The portion of the catchment that develops impermeable
qualities as a result of soil saturation. 0 0.20 0–0.20

PFREE
The lowest amount of percolation from the higher to lower

zone that is immediately available for refilling the lower
zone’s free water storage.

0.06 0.39 0–0.50

Calibration accuracy 0.66 0–1

Validation accuracy 0.79 0–1
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3.1.3. GR4J Model Calibration and Validation

Figure 6a compares the modelled vs. observed flow for the calibration of the GR4J
model. The model produced a calibration accuracy value of 0.74 and predicted 45.7% less
flow compared to the observed flow. The NSE value shows the model is very good for
water quantity simulation [28] and this model produced the higher calibration accuracy
value among the other three models; thus, this model is the most suitable model for the
Painkalac catchment. The calibrated parameters of this model are present in Table 7 below.
The validation chart for the GR4J model can be seen in Figure 6b. The produced validation
accuracy value for this model is 0.84 and the model estimated 40.7% less streamflow
compared to the observed flow. The NSE value indicates the model has the best capability
to predict streamflow outside the calibration period. Therefore, this model is selected as
the most suitable model for the Painkalac catchment for the analysis of further scenarios.

Table 7. Calibrated parameters of the GR4J rainfall–runoff model.

Objective Function Parameters Default Values Calibrated Parameters Parameters Range

NSE log Daily

X1

More information
on these

parameters can be
found in Table 1.

350 233.03 1–1500

X2 0 −4.15 −10–5

X3 40 19.14 1–500

X4 0.5 1.72 0.50–4

K 0.95 0.95 0–1

C 0.15 0.15 0–1

Calibration accuracy 0.74 0–1

Validation accuracy 0.84 0–1

The GR4J rainfall–runoff model produced the highest calibration and validation accu-
racy values of the three models; therefore, the GR4J rainfall–runoff model was selected for
catchment streamflow assessment under various scenarios. However, none of the models
performed well under peak streamflow values.

3.2. GR4J Model Application under Different Scenarios

The GR4J rainfall–runoff model was used for analysing different scenario impacts.
The following scenarios were developed for hydrologic modelling:

(A) Land use change in the case study catchment from forest land to agricultural land use.
(B) Climate change impacts.
(C) Combined land use and climate change impacts.

The modelled flow for these scenarios will help the water management authority to
take informed decisions for the better operation and management of the catchment when
there is land use or climate change or both occur simultaneously.

3.2.1. Land Use Change Impact

Painkalac catchment is located within the Corangamite region, where more than 70%
of the land is used for agriculture; this is considered the third-largest source of income
after industry and tourism in this region [18]. Therefore, 50% of the functional units of the
two sub-catchments within the Painkalac catchment were converted from forest land to
agricultural land in order to observe the impacts of land-use change on the selected model.
After model simulation, the land-use change (addition of agricultural land) resulted in
42.26% less water compared to the observed flow (Table 8).
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Figure 5. (a) Sacramento model calibration; (b) Sacramento model validation.
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Figure 6. (a) GR4J model calibration; (b) GR4J model validation.
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Table 8. Before and after the land-use change water quantity data.

Observed and Modelled
Flow Period Observed Flow ML Modelled Flow (Original) ML Modelled Flow Land-Use Change

(Addition of Agriculture) ML

2012–2019 11,595 6874 6694

40.71% 42.26%

Agricultural land, shrub land and grassland areas are prone to a combination of
decreasing rainfall and increasing temperature and solar radiation; this results in drier
conditions, less runoff and ultimately produces less runoff from the catchment while
forested areas are strong under those conditions [43].

The parameters of the rainfall–runoff models before and after the land-use change
are shown in Table 9. The rainfall–runoff model parameters, the maximum capacity of
the production store (X1) and the ground store exchange coefficient (X2), were reduced
because the capacity of holding water in the production store decreased. This was due to
exposure to a higher temperature and solar radiation happening in this store as compared
to forest land; however, the reduced X2 shows more water is stored to aquifer due to a
higher negative value [30]. The value of the X3 parameter shows that a higher amount of
water is stored into soil voids. Finally, the X4 parameter is slightly high due to more water
being available in this process as compared to forest land, and due to slightly more time to
convert from rainfall to runoff.

Table 9. The parameters of the rainfall–runoff models before and after land-use change.

Objective
Function Parameters Modelled

(Original)
Modelled (Addition

of Agriculture)
Parameters

Range

NSE Log Daily

X1

More information
on these

parameters can be
found in Table 1.

160.67 157.05 1–1500

X2 −3.70 −4.01 −10–5

X3 20.16 20.99 1–500

X4 1.39 1.39 0.5–4

K 0.95 0.95 0–1

C 0.15 0.15 0–1

Model accuracy value 0.84 0.84 0–1

Furthermore, the Painkalac catchment is relatively small (36 Km2) and only two sub-
catchments are exposed to 50% (6.61 Km2 + 5.13 Km2 =11.75 Km2) land-use change; thus,
there was not much flow change between the modelled flow under the existing conditions
and the modelled flow after the land-use change. The land-use change impacted about
1.54% less flow compared to the modelled flow under the existing conditions (Table 8).

3.2.2. Higher Climate Change Scenario

Victoria’s climate is considered to change in the future due to climate change; this could
impact Victoria’s water resources, which are mostly dependent on the climate. Climate
change could reduce water availability in the future due to drought, which can cause
a problem in the planning, operation and management of water resources. Therefore,
the need for a short-term water quantity forecasting model is important for better daily and
monthly water resources management. However, this model is also capable of forecasting
streamflow for any period of time in the future as long as sufficient data are available.
According to the global climate model projections data developed by the DELWP climate
change guidelines, there will be a change in temperature, potential evapotranspiration
(PET) and rainfall for the years 2040 and 2065. The temperature is expected to increase by
2.5 ◦C in the Painkalac catchment, which, in turn, would increase the PET by 9.5%; rainfall
is expected to decrease by 19% in the year 2065 [4].
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For higher climate change scenarios, the model was calibrated to analyse the impact
of climate change against the existing conditions. The calibrated parameter is shown in
Table 10 below. After the model simulation, the impact of climate change on streamflow can
be seen below in Table 11; as expected, there will be approximately 45.68% less streamflow
by 2065 due to the higher climate impact.

Table 10. The parameters of the rainfall–runoff models before and after climate change.

Objective Function Parameters Modelled (Original) Modelled (Addition
of Agriculture) Parameters Range

NSE Log Daily

X1 160.67 135.81 1–1500

X2 −3.70 −0.52 −10–5

X3 20.16 9.26 1–500

X4 1.39 1.16 0.5–4

K 0.95 0.95 0–1

C 0.15 0.15 0–1

Model accuracy value 0.84 0.81 0–1

Table 11. Before and after climate change water quantity result.

Observed data period 2012–2019 Percentage % difference in the observed
and modelled flow

Observed flow 11,595 ML

Modelled flow existing condition 6874 ML Decreased 40.71

Modelled flow for higher climate change 6298 ML Decreased 45.67

3.2.3. Combined Land-Use and Higher Climate Change Scenario

In this scenario, the GR4J model was subjected to a combined land use and higher
climate change scenario in order to evaluate the impact on streamflow. The calibrated
parameters of this model are shown in Table 12. The impact on streamflow due to the
combined land use and higher climate change scenario is shown in Table 13. It is expected
that there will be approximately 48.06% less streamflow compared to the observed flow by
2065 due to combined land use and a higher climate change effect.

Table 12. The parameters of the rainfall–runoff models before and after combined land use and
climate change.

Objective Function Parameters Modelled Parameters
(Original)

Modelled Parameters
(Combined Land Use
and Climate Change)

Parameters Range

NSE Log Daily

X1 160.67 151.29 1–1500

X2 −3.70 −0.45 −10–5

X3 20.16 8.62 1–500

X4 1.39 1.37 0.5–4

K 0.95 0.95 0–1

C 0.15 0.15 0–1

Model accuracy value 0.84 0.81 0–1
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Table 13. Streamflow before and after the combined land-use and climate change result.

Observed data period 2012–2019 Percentage % difference in the observed
and modelled flow

Observed flow 11,595 ML

Modelled flow existing condition 6874 ML Decreased 40.71

Modelled flow for land use and higher climate change 6022 ML Decreased 48.06

4. Conclusions

For the Painkalac catchment, three different rainfall–runoff models, such as GR4J,
Sacramento and AWBM, were evaluated in terms of model performance. All three models
were calibrated and validated with the eight objective functions available in order to select
the most suitable model with the help of higher calibration and validation accuracy values.
It was found that the GR4J rainfall–runoff model with the NSE log daily objective function
produced the highest calibration value of 0.74 and validation accuracy value of 0.84.

The GR4J model was used as a baseline model; then, the impact of different scenarios,
such as climate change, land-use change and combined land-use and climate change
scenarios, were evaluated for streamflow. The climate change for the year 2065 will result
in approximately 45.678% less streamflow in the reservoir and the land-use change alone
would result in approximately 42.26% less flow; the combined land use and climate change
would result in 48.06% less flow compared to the observed flow. The developed model
can be used for short-term forecasting for up to three months by using the predicted PET
and rainfall data obtained from the BOM website; this can enhance the daily operation and
management of the Painkalac Creek catchment. However, to further improve the model
accuracy value, manual calibration and sensitivity analysis is recommended.

It is recommended that water professionals should investigate the suitability of the
rainfall–runoff models using the developed methodology for a particular catchment consid-
ering the characteristics of the catchment and available streamflow data. The investigation
can be extended to the wider rainfall–runoff models available using the proposed methodology.
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