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Abstract: In this study, we examined the fate and future of sewage irrigation fields; historic urban
wetlands that served as sewer drainage before modern sewage treatment plants were built. Our
aim in this study was to reappraise sewage irrigation fields in the urban fabric of modern cities and
to analyse the possibility of re-integrating them into the ecosystem services system, as well as into
green and blue infrastructure, providing leisure and recreational opportunities, stabilising the city’s
biodiversity and microclimate, and increasing water retention in these areas. The research was based
on the identification of the location of sewage irrigation fields in green and blue infrastructure systems,
determination of the scale and extent of their connections to the urban fabric and an analysis of their
multi-functionality including: ecological, climatic, hydrological, landscape, spatial, environmental,
cultural and social, educational, and tourist and recreational functions.

Keywords: green and blue infrastructure; relict landscapes; wetland restoration; urban ecosystem
services

1. Introduction

Globalisation and climate change are reflected in problems related to the transfor-
mation of the urban fabric and the quality of life of city dwellers. Urban development is
largely based on economic stimuli, which entail spatial, environmental, and demographic
transformations. Progressive change within the urban fabric includes changes in the vision
for cities and the paradigms for cities of the future. In the 21st century, the looks of cities
of many high- and medium-income countries are changing quite dynamically, moving
from grey, concreted surfaces to green, functional areas, and the urban fabric is increasingly
multi-functional, socially friendly, and ecologically sustainable [1,2]. It seems that bio-
management, taking into account the multi-faceted design of contemporary green spaces,
is a route to genuinely sustainable urban communities. This large transformation allows
for and is supported by the application of new solutions regarding city management and
the creation of new types of ecosystem services [1,3–5].

The reconstruction of the urban fabric toward green sustainable urban systems is
carried out with varying results and at varying speeds, depending on the awareness of
designers and financial resources. So far, the problem of modern cities has involved the
massive taking over of areas for development, which were previously the green lungs of
the city. Precious wet landscapes are disappearing from urban spaces at an alarming rate;
thus, relict landscapes are disappearing and natural resources are significantly depleted.

In this way, for decades, ecological corridors have been destroyed on a micro scale,
e.g., a street quarter or a district, as well as on a macro scale, where new planned cities
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have emerged. Green spaces in the city were fragmented and did not achieve the required
stability, which has had and still has an impact on the quality of the entire urban ecosystem.
Another major problem is the lack of large, open, biologically active spaces that support
the city’s venting system and indirectly prevent the formation of oppressive urban heat
islands [6,7]. Relict landscapes, which constitute a reservoir of natural landscape elements of
the city, have also been lost in this system. Such areas include, among others, undervalued
areas of sewage irrigation fields, which are now rare in the spatial arrangement of the urban
fabric and, in the past, were an important link in the infrastructure responsible for sewage
treatment in the city, and were thus an important element in the chain of ecosystem services.
Currently, these areas are being successively developed and rebuilt. Residential buildings
are introduced here and roads are concreted, which automatically reduces the acreage of
green areas and affects the degradation of the urban fabric in terms of nature. Over the years,
sewage irrigation fields have been hailed as a miracle of technology, and, in recent decades,
they have aroused considerable controversy regarding sanitation and the level of safety
for the population. However, they were areas with a very large biologically active area,
which supported biodiversity: they were oases for the existence of birds and many other
organisms, and reservoirs of green, undeveloped large-scale space supporting the city’s
ventilation. In the face of changes in the spatial structure of cities and the entry into the era
of green renewal of urban fabric, these areas may be an excellent ecological complement in
the sustainable development of cities. A return to forgotten old ecosystem services would
strengthen their ecological potential [8–12]. Pursuant to Directive 2000/60/EC [13], it is
important to take all measures to protect water, in terms of both quality and quantity. Such
activities include the optimisation of irrigation management in sewage irrigation fields and
the creation of retention systems, including landscape retention.

2. Materials and Methods
2.1. Motivation

Our aim in this study was to reassess the location of sewage irrigation fields in the
urban fabric of modern cities and their green-blue infrastructure system, emphasising the
possibility of intensive or extensive reuse and the protection of relict landscapes. Areas
of sewage irrigation fields are inherent in wetlands, and the disappearance of these areas
introduces a kind of disharmony, which as a function of time leads to irreversible processes
of the loss of these areas and transformation of the natural environment in quantitative
and qualitative senses (functional, material, visual, social, educational, etc.). An important
aspect of the analyses was to present an alternative interface to sewage irrigation fields in
the urban fabric of modern cities and to reintegrate them into a new package supporting
ecosystem services and as an integral element of green and blue infrastructure. This state
of affairs is reflected in real support for the city’s natural system and the stabilisation of
biodiversity and microclimate by increasing water retention in these areas. An important
element of this study was an analysis of the need to strengthen the continuity of biologically
active functional areas in the urban fabric from an interdisciplinary and multidimensional
perspective. This theoretical research was based on the identification of the location
of sewage irrigation fields in green and blue infrastructure systems, determination of
their scale and extent of their connections to the urban landscape, and an analysis of
multi-functionality in urban areas. The article presents the main problems related to
their use in urban areas as a function of time and an analysis of their needs and the
possibility of intensive or extensive reintegration into the urban infrastructure. In our
analysis, we took into account the literature on the subject related to the problem of their
use in urbanised areas. This review and analysis of the current research perspective on
sewage irrigation fields mainly focused on the impact of this method of land use in historical
and contemporary terms and its impact on the urban fabric due to the functions performed:
ecological, climatic, hydrological, landscape, spatial, environmental, cultural and social,
educational, and tourist and recreational. This analysis was a synthesis of literature review
and our own know-how, covering several scientific disciplines, including environmental
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protection, planning and spatial management, geology, hydrogeology, environmental
engineering, and architecture and construction. Previous studies have mainly concerned
the economic benefits of sewage irrigation fields, but also their impact on the quality of
the environment, including human health and the pollution of soil and water [13–44]. The
restoration of relict landscapes associated with wetlands is an added value.

To conduct this study, a library investigation of the resources of the databases of
international journals was carried out. The databases Web of Science, Scopus, and others
were analysed using criteria that allowed the assumption of data filtering in order to obtain
a package of articles to be analysed in terms of content. The articles were selected using the
following screening criteria:

1. The article should contain information on ecosystem services based on the creation or
restoration of wetlands.

2. The article should provide information on how sewage irrigation fields are created;
the history of their creation; and economic, social, ecological, cultural, environmental,
climatic, landscape, spatial, ecological, educational, and tourist and recreational aspects.

3. The article should refer to the determination of the location of sewage irrigation fields
in a system of green and blue infrastructure and their importance in the urban fabric.

4. The article should contain information on examples of the use of sewage irrigation fields
in areas of various world cities and their impact on the environment and landscape.

5. Analyses and studies on green and blue infrastructure in the urban fabric.

A total of 275 articles were found that were cross-analysed to exclude repetition,
and 131 basic articles were obtained for further analysis of the topic. On the basis of the
performed analyses and know-how, we constructed hypothetical assumptions leading to
the reintroduction of sewage irrigation fields and their likely impact on the environment,
landscape, and ecosystem services.

2.2. Sewage Irrigation Fields in Cities—History and Significance

Problems with wastewater treatment in the urban fabric have accompanied hu-
mankind for millennia. In ancient Babylon, humans used a system of specialised brick-lined
wells to filter faeces. In Mohenjo-Daro 3000–2000 BC (on the present territory of Pakistan),
special rooms were located in homes (toilets), and the sewage was discharged into rivers
through special gutters. In ancient Greece, archaeologists found many drainage systems,
namely pipe systems, in Crete. However, in ancient Rome, the first sewage system was built,
the operation of which was based on the system known to us and used until today. The
Cloaca Maxima sewage system was constructed in approximately 735 BC [45]. Wastewater
was processed and used for various purposes. In the Middle Ages, e.g., in Paris, sewage
was discharged from a special sewage system into the moats.

Sludge was used for fertilisation of farmland, and the water was used to water the
gardens. Historical materials regarding the deliberate use of wastewater for irrigation of
crops combined with conscious disposal of wastewater date back to the 16th century from
Bolesławiec [46]. During the Renaissance and Baroque periods, the sanitary conditions
in cities and the way in which sewage was removed were disastrous, both for people
and the environment. Sewage was directly poured into rivers, which caused not only
environmental pollution but also various epidemics. The industrial revolution, initiated
in England and Scotland in the 18th century, brought with it the need for changes in the
city’s water and sewage system due to the large migration of people to cities where they
could find jobs. Workers’ districts rapidly developed in cities, which, to a large extent,
generated sanitary problems. The solution was to transform how sewage was disposed;
instead of gutters, closed channels appeared, into which domestic and industrial sewage
was introduced [47].

The industrial revolution in the nineteenth century brought the intensive development
of plumbing and sanitary engineering. Starting in England, the “Sanitary Idea” laid the
foundation for the development of public health and resulted in the implementation of
sanitary rules in cities [48]. The problem, however, was the methods of sewage disposal
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and storage. The solution was sewage irrigation fields, where sewage was distributed on
special plots, and the principle of operation was based on a natural system that occurs in
the soil environment with the use of microorganisms and appropriately selected vegetation.
Therefore, they were the first soil and root treatment plants of their kind [46,49]. The first
sewage irrigation fields in the urban fabric were established in England, but the practice
was soon adopted across Europe, e.g., in Hamburg (1868), Gdańsk (1871), Berlin (1878),
Wrocław (1881), Legnica (1895), and Królewiec in 1898. In France, the first treatment plant
of this type was established in 1872 and collected wastewater from the whole of Paris and
its environs [50,51]. During this period, sewage irrigation fields played a sanitary role,
and the role of supporting green infrastructure was not appreciated. From the design
and technical points of view, these areas were not associated with the need for natural
ventilation in the city. This kind of ecosystem service naturally appeared. However, the
development and expansion of sewage irrigation fields stopped at the turn of the 19th
and 20th centuries, when new technologies of sewage treatment started to be used in
artificial conditions, which had many advantages, especially those related to odours, as
well as occupying less urban space [52–54]. There were doubts related to faecal bacteria,
but the research of many scientists has shown that they are not a problem with the proper
loading of sewage irrigation fields [52,55–60]. However, not all types of wastewater can be
treated in the fields, especially those with a large amount of mercury and cadmium [52].
Due to the fact that a large amount of biomass is produced in these areas, it is possible to
accumulate and bind metals and other pollutants here [32,61–64]. As indicated in their
publications, inter alia, Chakrabarti [65] and Paliwal, Karunaichamy, Ananthalli [66], due
to the high content of nitrogen, phosphorus, and potassium (NPK), irrigation with sewage
has a very good effect on plant yield. It is also worth adding here that sewage irrigation
fields needed soils to properly function, and by pouring sewage onto the plots, the humus
layer significantly increases [67,68], and organic carbon content increases [69].

Sewage irrigation fields were gravity-fed and therefore naturally located downstream
from city centres. In most cases, they were located close to the edge of the city. Due to
urbanisation and the growth of cities, after some time, these wetlands became surrounded
by urban development. Over time, these areas slowly were replaced to modern types of
sewage treatment plants. Like other wetlands, they were often drained, landfilled, and
built on, and thus disappeared from the city’s landscape [70–73]. Currently, the surviving
sewage irrigation fields are a kind of relict landscape, supporting green infrastructure and
increasing the biodiversity of the area (Figure 1).
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Figure 1. Irrigation fields Wrocław, Poland, present condition. (A) Plant communities with Carex
Buekii Wimm, (B,C) remains of the hydrotechnical infrastructure (D,F) reed rush, and (E) willow
bushes (photos: A. Krzemińska and A. Zaręba).

3. Results
3.1. Location of Sewage Irrigation Fields in Blue-Green Infrastructure Systems

The rapid development of cities introduced gradual changes to the urban fabric,
having a direct or indirect impact on the city biome. Wet and green areas gradually
began to disappear from the landscape. Interestingly, it was urbanisation that was one
of the reasons for introducing sewage irrigation fields and adapting these areas to the
urban fabric, and it was through urbanisation that these areas were lost in exchange for
commercial housing and road infrastructure [52,74–79]. For many years, sewage irrigation
fields fulfilled important roles for the city’s ecosystem. The first of these was wastewater
treatment, while the remainder, which were underestimated over the years, were primarily
supporting green and blue infrastructure networks, creating natural biocentres (areas with
the highest biodiversity) and supporting ecological corridors and a significant share in the
city’s ventilation [80–84]. By weaving the elements of green and blue infrastructure into the
urban fabric, a specific patchwork structure is created, characterised by varying degrees of
stability and durability of the city’s natural system [85,86]. The quality and durability of this
structure depend on the variety of components within the green infrastructure and whether
there are appropriate supporting elements in this system. Thus, it is a complex system,
subject to many synergistic dependencies (Figure 2). Therefore, we here understand green
infrastructure as a purposefully and strategically planned area cross-linked with natural
and semi-natural areas, together with technical devices that provide many ecosystem
services in urbanised areas. Individual elements are selected in the system of a given area
due to the purpose they serve, as well as local conditions and the spatial and environmental
policy of the city [77–79,87–96]. The functions that green infrastructure performs in the
urban fabric are above all structural, environmental, social, economic, production, and
technical. Blue infrastructure is understood as water management in urban areas through
capturing, retaining, and using rainwater to improve the habitat conditions of urban green
areas [76,77,97–99]. Moreover, this network should be included in the functional and
spatial structure of all urbanised areas. The quality of ecological corridors, islands, and
natural biocentres, and thus biodiversity and genetic drift, which determine the stability
of the city’s biome, depend on a coherent, well-designed, and self-regulating green-blue
infrastructure [100]. The composition of green and blue infrastructure allows the urban
fabric to comprehensively operate as part of ecosystem services, which significantly support
a city’s natural system [101–107].
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Figure 2. The place of sewage irrigation fields in blue-green infrastructure in the urban fabric (own
elaboration).

These areas may constitute a kind of “safety valve” in urban areas, supporting pre-
ventive and remedial actions related to counteracting climate change as well as the “over-
heating” and “airing” of cities. Wetlands are one of the most endangered ecosystems
on a global scale, and in the urban fabric, they can be treated as relict [107–109]. The In-
tergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services [110]
estimated that as much as 85% of wetlands worldwide are at risk of complete degradation
and disappearance, and approximately 90% of the already lost wetlands are located in
Europe [108,109,111–113]. The situation is even worse in cities, where wet areas (natural
and anthropogenic, including, for example, infiltration fields) have been systematically
destroyed for decades, and they are not only a component of the city’s natural system,
but also an important link in landscape retention supporting blue infrastructure and the
habitats for many organisms, including birds, the existence of which is supported by the
Ramsar Convention [109].

3.2. The Multifunctionality of Sewage Irrigation Fields in an Urban System

The ecological solutions used in the new, green methods of designing cities will
determine the quality of space and the comfort of life of their inhabitants in the future.
Moving away from solutions that only promote the profit of developers and the transition
to an ecological system of evaluating urban space seem to be the correct and only solution.
Large- and micro-scale sewage irrigation fields disappearing from the city landscape
should return to the city and fit into the pattern of biorevitalisation of the urban fabric
due to the package of services and functions they perform, including: ecological, climatic,
hydrological, landscape, spatial, environmental, cultural and social, educational, and
tourist and recreational (Figure 3). The most extensive of these areas provide ecological,
hydrological, and climatic functions, where their complexity is clearly visible [113–117].
Social interest and the need for environmental responsibility require the use of models based
on the best ecological practices and proper environmental management of these areas in
the urban fabric by including them in an open system of blue and green infrastructure, thus
creating good solutions for the city, which is reflected in the spatial functions and landscape
provided by sewage irrigation fields. Another important function is the economic function,
which determines the profitability of investments and provides the possibility of balancing
costs. The world’s drinking water resources are declining, and there is great pressure to
reuse treated water. It is already predicted that in the coming decades, over 100 countries
will face water shortages [74,118]. Hence, irrigation field systems are primarily appreciated
in arid regions and areas with little water. Sewage irrigation has significantly inhibited
of destruction processes in food production related to water shortages. Sewage irrigation
fields are mainly used by agriculture and are located outside cities. One example is northern
Mexico, especially the state of Sonora [119,120], and part of Israel, Australia, India, China,
Japan, and Singapore [74].
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However, sewage irrigation fields are unappreciated from the point of view of their
human ancillary nature. The removal of open and wet green areas from urban spaces has
become the norm, which has contributed to reducing the direct contact of city dwellers
with nature. This situation is also reflected in the increases in the general level of stress,
depression, heart disease, cardiovascular disease, or even diabetes in people living in the
urban fabric, which cause a de facto reduction in the standard of living [121,122]. Sewage
irrigation fields can also be an important place to help children and youth in environmental
education. They can also play important tourist and recreational functions, especially after
the reclamation and revitalisation of the area.

The multi-functionality of sewage irrigation fields in the urban fabric is based on a
patchwork system, where functions support one another to finally create a common element
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supporting the city’s natural system, contributing to varying degrees to the construction of
the city’s ecological system (Figure 3).

4. Discussion

Sewage irrigation fields have spatial and ecological potential in the urban fabric
by supporting the processes of building and maintaining a good-quality environment.
They have also aroused much controversy in connection with the irrigation of domestic
sewage, nuisance related to odours, heavy metal pollution, parasites, etc. They have many
disadvantages, but even more advantages that interact in both synergistic and antagonistic
ways (Figure 4). Therefore, it is most advisable to use sewage irrigation fields in cities, where
rainwater with a low pollutant load and no hydrogen can be treated. A natural method
of wastewater treatment, where no chemicals are used and that supports agricultural
cultivation, would be an ecological alternative to the chemical methods so widely used
now [123]. The use of wastewater for irrigation of crops can, in many cases, solve a number
of problems, including those related to the supply of plants with the necessary organic
substances and nutrients in available forms, as well as the utilisation of waste disposal,
which protects the environment against pollution [124–131].
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5. Conclusions

Sewage irrigation fields have been a great technological achievement in the field
of wastewater treatment, while their participation in supporting the natural potential
of the city, inter alia due to the area it occupies, is a completely underestimated aspect.
Therefore, these areas can be classified as urban wetlands that are built landscapes based on
ecosystems that maintain the high ecological quality of the area. They strengthen the urban
ecological potential by increasing the acreage of biologically active areas, supporting the
city’s water footprint, and may also eliminate discontinuities of green areas in urbanised
areas. Through their micro-regulatory impact on the city’s climate and the ecosystems
of wetlands, sewage irrigation fields favour biodiversity, especially the development of
habitats for birds. They can also play a big role in many aspects of society, from education
to tourism and recreation. Re-weaving them into the urban fabric and treating rainwater
and wastewater from grey infrastructure (roads, paved areas, and buildings) would not
only strengthen green and blue infrastructure, but would also be a response to the need
for urban bio-revitalisation and the transition to closed-loop environmental management
systems, which would have a positive impact on the development of bio-management in
urban space.

In connection with the crisis of global water shortages, one of the most important
activities in planning the urban fabric should be the introduction of areas with high retention
potential, preferably large ones, which, at the same time, support the landscape, and such
conditions are met by sewage irrigation fields, which in the future and, in accordance with
the spirit of ecology, can experience their repeated, new resurgence in use, provided that
irrigation is well-managed and environmental risks are minimised.
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