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Abstract: Water environment safety is the focus of engineering measures to eliminate liquid digestate
in farmland. It is of great significance to study the aging characteristics of soil absorbing and fate of
liquid digestate ammonium nitrogen (NH4

+-N) to realize safe and efficient disposal. In this paper,
simulation experiments of digesting NH4

+-N (with application of 0, 120, 180, and 300 kg/hm2)
by static soil column are carried out to study disposal efficiency, migration and transformation
characteristics, and fate proportion of NH4

+-N in saturated water content soil. The result showed
that after 3 days of application, the overlying water NH4

+-N concentration decreased by 63.5–80.7%,
and the reduction rate of total NH4

+-N was 65.8–82.3%. After 4 days, the NH4
+-N concentration of

pore water in the 0–10 cm soil layer reached the peak value. After 7 days, the NH4
+-N concentration

adsorbed by the 0–10 cm soil layer reached the peak value. After 15 days, the overlying water NH4
+-

N concentration decreased by 97.0–98.7%, the reduction rate was 97.9–99.2%, and the proportion of
NH4

+-N absorbed in the 0–10 cm soil layer accounted for 63.5–76.3%. The disposal is mainly based
on soil sorption and pore water migration. A duration of 0–3 days is the rapid disposal period, and
15 days is the completion period of safe digestion.

Keywords: waste biomass utilization; liquid digestate; ammonium nitrogen; sorption; migration;
transformation

1. Introduction

To reduce the environmental pollution of the livestock and poultry breeding indus-
try [1], in recent years, the Chinese government has continued to strengthen the construc-
tion of biogas projects in livestock and poultry farms, and has continuously promoted
the transformation and upgrading of rural biogas projects in combination with the green
development of agriculture and the action of replacing chemical fertilizers with organic fer-
tilizers [2–4], using the anaerobic fermentation process to dispose of aquaculture excrement,
in order to realize the harmless treatment and resource reuse of aquaculture manure [5,6].
By the end of the year 2020, 128,976 small and medium-sized biogas projects and 10,122
large-scale biogas projects have been built nationwide [7]. Liquid digestate is a by-product
of biogas engineering, accounting for more than 90% of the total fermentation residue [8].
According to estimates, China produces 1.12 billion tons of liquid digestate annually [7].
Due to the large amount of liquid digestate produced, high storage and transportation
costs, difficult treatment to meet standards, and low commercialization value, there are
serious secondary pollution environmental risks [9]. The treatment and utilization of liquid
digestate have become the focus and difficulty of domestic and foreign research [10–15].
The use of farmland soil, crops, and microorganisms living in the soil to absorb liquid
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digestate is a widely recognized green treatment method [16,17], but the amount of farm-
land consumption cannot exceed the limit of land carrying capacity [18]; otherwise, it will
cause serious pollution to the surrounding soil and water bodies [19,20]. High ammonia
nitrogen (NH4

+-N) concentration in liquid digestate components is the primary risk factor
for environmental pollution [16,21,22]. Therefore, it is of great significance to study the
aging characteristics of farmland soil to absorb liquid digestate and the fate of NH4

+-N to
realize safe and efficient disposal of liquid digestate in farmland.

According to the soil nitrogen transport theory [23,24], after the liquid digestate is
applied to the farmland, NH4

+-N in the unsaturated water content soil completes vertical
and horizontal transport with water in convection mode, while the saturated water content
soil completes migration from the high-concentration area to the low-concentration area
by diffusion infiltration. During the migration process, NH4

+-N will be rapidly adsorbed
and gradually nitrified into nitrate nitrogen (NO3

−-N) [25]. When local surface runoff is
generated, NH4

+-N and NO3
−-N not adsorbed by soil particles will be lost and leached

with water at the same time, thus polluting the surrounding water sources [26–28]. Liquid
digestate contains relatively more available nitrogen. Therefore, it has been proposed that
liquid digestate application will lead to more nitrogen leaching loss than manure applica-
tion. However, after a two-and-a-half-year corn field experiment, there was no significant
difference in nitrogen leaching amount between digestate application and manure and
chemical fertilizer application [29]. When liquid digestate is applied by spraying and
deepening in the slack season in autumn, there is no risk of NH4

+-N and NO3
−-N leaching.

However, when liquid digestate is applied by injection, there is still a potential risk of
NH4

+-N leaching even when the nitrogen dosage of liquid digestate is 90 kg/(hm2·d) [30].
The study on disposal of liquid digestate in paddy fields shows that the concentration of
NH4

+-N in field surface water decreases rapidly 1–4 days after application [16,31]. After
8 days of application, the NH4

+-N concentration in field surface water can basically reach
the level of the blank control field. The concentration of NH4

+-N in groundwater is always
lower than that of chemical fertilizer treatment, and does not increase with the increase in
liquid digestate application amount [32]; meanwhile, the content of NO3

−-N in field sur-
face water and groundwater will not increase significantly [33]. The increase in ammonia
volatilization is considered to be the main negative impact of liquid digestate application
on the farmland environment [31,34,35]. After liquid digestate application, the ammonia
volatilization is higher than that of the total chemical fertilizer treatment. With the increase
in liquid digestate dosage, the ammonia volatilization is increased, and the soil wetting or
flooding conditions can reduce the ammonia volatilization [36–38].

The above studies monitored and qualitatively analyzed the changes of nitrogen
concentration in farmland water after liquid digestate was applied, but there was a lack of
quantitative research on the reduction process of liquid digestate NH4

+-N. It is a new way to
treat liquid digestate by using farmland with saturated water content for disposal, which is
different from the fertilizer utilization of liquid digestate. When taking measures to absorb
liquid digestate in farmland with saturated water content, farmers are more concerned
about the main destination of NH4

+-N after liquid digestate is applied in farmland and
the time required for the discharge of field water quality up to standard. In this paper,
the simulation experiment of indoor static soil column is used to study the time-effect
of absorbing NH4

+-N from liquid digestate in saturated water content soil, analyze the
migration and transformation characteristics and fate ratio of NH4

+-N from liquid digestate,
and discuss the time required for the discharge of field surface water quality to meet
the standard, so as to provide theoretical basis and technical guidance for the efficient
elimination of liquid digestate in farmland under the safety of water environment.

2. Materials and Methods
2.1. Materials

The tested liquid digestate was taken from Jiangsu Yangyu Ecological Agriculture
Co., Ltd. (Taizhou, China), which produces around 120,000 commercial pigs annually, and
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was recognized by the Ministry of Agriculture and Rural Affairs as a “pig standardization
demonstration farm”, a provincial key leading enterprise of agricultural industrialization in
Jiangsu Province, and a comprehensive demonstration base of ecological circular agriculture
of Jiangsu Academy of Agricultural Sciences (Nanjing, China). The liquid digestate was
generated from liquid manure and sewage through primary anaerobic fermentation in
biogas engineering with a continuous stirred-tank reactor (CSTR) and a secondary anaerobic
fermentation using a covered lagoon storage process (Figure 1). Once taken back to the
laboratory, the liquid digestate was stored in sealed plastic barrels and was mixed well.
The solid and insoluble matter were filtered out of digestate through a 0.25-mm mesh
screen and were not used for the experiment. The average properties of liquid digestate
measured before this test are: pH value 8.05 ± 0.06, total nitrogen (TN) 461.63 ± 5.39 mg/L,
NH4

+-N 409.12 ± 6.75 mg/L, NO3
−-N 31.56 ± 0.08 mg/L, total phosphorus (TP) 17.72

± 0.14 mg/L, total potassium (TK) 279 ± 2.74 mg/L, chemical oxygen demand (COD)
470.11 ± 7.85 mg/L, electrical conductivity (EC) 3.81 ± 0.01 mS/cm, and total solid (TS)
1.63 ± 0.01 g/L.
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Figure 1. Biogas engineering and liquid digestate storage facilities in pig farms.

The experimental soil was collected from the Xinbei District of Changzhou City in the
Yangtze River Basin of China. It was 0–20 cm topsoil of permanent basic farmland, and its
texture was silty loam. The soil was dried naturally, while stones, plant roots, and other
sundries found in the soil were removed. The soil was then crushed with a round wooden
stick, sieved through a 2 mm aperture mesh screen, and finally fully mixed into a clean
plastic storage box for future use. The basic physical and chemical properties of the soil are:
soil organic matter (SOM) 29.09 ± 0.39 g/kg, pH value 6.45 ± 0.04, TN 1.16 ± 0.17 g/kg,
NH4

+-N 8.93 ± 0.57 mg/kg, NO3
−-N 56.97 ± 0.43 mg/kg, TP 0.57 ± 0.02 g/kg, available

phosphorus (AP) 13.10 ± 1.47 mg/kg, available potassium (AK) 122.91 ± 13.21 mg/kg,
cation exchange capacity (CEC) 16.27 ± 0.49 cmol/kg, and EC 492.67 ± 19.14 µS/cm. The
soil particle group is composed of 30.5% particles with a particle size of 2–0.05 mm, 52.9%
particles with a particle size of 0.05–0.002 mm, and 16.5% particles with a particle size less
than 0.002 mm.
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2.2. Static Soil Column Fabrication

An indoor static soil column was used to simulate the experiment (Figure 2). The
manufacturing method for the soil column is as follows: firstly, a flat-bottom glass tube with
an inner diameter of 6.0 cm and a height of 30.0 cm is customized, and the cross-sectional
surface area of the test tube is 28.26 cm2. Use a 1% electronic balance to accurately weigh
600 g of the prepared soil into a flat-bottomed tube, shake the tube to make the soil solid
(the soil depth is about 20 cm), and then add 369.9 mL of deionized water (the data is the
sum of the saturated water content and pore water content of the soil used in the actual
test) so that the water content of the soil column reaches the maximum saturated state, and
stand for use after standing overnight.
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2.3. Design and Setting

There are 5 treatments in the experiment as follows:
Treatment 1©: Apply chemical fertilizer NH4

+-N 120 kg/hm2. The amount refers to
the customary nitrogen fertilizer amount of farmers in the rice panicle fertilizer stage of
saturated water content paddy fields, which is recorded as: CFN1. Weigh the analytical
pure reagent NH4Cl and add it into deionized water, then prepare 409 mg/L NH4

+-N
solution with the same concentration as the liquid digestate. Measure 82.9 mL of solution,
and add it to the soil column surface.

Treatment 2©: Apply liquid digestate NH4
+-N 120 kg/hm2, which is 1 times the

amount of chemical fertilizer NH4
+-N in Treatment 1©, denoted as: BSN1. Measure 82.9 mL

of liquid digestate, and add it to the surface of the soil column.
Treatment 3©: Apply liquid digestate NH4

+-N 180 kg/hm2, which is 1.5 times the
amount of chemical fertilizer NH4

+-N in Treatment 1©, referring to the accustomed nitrogen
fertilizer dosage of farmers in the rice base-tiller fertilizer period of saturated water content
paddy fields, denoted as: BSN1.5. Measure 124.4 mL of liquid digestate, and add it to the
surface of the soil column.

Treatment 4©: Apply liquid digestate NH4
+-N 300 kg/hm2, which is 2.5 times the

amount of chemical fertilizer NH4
+-N in Treatment 1©, with reference to the total nitrogen

fertilizer dosage used by farmers in the rice season in paddy fields with saturated water
content, recorded as: BSN2.5. Measure 207.3 mL of liquid digestate, and add it to the
surface of the soil column.

Treatment 5©: No fertilization control, keep the same amount of water as Treatment 1©,
denoted as: CK. Measure 82.9 mL of deionized water, and add it to the soil column surface.
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Thirty replicates were set up for each treatment, for a total of 150 soil pillars. Take
destructive sampling, take 3 repeated soil columns each time, and discard the soil columns
after the measurement.

2.4. Sampling and Analysis

At 0, 1, 2, 3, 4, 5, 7, 9, 12, and 15 days after the application of liquid digestate, the
overlying water was taken from the soil column, and the concentrations of NH4

+-N and
NO3

−-N in the overlying water were measured. After removing the overlying water,
excavate 0–10 cm topsoil in the soil column, centrifuge at 4000 r/min for 5 min, and
take the supernatant (soil pore water) to measure NH4

+-N and NO3
−-N concentrations.

The soil after centrifugation (Soil Sample 1) was retained, and the soil water content,
soil water-soluble NH4

+-N content [39], and soil ion-exchanged NH4
+-N content [40]

were determined.
Determination method of soil water-soluble NH4

+-N content [41]: Take 8.00 g of the
centrifuged soil (Soil Sample 1) sample, put it into a centrifuge tube, add 40 mL of deionized
water according to the solid–liquid ratio of 1:5, and tighten the sealing cap of the centrifuge
tube. Mix thoroughly, shake at 160 r/min for 30 min at 25 ◦C with a thermostatic oscillator,
then centrifuge at 4000 r/min for 20 min, collect the supernatant, and repeat the above
operation twice for the soil samples in the centrifuge tube. The supernatants collected three
times were mixed for the determination of soil water-soluble NH4

+-N content. Retain the
centrifuge tube and the soil in the tube (Soil Sample 2).

Determination method of ion-exchanged NH4
+-N content [41]: Add 40 mL of KCl

solution with a concentration of 0.5 mol/L to the centrifuge tube where the soil (Soil
Sample 2) after extraction of water-soluble NH4

+-N is located, tighten the sealing cap of the
centrifuge tube, and mix well. At 25 ◦C, shake at 160 r/min for 60 min with a thermostatic
oscillator, then centrifuge at 4000 r/min for 10 min, collect the supernatant, and repeat
the above operation twice for the soil samples in the centrifuge tube. The supernatants
collected three times were mixed and used to determine the ion-exchanged NH4

+-N content
of the soil.

The NH4
+-N and NO3

−-N contents of all water quality in this experiment were
determined by a SKALAR SAN++ full-automatic flow analyzer (Skalar Analytical B.V.
Products, Breda, The Netherlands). Daily water evaporation loss of the soil column was
measured by using a 1% electronic balance to weigh and calculate the difference with the
subtraction method.

2.5. Calculation Formula

Water evaporation loss of soil column:

Vt =
(m0 − mt)

ρ
(1)

In the Formula (1): Vt is liquid digestate evaporation loss of overburden water in t
day (mL); m0 is overall mass of soil column on Day 0 (within 8 h) after liquid digestate is
applied (g); mt is the overall mass of soil column on t-day (g); ρ is density of water (g/mL).

Reduction rate of liquid digestate NH4
+-N in overlying water:

R(%) =
M − Ct·(V0 − Vt)

M
× 100 (2)

In Formula (2): M is total application amount of NH4
+-N (mg); Ct is NH4

+-N con-
centration in overlying water on t-day (mg/L); V0 is initial application volume of liquid
digestate (L); Vt is liquid digestate evaporation loss on t-day (L).

Fate of liquid digestate NH4
+-N:

F(%) =
Ct·V

M
× 100 =

ωt·m
M

× 100 (3)
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In Formula (3): M is total application amount of NH4
+-N (mg); Ct is NH4

+-N, NO3
−-

N concentration in overlying water or in soil pore water on t-day (mg/L); V is residual
volume of overlying water or pore water volume (L); ωt is the concentration of NH4

+-N
and NO3

−-N adsorbed by the soil on t-day (mg/kg); m is soil mass (kg).

2.6. Data Analysis

Microsoft® Excel® 2016 MSO (16.0.4549.1001) 64-bit was used for the summary, analy-
sis, and graphing of experimental data, and IBM SPSS Statistics (22) software was used for
one-way ANOVA and Duncan’s method for analysis of variance and multiple comparisons
(α = 0.05). Data in the graph are mean ± standard deviation.

3. Results
3.1. Variation Characteristics of NH4

+-N Concentration and NH4
+-N Reduction Rate

in Overlying Water

The dynamic change process of liquid digestate NH4
+-N consumption and the re-

duction rate in overlying water with saturated water content farmland soil are shown in
Figure 3. After liquid digestate was applied to the soil surface with saturated water content,
the concentration of NH4

+-N in the overlying water decreased gradually with the extension
of time, and the reduction rate of the total amount of NH4

+-N gradually increased. Among
them, 0–3 days is the rapid digestion period. During this period, the concentration of
NH4

+-N in the overlying water drops rapidly, the decline range is 63.5–80.7% (Figure 3a),
and the total reduction rate of NH4

+-N reaches 65.8–82.3% (Figure 3b).
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Figure 3. Digestion characteristics (a) and reduction rate (b) of liquid digestate NH4
+-N in

overlying water.

Compared with CFN1 treatment, under the condition of equal NH4
+-N, the NH4

+-N
concentration in overlying water of BSN1 treatment increased significantly (p < 0.05) and
then decreased rapidly after 0 days of liquid digestate application (the sampling time was
within 8 h after liquid digestate application). On the third day after application, the NH4

+-
N concentration of the overlying water decreased to 78.88 mg/L, which was lower than
the discharge concentration of 80 mg/L, specified in the emission standard of pollutants
for the livestock and poultry breeding industry (GB18596-2001) [42], and lower than that
of the CFN1 treatment, but the difference was not significant. The NH4

+-N concentration
rebounded slightly after application for 3–7 days and remained lower than that of CFN1
treatment after application for 7 days. After 15 days, the NH4

+-N concentration in the
overlying water of BSN1 treatment decreased to 5.16 mg/L, which was significantly lower
than that of CFN1 treatment (p < 0.05). The NH4

+-N concentration decreased by 98.7%,
and the total reduction rate of NH4

+-N reached 99.2%. However, with high ammonium
nitrogen treatment of BSN1.5 and BSN2.5, the NH4

+-N concentration in the overlying water
was significantly higher than that of CFN1 treatment from 0 to 9 days after application,
but after 15 days, the NH4

+-N concentration decreased to 5.18 mg/L and 12.32 mg/L,
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respectively, which were significantly lower than that of CFN1 treatment (p < 0.05). The
NH4

+-N concentration of the two treatments decreased by 98.7% and 97.0%, and the total
reduction rate of NH4

+-N was 99.0% and 97.9%.

3.2. Migration and Soil Sorption Characteristics of Liquid Digestate NH4
+-N

Figure 4a shows the change of NH4
+-N concentration in soil pore water in the 0–10 cm

soil layer. After the application of liquid digestate, the NH4
+-N in the overlying water

diffused and migrated downward, and the NH4
+-N concentration in soil pore water

increased rapidly. The larger the amount of liquid digestate applied, the higher the NH4
+-

N concentration in soil pore water in the 0–10 cm soil layer. On the fourth day after
application, the NH4

+-N content in the pore water reached a peak value and then decreased
slowly. The NH4

+-N concentration of BSN1, BSN1.5, and BSN2.5 treatments were 24.41
mg/L, 27.40 mg/L, and 28.91 mg/L, which were significantly higher than those of CFN1
treatment by 16.4%, 30.7%, and 37.9%, respectively (p < 0.05).
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Figure 4. Migration of NH4
+-N in soil pore water (a) and changes of NH4

+-N adsorbed by soil (b,c).

Figure 4b,c shows the changes of soil water-soluble NH4
+-N and ion-exchanged NH4

+-
N in the 0–10 cm soil layer. After the liquid digestate was applied, the increase in NH4

+-N
concentration in soil pore water created a good environment for soil particles to adsorb
NH4

+-N. The soil water-soluble NH4
+-N concentration and ion-exchange NH4

+-N concen-
tration increased first and then decreased, and the more liquid digestate applied, the higher
the soil water-soluble NH4

+-N concentration and the ion-exchanged NH4
+-N concentration.

Under the condition of equal NH4
+-N content, the soil water-soluble NH4

+-N concentration
and ion-exchange NH4

+-N concentration of BSN1 treatment reached the peak value on
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the seventh day after liquid digestate application, but they were 3.0% and 13.1% lower
than those of CFN1 treatment respectively, and the difference between treatments was not
significant. With the high ammonium nitrogen content BSN1.5 treatment, on the seventh
day, the soil water-soluble NH4

+-N concentration and ion-exchange NH4
+-N concentration

reached the peak, which were significantly higher than that of CFN1 treatment by 17.9%
and 7.0%, respectively (p < 0.05). The concentration of ion-exchange NH4

+-N in BSN2.5
treatment reached the peak on the fifth day, but the concentration of water-soluble NH4

+-N
reached the peak on the ninth day, which was significantly higher than that in BSN1 treat-
ment. After the NH4

+-N sorption [43] reached the peak, desorption and transformation
gradually appeared. On the 15th day, the concentration of water-soluble NH4

+-N and the
concentration of ion-exchange NH4

+-N in BSN1 and BSN1.5 treatments were lower than
that in CFN1 treatment, and the difference of ion-exchange NH4

+-N concentration reached
a significant level (p < 0.05).

3.3. Characteristics of Liquid Digestate NH4
+-N Converted to NO3

−-N

The concentration change of liquid digestate NH4
+-N converted to NO3

−-N was
shown in Figure 5. The change trends of NO3

−-N in overlying water (Figure 5a), pore
water (Figure 5b), and soil water-soluble (Figure 5c) are basically the same. NO3

−-N
concentrations were consistently low and there were no significant differences between
treatments. Since the seventh day, the NO3

−-N concentrations in overlying water, pore
water, and soil water-soluble NO3

−-N of treatments BSN1, BSN1.5, and BSN2.5 all increased
significantly compared with those of CFN1 and CK treatments (p < 0.05). The greater the
amount of liquid digestate application, the greater the increase in NO3

−-N.
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−-N in overlying water (a), pore water (b), and soil water-

soluble (c).
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3.4. Fate Analysis of Farmland Absorbing Liquid Digestate NH4
+-N

Figure 6 is the analysis of the fate of NH4
+-N in BSN1, BSN1.5, and BSN2.5 treatments

on the 15th day of liquid digestate application. The disposal of liquid digestate NH4
+-N

is mainly based on soil particle sorption and conversion, but with the increase in liquid
digestate application, the proportion of NH4

+-N absorbed by soil decreases. The propor-
tions of nitrogen (sum of NH4

+-N and NO3
−-N) in soil sorption and pore water storage

in the 0–10 cm soil layer of treatments BSN1, BSN1.5, and BSN2.5 accounted for 76.3%,
67.1%, and 63.5% of the total applied NH4

+-N, respectively. The residual proportions of
overlying water were 0.9%, 1.1%, and 2.4%, respectively, and the proportions of other desti-
nations (including migration to deeper soil layers, transformation, and volatilization loss
of overlying water, etc.) were 22.8%, 31.8%, and 34.1%, respectively. Among them, BSN1,
BSN1.5, and BSN2.5 treatments accounted for 62.8%, 49.7%, and 44.7% of the total applied
NH4

+-N by soil sorption in the 0–10 cm soil layer, respectively, and the NH4
+-N adsorbed

by soil ion-exchange state was greater than that adsorbed by water-soluble state. The
proportion of nitrogen contained in pore water is 7.5%, 8.3%, and 8.4%, which are higher
than the corresponding residual amount of overlying water, indicating that the diffusion
and migration of liquid digestate NH4

+-N from overlying water to interstitial water in the
0–10 cm soil layer has been completed after 15 days of liquid digestate application, and
the more application, the more migration. The proportion of water-soluble NO3

−-N in soil
accounts for 6.1%, 9.2%, and 10.3%, indicating that the liquid digestate NH4

+-N has been
transformed into NO3

−-N in the 0–10 cm soil layer after 15 days of application, and the
more amount of liquid digestate applied, the greater the quantity of the transformation.
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4. Discussions
4.1. Time Node of Liquid Digestate NH4

+-N Removal in Farmland

Saturated water content farmland has the self-regulation function of the soil-microbial
complex system and the comprehensive purification ability of pollutants, and has great
liquid digestate disposal potential. The safe bearing capacity of farmland soil and the fre-
quency of digestion [32,44] are important parameters for determining the area configuration
of liquid digestate in land-consumption farms in the combined planting and breeding sys-
tem. Research on the engineering measures for disposal of liquid digestate in paddy fields
shows that the NH4

+-N concentration in field water is affected by the digested amount of
liquid digestate. At the beginning of application, it increased with the increase in liquid
digestate and decreased significantly with time. The NH4

+-N concentration decreased
by 47.52–85.27% after 3 days of liquid digestate application [16], and the concentration of
NH4

+-N in field water is stably lower than the emission concentration of 80 mg/L specified
in the emission standard of pollutants for the livestock and poultry breeding industry
(GB18596-2001). It can be stably lower than 40 mg/L after 5 days of application [31]. The
results of this study are slightly different from the above reports in the digestion time of
NH4

+-N in liquid digestate. After 3 days of application, only the NH4
+-N concentration

in the overlying water of BSN1 treatment decreased to less than 80 mg/L. After 7 days
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of application, BSN1 and BSN1.5 treatments can stabilize below 80 mg/L, of which BSN1
treatment is lower than 40 mg/L. The reason might be that the static soil column used in
this study is a soil-microbial composite system, which lacks the participation of farmland
plants, so the digestion speed and aging are slightly delayed.

In addition, by monitoring the change of NH4
+-N concentration in field water, we can

predict the water environment pollution risk and water quality standard discharge time
node of farmland disposal liquid digestate engineering measures [16,31,45,46]. However, it
is impossible to distinguish whether the main reason for the decrease in NH4

+-N concentra-
tion is farmland digestion or farmland irrigation water dilution, which has been questioned
in production practice. This study further quantifies the reduction rate of NH4

+-N in the
liquid digestate. From the perspective of reduction of NH4

+-N input, it is verified again
that the first three days after liquid digestate application is a rapid reduction period, dur-
ing which the prohibition of runoff plays an important role in preventing environmental
pollution of surrounding water bodies. After 15 days of application, under the condition of
an equal amount of NH4

+-N, the total amount of NH4
+-N in the overlying water of liquid

digestate treatment decreased by 99.2%, significantly lower than that of fertilizer NH4
+-N

treatment, which proved that the purpose of disposal liquid digestate NH4
+-N had been

achieved, and 15 days could be used as the time node for the end of the first digestion cycle.

4.2. Migration and Transformation Characteristics of NH4
+-N in Farmland Consuming

Liquid Digestate

In this study, under the condition of applying the same amount of NH4
+-N, the

NH4
+-N concentration in the overlying water of the liquid digestate treatment was lower

than that of the chemical fertilizer NH4
+-N treatment on the third day, but it rebounded

from 4 to 7 days, mainly due to the NH4
+-N accounts for 88.6% of the total nitrogen

in the liquid digestate, and other nitrogen-containing organic substances in the liquid
digestate components are oxidized and decomposed by microorganisms, which increases
the NH4

+-N content of the overlying water. The concentration of NH4
+-N in overlying

water treated with liquid digestate for 0 days (the sampling time in this study is within 8 h
after application) is significantly higher than that of fertilizer NH4

+-N treatment, but the
concentration of NH4

+-N in pore water and the concentration of NH4
+-N adsorbed by soil

are lower than that of fertilizer NH4
+-N treatment. This is because there is a competitive

and mutually exclusive relationship between other cations [2] and NH4
+-N ions in liquid

digestate, thus delaying the molecular diffusion rate of NH4
+-N in pore water, it also

reduces the dominant sorption of NH4
+-N on soil particles [47]. The abnormal value of

BSN1 treatment on the fourth day of application may be related to the operation error
of the destructive test, and the value at this point can be regarded as the missing value.
After 7 days of application, the NO3

−-N concentration in overlying water, pore water, and
soil with the liquid digestate NH4

+-N treatment was significantly higher than that of the
fertilizer NH4

+-N treatment, which may be that the organic active substances in the liquid
digestate components promoted the reproduction of nitrifying microorganisms [48], thus
promoting the conversion of NH4

+-N to NO3
−-N.

4.3. Fate of Farmland Disposal Liquid Digestate NH4
+-N

Using farmland to consume liquid digestate is a widely recognized and effective
treatment method, and the environmental pollution risk related to this measure has always
been the focus of attention [26–28]. The total nitrogen in liquid digestate is mainly NH4

+-N.
There is no clear report on the final whereabouts of NH4

+-N when a large amount of
liquid digestate is applied to farmland. Some scholars believe that liquid digestate NH4

+-N
might enter the underlying soil through leaching and then pollute the groundwater [46],
but many experimental studies have shown that the application of liquid digestate in
dryland [29], and in paddy fields [16,33] has not significantly increased the NH4

+-N and
NO3

−-N in groundwater. The results of this study showed that the concentration of NH4
+-

N in the pore water of 0–10 cm soil layer reached the peak value after 4 days of liquid
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digestate application, and the NH4
+-N sorption by soil particles reached the peak after

7 days, indicating that the NH4
+-N in overlying water was gradually migrating to the soil

layer over time. The proportion of liquid digestate nitrogen (including NH4
+-N, NO3

−-N
transformed from NH4

+-N) absorbed by soil and contained in pore water in the 0–10 cm soil
layer accounted for 76.3% of the total NH4

+-N after being applied for 15 days, indicating
that the disposal of liquid digestate NH4

+-N in farmland was mainly soil sorption and
transformation. However, with the increase in liquid digestate application, the proportion
of NH4

+-N adsorbed by soil in the 0–10 cm soil layer decreases, which is due to the limit
value of soil sorption capacity of 1108.55 mg/kg [49]. When the sorption limit value is
exceeded, NH4

+-N will migrate to the 10–20 cm soil layer. Only when the amount of
NH4

+-N applied exceeds the sorption limit value of 0–20 cm cultivated soil layer, there will
be the risk of polluting groundwater.

Ammonia volatilization loss was once considered as one of the main ways to reduce
NH4

+-N in field water [31,34], but the ammonia volatilization process is very complex
and affected by many factors, so it is very difficult to accurately estimate its loss under
natural conditions. Some studies have shown that soil wetting or flooding conditions can
reduce ammonia volatilization [37,38]. The standing test of liquid digestate showed that
the removal rate of ammonium nitrogen was only 53% under natural conditions for 100
days [32]. In this study, the other fate of liquid digestate NH4

+-N in the BSN1, BSN1.5,
and BSN2.5 treatments accounts for 22.8%, 31.8%, and 34.1%, including the migration of
NH4

+-N to deeper soil layer [23,24], transformation [25] and ammonia volatilization loss of
overlying water. Some scholars believe that the key period of ammonia volatilization is
within 7 days after liquid digestate application. The ammonia volatilization loss rates of 1
N liquid digestate, 2 N liquid digestate, 4 N liquid digestate, and 1 N chemical fertilizer
treatment are 18.8%, 14.3%, 9.9%, and 6.6%, respectively [32]. In this experiment, the other
directions of liquid digestate NH4

+-N were not subdivided, so the proportion of ammonia
volatilization loss in other directions could not be determined. Therefore, it cannot be
proved that ammonia volatilization loss is one of the main ways to reduce liquid digestate
NH4

+-N in overlying water. However, at the beginning of liquid digestate application, the
concentration of NH4

+-N in overlying water maintained a high level, decreased rapidly
within 7 days, and gradually transformed into NO3

−-N after 7 days. Therefore, it is
speculated that if ammonia volatilization really exists, then the critical period of ammonia
volatilization should be within 7 days, but the proportion of ammonia volatilization loss
will not be too high.

Limitations and Directions for Future Research

In this study, only a typical pig farm liquid digestate and a typical farmland soil
were selected. Whether the research results have universality for different types of liquid
digestate and soil needs further research.

5. Conclusions

The use of saturated water content farmland soil for disposal of liquid digestate
ammonium nitrogen is mainly based on soil sorption and pore water migration. With the
extension of time, the ammonium nitrogen concentration in the overlying water gradually
decreases, and the reduction rate of the total ammonium nitrogen gradually increases.
However, the reduction speed and reduction rate showed a downward trend with the
increase in the application amount of the ammonium nitrogen in the liquid digestate. The
application of 0–3 d is the rapid consumption period for preventing and controlling the
pollution of surrounding water bodies, and the application of 15 d is the completion period
of one-time safety consumption.
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