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Abstract: Drinking water quality monitoring in real time is of utmost importance to ensure public
health. Although water utilities, following the related legislative framework, monitor drinking
water quality through samplings, the likelihood of detecting contaminants in consumers’ taps is
low, depending on the scale of the monitoring programme. Additionally, even if the monitoring
frequency is high, there is a time delay since sampling and analysis processes take some time. The
selection of suitable locations for the installation of online water quality sensors is a hard task for a
water utility due to the complexity of the water distribution system, the limitations of certain network
junctions which are not easily accessible, and the computational burden involved. This topic has
been extensively studied in recent years and sophisticated methods have been developed using
optimization techniques. However, small water utilities do not have the means to implement such
tools. This paper applies a methodology to identify the suitable junctions for the installation of online
water quality sensors based on different objectives and under demand-driven conditions. This paper
utilizes the hydraulic simulation model of a standard network to set up the water quality simulation
model. A thorough analysis of various contamination scenarios takes place with different injection
nodes and at different starting injection times for 24 h. The latter relates to the contaminant’s spread
due to varying water demand. After a thorough analysis of 816 scenarios, a prioritized list of the
most suitable nodes for the installation of the sensors is available for each optimization objective.
Comparing the prioritized list of nodes achieved from each single or multi-objective function, the
detection probability is almost the same. The analysis revealed that, due to varying water demand
conditions, the ranking of the proposed nodes suitable for the installation of water quality monitoring
sensors differs. Thus, varying hourly water demand should be part of analyses seeking to get
reliable results.

Keywords: drinking water quality; online sensors; water quality simulation model; water demand

1. Introduction

Drinking water distribution networks are complex infrastructure systems with high
vulnerability to contamination events since contamination can happen at any time and at
any point within the network [1]. Although most of the water supply system is buried,
there are some vulnerable parts of it, such as manholes, customer connections, etc. Also,
water supply vulnerability has to do with natural causes such as contamination due to
flooding at the water abstraction area, growth of micro-organisms at the walls of pipes,
etc. Moreover, the big variety of contaminants having different characteristics makes the
detection of any contamination event extremely difficult. The common way to detect a
contamination event is to use water quality monitoring to safeguard the consumers’ health,
to assess water quality and comply with the legislation. The water utilities are obliged,
based on legislation, to monitor water quality characteristics at the consumers’ taps and
in some other cases at the water abstraction points or the treatment plants or both at the
consumer and the treatment plant. The European Union’s legislative framework requires
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the monitoring of several physical, chemical, microbiological and radiological parameters
and determines the samplings’ frequency based on the water volume consumed and the
number of people supplied with water. Although the legislation strictly sets the necessary
provisions to ensure drinking water safety, this is not always achieved due to the time
needed for water sampling and analysis even if the monitoring network is well-established
and the monitoring frequency is high. This means that, using conventional drinking water
quality monitoring (using samplings and analyses at the laboratory), the detection of any
contamination event will happen after a few hours or even days. It is obvious that this
means that consumers are exposed to contamination. To overcome this obstacle, water
utilities apply online water monitoring techniques. However, it is not possible to monitor
each junction in the water supply system due to the high capital and operational costs of
such a network of sensors. This is why it is important to identify the most strategic and
suitable junctions for sensors’ placement in order to monitor water quality as effectively as
possible and at the same time detect the contamination as early as possible, minimizing all
potential consequences, such as those on consumers’ health.

This subject has been studied and analysed thoroughly by many researchers in the
past, especially after the terrorist attacks of 11th of September 2001. The methods used
for the identification of suitable sensor locations are based on expert opinion, the use of
classification methods, and the use of optimization methods [2]. Expert opinion is very
important for the design of an effective network of water quality monitoring sensors,
but it can be affected by the expert’s level of expertise, knowledge, and their judgment.
Berry et al. [3] and Trachtman [4] evaluated cases where expert opinion was used for the
site selection for monitoring stations. Experts used information and classification methods
to rank possible locations by rating each potential location based on various factors, such
as its proximity to critical installations. Using this methodology provided a prioritized
list of potential locations. At the same time, the integration of a geographic information
system and the network quality simulation model ensures adequate coverage of the water
supply network [5–7]. The most advanced methods are the optimization ones that use a
computational model to estimate the performance of a sensors’ network. For example, a
model can calculate the expected impact of a set of contamination events, given that the
sensors are placed at strategic locations. Current methods use hydraulic simulation and
water quality simulation software.

In the literature there are many research papers addressing the problem of sensor
placement in drinking water supply networks in recent years. There are studies assuming
a fixed or a variable number of sensors [8]. Other studies [9–12] assume a single-objective
optimization methods in order to minimize the total cost. The single-objective methods try
to minimize the total contaminated water volume consumed [13,14], to minimize the con-
tamination detection time [15], to maximize the coverage and detection probability [11], or
to minimize the population exposed to contaminants [3]. The aim of the studies of [13,15,16]
was to determine the minimum number of stations required to ensure the total coverage
of the water distribution system, assuming a variable number of sensors. Ghimire and
Barkdoll [6] and Rathi and Gupta [8] proposed heuristic methods to simplify the optimiza-
tion problem. In 2004, Watson et al. [17], used mixed-integer linear programming models
for sensor placement in drinking water supply systems using several objectives. Based
on two case studies, they showed that optimal solutions derived from a single objective
(e.g., minimization of exposed population) are usually less optimal when using another
optimization objective (e.g., minimization of detection time), which is a limitation of single-
objective methods. Additionally, single objectives can be opposing, such as detection time
and detection likelihood. For this reason, researchers have used multi-objective optimiza-
tion methods. In the context of optimization, the “battle of the network of water sensors”
took place where fifteen different approaches were compared [18]. Some researchers used
multi-objective approaches where the objective functions remained distinct, and the results
are expressed in the form of a Pareto curve [19–27]. Other studies used a single objective
function to group distinct objectives and then optimization of the single objective function
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took place [28–33]. The objective most preferred is detection time as it leads to the early de-
tection of contamination events. When a multi-objective function is used, the detection time
is complemented by one or two complementary objectives that quantify the impact of the
contamination event, such as the probability of detection or coverage [34]. Ostfeld et al. [18]
compared solutions derived from different algorithms for four objectives: (a) detection
time, (b) exposed population, (c) volume of contaminated water, and (d) probability of
detection. The results from the different algorithms provide a different set of nodes for the
placement of the sensors [8,18]. Other objectives include sensor response time, number of
failed detections, probability of failed detection and sensor detection redundancy [35].

Another aspect in the context of optimizing the sensors’ placement is the hydraulic
conditions in the distribution network [33]. There are studies assuming a constant average
daily nodal demand [3,9,16,17,36] while other studies assumed that the nodal demand
varies with time [12,37,38] and in some cases is stochastic [39].

Rathi and Gupta [8], Rathi et al. [40] and Adedoja et al. [35] published reviews of
the methods used to optimize the placement of water quality monitoring sensors. The
algorithms used in the case of multiple criteria are genetic algorithms [21,32,41,42], in-
cluding the NSGA-II algorithm [24,25,33,43,44] and NSGA-III algorithm [34] and heuris-
tic algorithms [20,45,46]. The literature review revealed that genetic algorithms and in
particular NSGA-II are the most preferred algorithms for multi-objective optimization
problems. Recent studies have combined multi-criteria approaches with other techniques.
Cardoso et al. [27] addressed the sensors’ placement problem using a multi-objective ap-
proach combined with post-processing methods and genetic algorithms. Brentan et al. [47]
combined NSGA-II algorithm for the optimization problem, and the ELECTRE TRI (ELimi-
nation Et Choix Traduisant la REalite) method to cluster the optimal solutions. Other studies
examined specific contaminants such as organophosphates [48] to predict the number of
affected consumers. The study of Zhang et al. [49] used an evolutionary algorithm-based
method to investigate the resilience of the sensors’ placement strategy due to sensors’ fail-
ures. The problem of imperfect sensors has been also addressed [50–53]. The computational
requirements of using genetic algorithms increases with the size of the network and the
number of contamination scenarios considered, which limits their application to large
network problems. Heuristic algorithms have other limitations as they may not offer the
optimal solution [8]. Although the research work already done in the field of optimization
algorithms can solve large-scale problems, water utilities, which are the end-users, find
them difficult to implement due to the sophisticated algorithms used and the computational
burden involved. In addition, Giudicianni et al. [26] have reported the problem of a lack of
hydraulic data for some water utilities resulting in the formation of hydraulic simulation
models which are not well established and calibrated. On the other hand, Ciaponi et al. [54]
proposed a management strategy that takes into consideration water network partitioning
and the formation of district metered areas to be used to decide the placement of sensors.
This management strategy reduces the computation burden and offers cost benefits. An im-
portant aspect is that the operators in small water utilities are not experienced or educated
enough to use such advanced tools for everyday operations.

The present study aims to apply a simple methodology in a small water supply
network based on the objectives already used, taking into consideration water demand
variability to prioritize the nodes that are more suitable for sensors’ placement. In this
context a single objective and a multi-objective function that groups two objectives are both
proposed and used in the analysis.

2. Materials and Methods

The present paper presents a methodology based on the optimization objectives
approach and can be easily used by the operators of small water utilities. Initially, the
contamination scenarios are set inserting a predefined contaminant’s concentration at a
specific junction, for a given time period. Then, using a water quality simulation model
(with time step up to 15 min) and assuming the time for contamination detection after the
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initial injection, the calculation of the concentrations of the contaminant at all nodes in the
water distribution network (WDN) takes place. The analysis of various objectives leads to
a prioritized list of the nodes to locate the sensors. The expected contaminated population,
Pa, is calculated as follows [18,55]:

Pa =
m

∑
i=1

RiPi (1)

where Pi is the population supplied with water from the node i; m is the total nodes’ number;
Ri is the probability [0,1] that a person that consumed a mass of the contaminant would
be infected or symptomatic. The objective function O1 shows the expected population
contaminated before the contamination detection [18,55]:

O1 = E(Pa) (2)

where E (·) is the expected value estimated by Monte Carlo simulation.
Another optimization objective is the expected water volume consumed before the

contamination detection, O2 [18,55,56]:

O2 = E(Vd) (3)

Vd =
N

∑
k=1

m

∑
i=1

δk,iqk,i∆tk (4)

δk,i =

{
0, Ck,i < DL
1, Ck,i ≥ DL

(5)

where Vd is the total water demand with a contaminant concentration higher than a
determined value; N is the number of the calculation time steps between the starting time
(that is the contaminant’s injection time) and the time when the contaminant has been
removed from the WDN at the contamination scenario s; m is the number of the water
demand nodes in the network; qk,i is the water demand at node i at the time step k; ∆tk is
the k-th time step; δk,i is a variable taking into consideration the contamination status at
the node i during the time step k; DL is the death concentration limit for the contaminant;
and Ck,i is the contaminant’s concentration at the node i during the time step k.

The reliability of detection optimization objective O3 is the detection probability,
calculated using [18,55]:

O3 =
1
S

S

∑
j=1

dj (6)

where dj gets the value 1 if the contamination scenario j is detected and 0 if it is not detected
and S is the total number of the contamination scenarios analysed. The aim is to minimize
the optimization objectives O1 and O2 and maximize the optimization objective O3.

Trying to estimate the population infected in a simple way, a fixed water consumption
rate per consumer is used. Thus, assuming that the consumption of any contaminated
water volume causes health problems, the population infected is calculated dividing
the contaminated water volume with the fixed water consumption per consumer. The
assumption that consumers consume only the amount of water for a specific time period
and then they stop consuming still stands. In this case, minimizing the objectives O1 and
O2 provides the same nodes for the location of the sensors. However, the level of the
contaminant mass ingested by the consumer is crucial for the impacts to the consumers’
health. Therefore, the present study proposes a new objective, the contaminant mass
ingested at a specific node, O4:

O4 = E(M) (7)
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M =
m

∑
i=1

Mi (8)

Mi =
N

∑
k=1

cikρik (9)

ρik =
qik
qi

(10)

where Mi is the contaminant mass consumed by the consumers at node i (mg); m is the
total number of the nodes; cik is the concentration of the contaminant in node i at time step
k (mg/L); N is the number of time steps before the detection; ρik is the multiplier of the
dose rate in node i at time step k; qi is the average water demand at the node i; and qik is
the water demand at the node i. The contaminant mass Mi consumed before the detection
by a consumer in a network’s node, for a specific contamination scenario, is calculated
based on [18,55]. The aim is to minimize the objective O4.

Water is not only used for drinking purposes, but we assume that all the contaminant
mass consumed affects the consumers [57]. It is known that contaminants can also enter
the organism by respiration and dermal routes. Still, there are water uses that do not
affect consumers, such as clothes washing, etc. We assume the worst-case scenario, that all
contaminant mass affects the population. In the case of intermittent water supply, the water
networks suffer from water quality problems due to the non-continuous water supply.
Also, there is an increase of consumer complaints in these cases. The contaminant mass
is also used in the TEVA-SPOT toolkit [3,58] taking into consideration the water volume
ingested or inhaled by a consumer.

As already discussed, the single objective approach does not provide the optimum
solution, because applying another objective derives to another optimum solution. As the
problem of sensors’ placement is a multi-objective one, the use of a single multi-objective
function that groups several single objectives is preferred. Aral et al. [55] suggested a
multi-objective function combining four single objectives: the detection time, the popu-
lation exposed, the water volume contaminated and the detection probability. Wu and
Walski [32] have suggested another multi-objective function grouping the four objectives
mentioned before. Since the population exposed to the contaminant is related to the water
volume contaminated, the authors proposed a new multi-objective function O, grouping
the objectives O2 (contaminated water volume) and O3 (detection probability). Since these
objectives contradict (minimization of O2 and maximization of O3), the multi-objective
function O can be calculated as follows:

Oi = (1 − O3i)
O2i

∑m
i=1 O2i

(11)

This multi-objective function is based on the work done by Kanakoudis and Tolikas [59] and
Kanakoudis [60]. The aim is to reduce the people affected by the contaminant, minimizing
the contaminated water volume. Higher detection reliability is necessary in order for the
sensors network to be effective.

3. Case Study
3.1. Description of the Case Study

The WDN from WaterGEMS lesson “Water Quality” was used for the application of
the methodology described (WaterGEMs is a hydraulic simulation software from Bentley
Systems, Incorporated, Exton, PA, USA and has been extensively used [61]). The network is
a typical one, supplied with water from two reservoirs, R-1 and R-3. The network consists
of two water tanks, one pump near reservoir R-3, 50 pipes of total length 11,269 m and
32 nodes. The pipes’ material is cast iron (40.15%) and ductile iron (59.85%) and their
diameters range from 101.6 mm to 337.26 mm. Representing the hydraulic behaviour of
the network, daily water demand (domestic and commercial) varies over 24 h. The water
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demand over 24 h fluctuates from 5.05 to 10.54 m3/h and the average daily water demand
is 191.23 m3/day.

3.2. The Methodology Applied—Assumptions

The methodology is based on various assumptions. The first assumption refers to the
use of “perfect sensors”, as they accurately and continuously measure any concentration
of the contaminant at a node. The contaminant concentration, injected one node at a time,
is 10 mg/L and the injection duration is 3 h. The time until the first detection is 3 h,
meaning that after this time period there is no consumption of contaminated water due
to water supply interruption. The time of 3 h was selected in order to incorporate the
time to detection minimization objective. The contaminant is injected at the 32 nodes of
the network and at the two reservoirs, for a total of 34 nodes. Thus, the present study
analyses 34 contamination scenarios, for a specific starting injection time. The present study
does not consider multiple injections over space or time at the beginning. Then, multiple
injection times are considered and examined. The contaminant is assumed conservative,
not reacting with water or the pipes’ walls and is modelled in WaterGEMS. The molecular
diffusivity coefficient is set to 1.208 × 10−9 m2/sec, as proposed by the software guidelines.
To estimate the population affected at each node, the fixed water consumption is assumed
as 200 L per consumer per day. Since the contaminant is considered dangerous for public
health at any concentration, water is infected when the contaminant’s concentration is
greater than zero at any node.

The aim of the present study is to get a prioritized list of nodes for the placement of
water quality sensors, minimizing health impacts and maximizing the detection reliability
(probability of detection). Thus, the methodology applied consists of the setup of contami-
nation scenarios. Initially the contaminant is injected at a specific concentration at one node
at a time for a given stable starting time (the same for all scenarios). The period from the
injection time to the time the contaminant was detected is assumed to be 3 h. In general,
the contaminant is not detected right away and even if this happens, it takes time to apply
emergency response measures (e.g., water interruption). Real cases show that this time
period is sometimes long. This assumption is used to incorporate the time to detection
objective (which should be minimized). Based on this assumption, water quality simulation
takes place using WaterGEMS for each contamination scenario separately. From the simula-
tion, the contaminant’s concentration at each node of the network after 3 h is estimated.
The construction of a binary matrix takes place, where the columns refer to contamination
scenario (the contaminant is injected at each node of the network at the same time). The
rows refer to the nodes of the network that could serve as potential sensor locations. The
jth column lists the concentrations at all nodes due to a specific contamination scenario.
The ith row lists the concentrations of the contaminant of all contaminant scenarios that
can be detected by a sensor located to the specific node i. This matrix provides a stochastic
representation of the consequences of a set of contamination events, imposed at the system
nodes. Based on this matrix and the water demand data for the specific 3 h-period derived
from WaterGEMS, the calculation of the contaminated water volume takes place. Thus,
objective O2 is calculated using the Equations (3)–(5). Objective O1 is calculated assuming
that the water consumption per consumer is a fixed number (200 L per consumer per day).
Equation (6) is used for the calculation of objective O3, and Equations (7)–(10) are used
to calculate objective O4. Finally, the multi-objective O is calculated using Equation (11).
Using the numerical results of the objectives and classifying the nodes starting from the
minimum values of each objective, a prioritized list of nodes is formed for each objective
O1, O2, O4 and O. The same happens when classifying the O3 values starting from the
maximum ones. Then, using the four first nodes of each list, the formation of the final list
took place for each objective.

Since water demand varies over 24 h, it is necessary to apply the same methodology
for different injection starting times. As water demand varies on an hourly basis, the
starting time is set at every hour over the course of a day. Thus, a total of 24 binary matrices
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of the contaminant concentrations at each node are taken, for 34 contamination scenarios
each. Each matrix represents the same starting injection time, from 0 h up to 23 h, at time
steps of 1 h. Thus, 816 scenarios are formed (34 contamination scenarios for 24 h). Using
this methodology, the present paper analyses how the spread of the contaminant to the
network’s nodes affects the selection of the nodes for sensor placement. The equations
described above are used for the calculation of all objectives. The application of the
methodology resulted in a list where each node takes a value for each of the objectives O1,
O2, O4 and O. The aim is to minimize or maximize the objective’s values to get the optimum
solution. Thus, a list of the nodes with the lowest or highest values for each objective is
formed. In order to form a prioritized list of the nodes that have the highest frequency of
appearance for each injection time (0 to 23 h), we assume that we can use the four nodes
with the lowest or the highest value for each objective. Although this is an assumption, it
seems, from the results obtained, that the prioritized list of nodes convincingly represents
the nodes that optimize the objective function. When two or more nodes have the same
frequency of appearance, they are ranked based on their position, i.e., the first node is the
one ranked in higher positions. Finally, assuming that the sensors are placed at the specific
nodes, the calculation of the probability of detection takes place. For the analysis below,
only the objectives O2, O4 and O are used, as the population affected (O1) is based on the
water volume contaminated (objective O2), giving the same results.

4. Results and Discussion
4.1. Contaminant Injected at Time t = 0

The application of the methodology resulted in a matrix showing the contaminant’s
concentrations at each node for each contamination scenario when the injection started
at 0 h (Table 1). The ranking of the objectives’ values from the lowest to the highest (for
the objectives O1, O2, O4 and O) provided a prioritized list of the suitable nodes for water
quality sensors’ placement. The same happened for the objective O3 but the ranking was
done from the highest to the lowest value. The four nodes with lowest values for the
objectives O1, O2 and O are J-32, J-22, J-23 and J-16 (Figure 1a and Table 2), respectively.
As expected, the same nodes have the lowest values for both objectives O1 and O2, as
the population exposed to contamination (objective O1) derived from the water volume
contaminated (objective O2). As the four nodes with the lowest O and O2 values are the
same, the use of the objective O3 for the estimation of the multi-objective O does not affect
the classification of the nodes. The nodes with the highest values of the objective O3 are
J-11, J-29, J-2 and J-28 (Figure 1b and Table 2). The nodes with the lowest values for the
objective O4 are J-22, J-32, J-23 and J-25 (Figure 1c and Table 2). Only the last node is
different compared with the nodes derived from objective O2.
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Table 1. Contaminant concentrations (mg/L) at each node for all contamination scenarios at injection time 0.

Contamination Scenarios

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Nodes J-1 J-2 J-3 J-4 J-5 J-6 J-7 J-8 J-9 J-10 J-11 J-12 J-13 J-14 J-15 J-16 J-17 J-18 J-19 J-20 J-21 J-22 J-23 J-24 J-25 J-26 J-27 J-28 J-29 J-30 J-31 J-32 R-1 R-3

J-1 10 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-2 0 10 0 0 0 0 0 0 0 0 0 0 0 0.1 2.1 0 0 0 0 0 0 0 0 0 0 0 0 0 1.7 0 7.9 7.9 0 0
J-3 2.4 0 10 0 0 0 0 0 0 0 0 0 0 0 0 7.6 7.1 0 0 0 0 0 0 0 0 2.9 0 0 0 0 0 0 0 0
J-4 0 0 0 10 0 0 0 0 0 4.3 10 0 0 0 0 0 0 0 0 0 0 2.4 3.3 0 0 0 0 0 0 0 0 0 0 0
J-5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
J-6 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
J-7 0 0 0 0 10 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-8 0 0 3 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0
J-9 4.9 0 4.1 0 0 0 0 0 10 0 0 0 0 0 0 3.5 0 0 0 0 0 0 0 0 0 6.9 0 0 0 0 0 0 0 0
J-10 0 0 2.3 0 0 0 0 0 0 10 0 0 0 0 0 9.2 7.6 0 0 0 0 0 0 0 0 0.7 0 0 0 0 0 0 0 0
J-11 0 0 1 0 0 0 0 0 0 4.2 10 0 0 0 0 3.2 0 0 0 3.3 2.4 2.4 3.3 0 0 0 0 0 0 0 0 0 0 0
J-12 10 0 0 0 0 0 10 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-13 5.6 0 0 0 0 0 0 0 0 0 0 5.6 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4.4 0 4.4 0 0
J-14 10 0 0 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-15 0.7 0 0 0 0 0 0 0 0 0 0 0 0 1.7 10 0 0 0 0 0 0 0 0 0 0 0 2.2 6 8.3 0 0 0 0 0
J-16 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-17 0 0 0 0 0 0 0 0 0 0 0 5.6 10 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 4.4 0 0 0 0
J-18 0 0 0 8.6 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-19 0 0 0 10 0 0 0 0 0 0 10 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
J-20 0 0 6.8 0 0 0 0 0 0 0 0 0 0 0 0 4.8 0 0 0 10 0 0 0 3.2 3.2 2 0 0 0 0 0 0 0 0
J-21 0 0 2.4 0 0 0 0 0 0 10 0 0 0 0 0 7.5 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0
J-22 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0
J-23 0 0 6.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 10 3.1 0 0 0 0 0 0 0 0 0 0
J-24 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0 0 0 0 0 0 0 0
J-25 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 7.1 0 0 0 0 0 0 0 0 10 2.9 0 0 0 0 0 0 0 0
J-26 8 0 0 0 0 0 8 0 0 0 0 0 0 0 0 2.0 2.0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0
J-27 10 0 0 0 0 0 0 0 0 0 0 7.4 0 2.6 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0
J-28 1.2 0 0 0 0 0 0 0 0 0 0 1.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 6.7 2.1 8 0 0
J-29 0 0 0 0 0 0 0 0 0 0 0 2.9 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 2.2 7.8 10 5.2 0.4 0 0 0
J-30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0
J-31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 10 0 0
J-32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0
R-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
R-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
T-1 0 0 0 0 0 0 0 0.7 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
T-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.3 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



Water 2022, 14, 2504 9 of 19

Water 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

Table 2. The four nodes with the lowest values for objectives Ο1, Ο2, Ο4 and Ο and the highest values 

for objective Ο3. 

Objective Node ID Value Node ID Value Node ID Value Node ID Value 

Ο1 (people) J-32 17 J-22 20 J-23 22 J-16 29 

Ο2 (m3) J-32 3.3 J-22 3.9 J-23 4.4 J-16 5.7 

Ο3 (%) J-11 23.53 J-29 20.59 J-2 17.65 J-28 17.65 

Ο4 (g) J-22 22.2 J-32 28.6 J-23 31.1 J-25 46.3 

Ο J-32 0.014 J-22 0.016 J-23 0.017 J-16 0.023 

 

 
 

(a) (b) 

 
(c) 

Figure 1. The nodes (marked as red) with: (a) the lowest values for objectives Ο1, Ο2 and Ο; (b) the 

highest values for the objective Ο3; and (c) the lowest values for the objective Ο4. 

4.2. Contaminant Injected at Every One Hour for 24 h 

As water demand varies over the day, the contaminant spreads in a different way 

within the network. The variation of the demand results in different scenarios for the con-

taminant injection time. Twenty-four different scenarios were set up and applied to all 

contamination scenarios (totally 816 scenarios). For every objective, the four nodes are 

identified with the lowest (or highest) values for each injection time. The application of 

the methodology already described results in a matrix composed of the nodes (Table 3). 

The columns list the 4 nodes for each injection time, from 0 to 23 h. 
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Figure 1. The nodes (marked as red) with: (a) the lowest values for objectives O1, O2 and O; (b) the
highest values for the objective O3; and (c) the lowest values for the objective O4.

Table 2. The four nodes with the lowest values for objectives O1, O2, O4 and O and the highest values
for objective O3.

Objective Node ID Value Node ID Value Node ID Value Node ID Value

O1 (people) J-32 17 J-22 20 J-23 22 J-16 29
O2 (m3) J-32 3.3 J-22 3.9 J-23 4.4 J-16 5.7
O3 (%) J-11 23.53 J-29 20.59 J-2 17.65 J-28 17.65
O4 (g) J-22 22.2 J-32 28.6 J-23 31.1 J-25 46.3

O J-32 0.014 J-22 0.016 J-23 0.017 J-16 0.023

4.2. Contaminant Injected at Every One Hour for 24 h

As water demand varies over the day, the contaminant spreads in a different way
within the network. The variation of the demand results in different scenarios for the
contaminant injection time. Twenty-four different scenarios were set up and applied to
all contamination scenarios (totally 816 scenarios). For every objective, the four nodes are
identified with the lowest (or highest) values for each injection time. The application of the
methodology already described results in a matrix composed of the nodes (Table 3). The
columns list the 4 nodes for each injection time, from 0 to 23 h.
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Table 3. The four nodes with the lowest values for O1, O2, O4 and O and the highest values for O3, for all injection times (from 0 h to 23 h).

Criterion
Injection Time (Hours)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

O1

J-32 J-32 R-3 J-32 J-22 J-22 J-22 J-22 J-32 J-32 J-32 J-32 J-32 J-32 J-1 J-22 J-22 J-22 J-22 J-22 J-32 R-3 J-32 J-32
J-22 J-30 J-32 J-22 J-23 J-23 J-23 J-16 J-22 J-22 J-22 J-22 J-30 J-22 J-22 J-23 J-23 J-23 J-23 J-23 J-30 J-32 R3 J-30
J-23 J-31 J-31 J-1 J-17 J-17 J-17 J-23 J-30 J-30 J-30 J-30 J-31 J-23 J-23 J-17 J-32 J-32 J-17 J-17 J-31 J-30 J-30 J-31
J-16 R-3 J-1 J-23 J-29 J-29 J-29 J-17 J-31 J-23 J-31 J-23 J-22 J-1 J-9 J-1 J-17 J-30 J-29 J-29 J-1 J-31 J-31 R-3

O2

J-32 J-32 R-3 J-32 J-22 J-22 J-22 J-22 J-32 J-32 J-32 J-32 J-32 J-32 J-1 J-22 J-22 J-22 J-22 J-22 J-32 R-3 J-32 J-32
J-22 J-30 J-32 J-22 J-23 J-23 J-23 J-16 J-22 J-22 J-22 J-22 J-30 J-22 J-22 J-23 J-23 J-23 J-23 J-23 J-30 J-32 R3 J-30
J-23 J-31 J-31 J-1 J-17 J-17 J-17 J-23 J-30 J-30 J-30 J-30 J-31 J-23 J-23 J-17 J-32 J-32 J-17 J-17 J-31 J-30 J-30 J-31
J-16 R-3 J-1 J-23 J-29 J-29 J-29 J-17 J-31 J-23 J-31 J-23 J-22 J-1 J-9 J-1 J-17 J-30 J-29 J-29 J-1 J-31 J-31 R-3

O4

J-22 J-32 J-32 J-23 J-22 J-22 J-22 J-22 J-22 J-22 J-22 J-22 J-32 J-32 J-23 J-22 J-22 J-22 J-22 J-22 J-22 J-32 J-32 J-32
J-32 J-30 R-3 J-22 J-23 J-23 J-23 J-32 J-32 J-32 J-32 J-32 J-30 J-23 J-22 J-23 J-23 J-23 J-23 J-23 J-23 R-3 J-23 J-22
J-23 J-31 J-23 J-32 J-29 J-29 J-29 J-23 J-31 J-23 J-23 J-23 J-31 J-22 J-9 J-25 J-29 J-29 J-29 J-29 J-29 J-22 R-3 J-30
J-25 J-23 J-31 J-9 J-25 J-25 J-25 J-30 J-30 J-31 J-30 J-30 J-29 J-31 J-32 J-29 J-25 J-32 J-32 J-32 J-32 J-23 J-30 J-31

O3

J-11 J-11 J-11 J-11 J-10 J-10 J-10 J-11 J-11 J-11 J-11 J-11 J-11 J-11 J-11 J-10 J-10 J-10 J-10 J-10 J-11 J-11 J-11 J-11
J-29 J-4 J-10 J-10 J-11 J-11 J-11 J-29 J-29 J-29 J-29 J-13 J-4 J-10 J-10 J-11 J-11 J-11 J-11 J-11 J-10 J-4 J-4 J-29
J-2 J-2 J-4 J-4 J-2 J-2 J-2 J-28 J-2 J-2 J-2 J-12 J-27 J-4 J-4 J-20 J-2 J-2 J-2 J-2 J-2 J-2 J-10 J-4
J-28 J-23 J-28 J-2 J-3 J-3 J-3 J-23 J-28 J-20 J-12 J-2 J-3 J-3 J-3 J-3 J-3 J-3 J-3 J-3 J-3 J-23 J-2 J-2

O

J-32 J-32 R-3 J-32 J-22 J-22 J-22 J-22 J-32 J-32 J-32 J-32 J-32 J-32 J-23 J-22 J-22 J-22 J-22 J-22 J-32 R-3 J-32 J-32
J-22 J-30 J-32 J-23 J-23 J-23 J-23 J-16 J-22 J-22 J-22 J-22 J-30 J-23 J-22 J-23 J-23 J-23 J-23 J-23 J-30 J-32 R-3 J-30
J-23 J-31 J-31 J-22 J-17 J-17 J-17 J-23 J-30 J-23 J-30 J-23 J-31 J-22 J-1 J-17 J-32 J-32 J-17 J-17 J-31 J-31 J-30 J-31
J-16 J-23 J-23 J-1 J-29 J-29 J-29 J-17 J-31 J-30 J-23 J-30 J-22 J-4 J-9 J-1 J-17 J-30 J-29 J-29 J-1 J-30 J-31 R-3
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The nodes with the lowest O2 values for all injection time scenarios ranked as described
are J-22, J-32, J-23, J-30, J-31, J-17, J-1, R-3, J-29, J-16 and J-9 (Table 3 and Figure 2). Then, the
estimation of the detection probability took place. Initially one sensor was placed at the first
node (J-22) and the detection probability ranged from 5.88% to 17.65% depending on the
injection time. By adding another sensor at the second node (J-23) the detection probability
ranged from 8.82% to 29.41%. Following the same process eleven sensors were placed at the
nodes indicated above, and the detection probability ranges from 64.71% to 79.41% (with
an average value of 71.81%) (Figure 3). Figure 3 shows the detection probabilities when
each node was added at the monitoring network (MN) (Table 4). The detection probability
per MN achieved a maximum and minimum value depending on the injection time within
the 24-h day. Figure 3 also shows the average detection probability for the 24 h.

Table 4. The monitoring networks and the selected nodes for sensor placement for each monitoring
network for three cases based on different objectives: O2, O4 and O.

Monitoring Network (MN) Selected Nodes for Sensor Placement

Analysis Based on O2 Analysis Based on O4 Analysis Based on O

MN1 J-22 J-23 J-22
MN2 J-22, J-32 J-23, J-22 J-22, J-32
MN3 J-22, J-32, J-23 J-23, J-22, J-32 J-22, J-32, J-23
MN4 J-22, J-32, J-23, J-30 J-23, J-22, J-32, J-29 J-22, J-32, J-23, J-30
MN5 J-22, J-32, J-23, J-30, J-31 J-23, J-22, J-32, J-29, J-30 J-22, J-32, J-23, J-30, J-31
MN6 J-22, J-32, J-23, J-30, J-31, J-17 J-23, J-22, J-32, J-29, J-30, J-31 J-22, J-32, J-23, J-30, J-31, J-17

MN7 J-22, J-32, J-23, J-30, J-31,
J-17, J-1

J-23, J-22, J-32, J-29, J-30,
J-31, J-25

J-22, J-32, J-23, J-30, J-31,
J-17, J-29

MN8 J-22, J-32, J-23, J-30, J-31, J-17,
J-1, R-3

J-23, J-22, J-32, J-29, J-30, J-31,
J-25, R-3

J-22, J-32, J-23, J-30, J-31, J-17,
J-29, R-3

MN9 J-22, J-32, J-23, J-30, J-31, J-17,
J-1, R-3, J-29

J-23, J-22, J-32, J-29, J-30, J-31,
J-25, R-3, J-9

J-22, J-32, J-23, J-30, J-31, J-17,
J-29, R-3, J-1

MN10 J-22, J-32, J-23, J-30, J-31, J-17,
J-1, R-3, J-29, J-16

J-22, J-32, J-23, J-30, J-31, J-17,
J-29, R-3, J-1, J-16

MN11 J-22, J-32, J-23, J-30, J-31, J-17,
J-1, R-3, J-29, J-16, J-9

J-22, J-32, J-23, J-30, J-31, J-17,
J-29, R-3, J-1, J-16, J-9

MN12 J-22, J-32, J-23, J-30, J-31, J-17,
J-29, R-3, J-1, J-16, J-9, J-4

The application of the same methodology for the objective O4 leads to a prioritized
list of nodes with a high frequency of appearance when all 816 scenarios are analysed. The
nodes included in the list are J-23, J-22, J-32, J-29, J-30, J-31, J-25, R-3 and J-9 (Table 3). When
only one sensor was place at node J-23, the detection probability ranged from 11.76% to
23.53% (Figure 4). Adding sensors to the nodes one-by-one (forming a different monitoring
network shown in Table 4), the detection probability increased. The detection probability
values ranged from 52.94% to 73.53% (average 64.58%) when nine sensors were placed at
the above-mentioned nodes (Figure 4). Figure 4 shows the detection probabilities when
each node was added at the monitoring network (MN) (Table 4).
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narios for O2.

Water 2022, 14, x FOR PEER REVIEW 13 of 20 
 

 

 

Figure 2. The eleven nodes (marked as red) with the highest frequency of appearance in the 24 sce-

narios for Ο2. 

 

Figure 3. Detection probability minimum, maximum and mean values for monitoring networks 

(consisting of nodes for installation of sensors based on Ο2 objective). 

The application of the same methodology for the objective Ο4 leads to a prioritized 

list of nodes with a high frequency of appearance when all 816 scenarios are analysed. The 

nodes included in the list are J-23, J-22, J-32, J-29, J-30, J-31, J-25, R-3 and J-9 (Table 3). When 

only one sensor was place at node J-23, the detection probability ranged from 11.76% to 

23.53% (Figure 4). Adding sensors to the nodes one-by-one (forming a different monitor-

ing network shown in Table 4), the detection probability increased. The detection proba-

bility values ranged from 52.94% to 73.53% (average 64.58%) when nine sensors were 

placed at the above-mentioned nodes (Figure 4). Figure 4 shows the detection probabili-

ties when each node was added at the monitoring network (MN) (Table 4). 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

MN1 MN2 MN3 MN4 MN5 MN6 MN7 MN8 MN9 MN10 MN11

D
et

ec
ti

o
n

 p
ro

b
ab

ili
ty

 (
%

)

Monitoring networks

Detection probability (min, max and mean value)

Figure 3. Detection probability minimum, maximum and mean values for monitoring networks
(consisting of nodes for installation of sensors based on O2 objective).
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Figure 4. Detection probability minimum, maximum and mean values for monitoring networks
(consisting of nodes for installation of sensors based on O4 objective).

The application of the objective O for all scenarios leads to the list of the nodes with a
high frequency of appearance for the lowest O values for the 24 scenarios. These nodes
are J-22, J-32, J-23, J-30, J-31, J-17, J-29, R-3, J-1, J-16, J-9 and J-4 (Table 3). The detection
probability was estimated by setting one sensor at node J-22 and adding sensors one-by-one
to each node forming a different monitoring network (Table 4). If only one sensor was
placed in node J-22, the detection probability ranged from 5.88% to 17.65% depending on
the injection time (Figure 5). When twelve sensors were placed at the nodes indicated
above, then the detection probability ranged from 70.59% to 91.18% (with an average value
of 78.92%) (Figure 5).
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Figure 5. Detection probability minimum, maximum and mean values for monitoring networks
(consisting of nodes for installation of sensors based on O objective).

4.3. Discussion

Comparing the results from the application of the methodology for the three objectives,
three different scenarios including different nodes for sensor placement are identified. The
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nodes included in the scenarios obtained from the application of the objectives O2 and O
are almost the same. The difference is the ranking order for nodes J-29 and J-1, where node
J-1 is ranked seventh in order with a detection probability ranging from 47.06% to 67.65%
(average 54.78%) when using objective O2, whereas node J-29 is ranked seventh in order
with a lower detection probability ranging from 44.12% to 64.71% (average 53.8%), when
using objective O. Regardless of the objective used (O2 or O) if only eleven sensors are
placed, the detection probability is the same, because the first eleven nodes are the same
for each objective. Another difference is the number of nodes included in the scenario:
twelve nodes using objective O and eleven nodes using objective O2. The additional node
is J-4, achieving a higher mean detection probability of 78.92%. The results from the use of
the objective O4 result in nine nodes. The first node is different compared with the other
two scenarios and node J-25 is included. However, even if only nine nodes are used to
install the sensors, the detection probability values are higher when using the objective O4
(Figure 6).
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Figure 6. Comparing mean detection probability from the objectives O2, O4 and O.

Comparing the number of nodes and the detection probability, when the objective O
is used for twelve nodes the detection probability is higher. Comparing the results when
the objectives O2 and O are used, the detection probabilities are almost the same, except for
the seventh and the eighth node. In conclusion, if the number of nodes cannot be higher
than nine (for example due to cost constraints), then the application of the objective O4
gives higher detection probabilities. If the cost is not the decisive factor and any number of
sensors can be placed, the application of the objective O results in a higher number of total
nodes and consequently higher probability of detection.

Several assumptions are made to estimate the population affected by the contamina-
tion, the water consumed and the contamination mass ingested. This study considered the
worst-case scenario where all water consumed affects the population’s health, even if there
is water use that does not affect people (e.g., clothes’ washing). Also, we assumed that the
contaminant causes health problems to the people upon consumption at its lowest concen-
tration. In reality, the water volume and the contaminant mass consumed gets lower values
due to other water uses. Also, there is a safe concentration of the contaminant that does
not cause any harm. Thus, as the study actually aims at locating the appropriate nodes for
the installation of sensors, it considers the worst-case scenario. A more thorough analysis
should consider different kinds of contaminants such as toxins or microbiological factors.
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The simulation time was assumed to be 3 h from the injection time, starting at a
different time during the day. This assumption was selected to take into consideration the
time to detection objective. Usually, the time to detection and the issuing of appropriate
measures (such as a water supply interruption) is long. To find the appropriate nodes for
the location of the sensors, the authors used two single objectives and one multi-objective
function. Using this simple methodology, a list of nodes with the lowest (or highest
depending on the optimization target of each objective function) objective value is formed.
Then, we formed a list with the nodes having the highest frequency of appearance, based
on the first nodes with the lowest or highest objective values. Although a small number
of nodes with the lowest (or highest value) were selected, we examined a higher number
of nodes that provided the same results. Based on these assumptions, and on this simple
methodology, the water utility operators can take a preliminary list of appropriate nodes
for the location of the sensors. The nodes derived from this methodology can be used to
install portable sensors and then, using the monitoring results and advance algorithms,
arrive at the optimum number and locations for the sensors.

The problem for the selection of the optimal locations for the installation of water
quality sensors has been addressed for many years and many advanced tools have been
developed. However, operators in small water utilities are not keen on using such tools.
Using a simple methodology and given that contamination can happen at any time and at
any place in the network (as contamination also can be accidental), water utility operators
can spot the suitable nodes with an acceptable detection probability. The application of
the proposed methodology can be useful to water operators. The steps they need to take
are to firstly develop a hydraulic model of the WDN that needs to be calibrated and then
to choose the contamination scenarios based on their experience and on the vulnerable
parts of the network. The choice of the single or multi objective function is also important.
Multi-objective functions have proven to be more efficient. The final results of the proposed
methodology will be a list of locations (nodes) where the sensors will be installed. However,
as not all locations are proper (due to difficulties in reaching the specific node) and some of
the locations are more important (for example a node supplying water to the local hospital
or other critical organization), the water operators can select the most important locations.

The novelty of the proposed approach is based mainly on the simple methodology used
which can be applied by the operators in small water utilities who do not have the means
to apply advanced algorithms. The proposed approach requires a well calibrated hydraulic
model of the distribution network and the setup of proper contamination scenarios. Using
the appropriate objectives, and preferably a multi-objective function, provides the water
operators with several locations for the installation of sensors. Water operators will use
their experience at interpreting the results to select the proper locations.

5. Conclusions

The standard water distribution network from the WaterGEMs “Water quality” lesson
was used for the application of a simple methodology for sensor placement. Contamination
scenarios in which the same contaminant concentration was injected at all nodes in the
WDN at different starting times provided a list of nodes with the lowest values for the
objectives population affected (O1), water volume contaminated (O2), contaminant mass
(O4) and the highest values for the probability of detection objective (O3). As the problem of
sensor placement is a multi-objective problem, a multi-objective function O was proposed.
This is based on the water volume contaminated and the detection probability, which are
contradictory objectives. A thorough analysis of 816 scenarios resulted in five scenarios
consisting of nodes for each starting injection time. The five scenarios contain nodes ranked
in order based on lowest values for the objectives O1, O2, O4 and O and highest values for
the O3 objective. Taking into consideration the frequency of appearance of the nodes to the
different scenarios, a final list with prioritized nodes was obtained after the application of
each objective.
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The final obtained lists based on the objectives O2, O4 and O contain almost the same
nodes with small variations in ranking. The list obtained from the application of objective
O4 includes less sensors and gives higher detection probabilities. If cost is not a decisive
factor, then the multi-objective O gives better results, detecting 78.92% of the possible
contamination events on average, using twelve sensors. The analysis undertaken took into
consideration various starting times of injection over the 24-h day, as the hydrodynamic
behaviour of the network affects the contaminant’s spread. The contamination is a random
phenomenon and can happen at any time. Additionally, it is crucial for the water utility to
identify which are the time periods of injection resulting in larger contaminated areas of
the network. This will help the water utility to apply measures during these time periods,
such as more frequent samplings.

As the problem of sensor placement in water distribution networks to monitor water
quality is a difficult task [62,63], this simple methodology can be useful to operators in small
water utilities to identify a preliminary list of junctions to install portable water quality
sensors. In terms of future work, the authors will test this simple methodology followed by
a more thorough analysis using advanced algorithms and tools to be able to provide an
optimal list of locations for sensor placement.
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