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Abstract: Precipitation products derived from satellites have emerged as a promising approach for
obtaining precipitation estimates, enabling accurate long-term observations and describing the water
cycle dynamics from a global scale to a local scale. The quality of these products has improved
significantly in the last decades, especially with the emergence of TRMM missions and its successor
GPM. The objective of this study was to evaluate the daily, monthly and annual precipitation estimates
provided by IMERG version 05 of the GPM, with the data observed by the rainfall stations of the
Brazilian Agency of Water and Sanitation (ANA) in the basins of the Brazilian midwest. In order to
compare the data, the spatialization of the data of the rainfall stations was performed by means of
the ordinary kriging technique, interpolating the data for grids of 0.1◦ × 0.1◦ that correspond to the
specialized grids of the GPM satellite. The data were evaluated quantitatively by means of statistical
metrics. The GPM satellite precipitation product performed relatively well on a daily scale for regions
with smooth topography, and was able to describe the rainfall regime on larger time scales, regardless
of the terrain conditions. However, the satellite retrievals were unable to reproduce rainfall extremes
in virtually all situations, which may limit their application in frequency analyses.

Keywords: IMERG-GPM; precipitation; rain gauges; assessment; statistic

1. Introduction

Understanding the time–space variability of rainfall is paramount for hydrological
applications. In fact, precipitation information at suitable resolutions, both in time and
space, is necessary; for instances, for forecasting extreme flooding events; for continuous
hydrological simulation that may provide streamflow estimates for the management and
operation of hydropower reservoirs and water supply systems; for landslide warnings; and
for forcing irrigation models, particularly for agricultural activities in semi-arid environ-
ments [1]. In this sense, the definition of strategies for environmental sustainability, flood
and drought risk mitigation as well as water resources management is inherently related to
the proper stochastic characterization of the precipitation process across a region of interest.

Traditionally, measurements of rainfall amounts are directly obtained from ground-
based gauges, and these have constituted the main source of information for hydrological
studies. However, rainfall gauging station networks are often unevenly distributed sparsely
across space, which imposes difficulties for properly capturing the spatial variability of
precipitation systems [2]. In addition, precipitation samples obtained from ground-based
gauges are frequently corrupted by long periods of missing data, which may hinder their
use for continuous rainfall–runoff modeling and, accordingly, for the indirect estimation of
streamflow-related variables [3].
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Precipitation information retrieved from satellites has remained a promising approach for
characterizing the precipitation process on spatial scales that range from that of the catchment
to a near-global scale [4]. Research efforts throughout the last decade have demonstrated
potential uses of satellite precipitation products in a variety of applications in hydrology,
such as in modeling extreme precipitation events [5,6], rainfall frequency analysis [7], flood
frequency analysis [8,9], drought monitoring [10,11] and forecasting [12,13], rainfall–runoff
simulation [14–16], and in the planning and management of water resources systems [17].
Previous works have also indicated that resorting to satellite estimates may be advantageous
for characterizing the precipitation process in regions where ground-based networks are
insufficient, and where other estimation approaches, such as those involving radars, are
unable to provide reliable estimates of rainfall amounts [6,18].

The accuracy of precipitation products has considerably increased in the last years [19],
particularly since the launching of the Tropical Rainfall Measuring Mission (TRMM) as well
as its successor, the Global Precipitation Measurement (GPM). The main purpose of these mis-
sions is to provide high-quality and high-resolution global precipitation estimates [20], which
could be utilized for real-time monitoring as well as for short-term weather forecasting [21].
GPM, which originated from a joint initiative of the National Aeronautics and Space Admin-
istration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), was launched
in February 2014. It comprises a large group of international space agencies that includes
the Indian Space Research Organization (ISRO), the National Oceanic and Atmospheric Ad-
ministration (NOAA), and the European Organization for the Exploitation of Meteorological
Satellites (EUMETSAT), among others [22,23]. Through improving the estimation of precipita-
tion on a global scale, the GPM mission may enhance knowledge of precipitation systems in
addition to the resulting variabilities from of other components of the water cycle. Also, short-
term weather forecasting and 4-dimensional reanalyses, such as measurements of space–time
variabilities in global precipitation, permit us to better understand the following: (i) storm
structures, (ii) water/energy balance, (iii) freshwater resources, and (iv) interactions between
precipitation and other climate parameters. These fields may all benefit from provided GPM
information [24].

In general terms, rainfall amounts are indirectly estimated from satellites by resorting
to retrieval algorithms that integrate information from distinct sensors [25]. For the GPM
mission, such a combination is performed by integrated multi-satellite retrievals for GPM
(IMERG), which merge and interpolate data from a set of passive microwave sensors from
the GPM constellation, as well as from information stemming from infrared counterparts;
these provide a precipitation product with a spatial resolution of 0.1◦ × 0.1◦, and a sampling
frequency of 30 min across the globe [22].

Although the main objective of the GPM mission is to provide a high-quality precipi-
tation product, it has been widely acknowledged in the literature that the use of retrieval
algorithms, no matter how complex, always introduces bias to precipitation estimates [6].
Such bias usually manifests itself distinctly with respect to precipitation amounts, and
may furthermore be amplified by climate [26,27] and complex terrain conditions [6]. More-
over, retrieval errors may strongly depend on the aggregation time scales; these errors
are usually larger for shorter time scales (e.g., hourly or daily) and considerably smaller
for longer ones (e.g., monthly or annual) [19]. These facts have prompted a plethora of
studies that assessed the performances of distinct retrieval algorithms in different parts
of the world by comparing satellite estimates with ground-based measurements (which
are, more often than not, erroneously assumed to be error-free), as well as studies that
developed mathematical models for bias correction [6,28–35].

With respect to performance assessment, the IMERG-GPM algorithm has been high-
lighted for having good overall agreement with ground information, particularly for short
time scales, compared to other established precipitation products. In fact, a recent study by
Tang et al. (2016) [36] indicated that the IMERG product outperformed its TRMM multi-
satellite precipitation analysis (TMPA) 3B42V7 and 3B42RT counterparts, for both daily and
sub-daily time scales, in Chinese catchments. These findings were supported by Sharifi,
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Steinacker and Saghafian (2016) [37], who compared the IMERG and TRMM products on a
daily scale in Iran. Nonetheless, since the performances of retrieval algorithms often vary
with climate and topography [6], these conclusions cannot be readily generalized, As a
result, suitability assessments for distinct precipitation products should be carried out for
each particular study region.

In view of the foregoing, the objective of this study is to evaluate the performance of
IMERG-GPM version 05, on daily, monthly and annual scales, for the Brazilian midwestern
region. In order to conduct this evaluation, we compare the satellite retrievals with informa-
tion derived from the rainfall gauging network operated by the Brazilian Agency of Water
and Sanitation (Agência Nacional de Águas e Saneamento Básico, ANA), after first perform-
ing spatialization to match the satellite resolution for the Meia Ponte and the Bois River
catchments. The Brazilian midwestern region is a relatively poorly gauged area [29,35],
with a complex climate that is influenced by a variety of atmospheric systems [38]. The
area presents marked seasonal features that are known to affect the performance of satellite
precipitation products [6]. Previous research on this study region [29,35] has suggested
that the TRMM products, which are frequently used as data sources in tropical areas, may
present significant biases during the wet season, which in turn provide some justification
for performing similar evaluations with the IMERG-GPM counterpart. The remainder of
this paper is organized as follows: Section 2 presents the material and methods, with a
brief description of the study area and the data, as well as the methods utilized for data
quality checking for interpolating the ground-based rainfall amounts and for performance
assessment. Section 3 comprises the main results as well as a discussion of them with
respect to previous research. Finally, in Section 4, conclusions and research developments
are addressed.

2. Materials and Methods
2.1. Study Area

The study area encompasses the Meia Ponte River catchment, located in the central
region of the Brazilian state of Goiás, and the Bois River catchment, located at the southern
portion of the state (Figure 1). The Meia Ponte River catchment drains an area of 14,819 km2,
amounting to approximately 3.6% of the territory of Goiás. It is a densely populated region,
with about 3.131× 106 inhabitants concentrated in the municipalities of Goiânia, Aparecida
de Goiânia, Anápolis, Senador Canedo and Itumbiara. The catchment is characterized by a
tropical savanna climate, with a dry season spanning from April to September and a wet
season between October and March. The temperature ranges from 17 ◦C to 31 ◦C, whilst
the mean annual rainfall varies from 1400 to 1600 mm [39].
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Figure 1. Locations of the Meia Ponte and Bois River catchments, rainfall gauging stations, elevations
and sampling points utilized in this study. Black squares represent the 33 gauging stations (shown as
reference numbers; see Table 1) utilized in the comparison with the 0.1◦ × 0.1◦ GPM pixels.
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Table 1. Rainfall gauging stations utilized for the estimation of spatialized precipitation and for
comparison with the GPM data.

Reference Number
in Figure 1

Code Rainfall Gauging
Station Longitude Latitude Elevation (m) Mean Annual Rainfall (mm)

1 1649001 Aragoiânia −49.4522 −16.9119 878 1711
2 1649004 Goianápolis −49.0203 −16.5164 1007 1579
3 1649006 Inhumas −49.495 −16.3467 746 1215
4 1649009 Ouro Verde de Goiás −49.1978 −16.2186 1077 1159
5 1649010 Palmeiras de Goiás −49.9286 −16.8031 605 1183
6 1649012 Trindade −49.4878 −16.6611 781 1056
7 1650000 Cachoeira de Goiás −50.6492 −16.6694 763 1140
8 1650001 Córrego do Ouro −50.5567 −16.2983 565 1494
9 1650003 Turvânia −50.1328 −16.6094 637 1372

10 1651000 Caiapônia −51.7994 −16.9497 700 1300
11 1749000 Edéia (Alegrete) −49.9303 −17.3414 590 1051
12 1749001 Fazenda Boa Vista −49.6908 −17.1056 550 1147
13 1749002 Joviânia −49.6264 −17.8094 845 1419
14 1749003 Morrinhos −49.1153 −17.7328 808 1087
15 1749005 Piracanjuba −49.0272 −17.2894 779 1543
16 1749009 Cromínia −49.3828 −17.2847 694 1513
17 1750000 Barra do Monjolo −50.1808 −17.7322 458 1151
18 1750001 Fazenda Nova do Turvo −50.2894 −17.0792 529 1265
19 1750004 Ponte Rodagem −50.6819 −17.3253 551 1123
20 1750008 Fazenda Paraíso −50.7742 −17.4658 643 1263
21 1750013 Paraúna −50.4469 −16.9489 684 1564
22 1751001 Ponte Rio Doce −51.3967 −17.8564 751 1106
23 1751002 Benjamin Barros −51.8922 −17.695 726 1550
24 1751004 Montividiu −51.0767 −17.3647 734 1128
25 1848008 Brilhante −48.9028 −18.4922 795 1356
26 1849000 Ituiutaba −49.4631 −18.9411 498 1437
27 1849002 Ipiaçu −49.9486 −18.6919 444 1447
28 1849006 Avantiguara −49.0697 −18.7719 794 1316
29 1849016 Ponte Meia Ponte −49.6114 −18.3394 483 1286
30 1850001 Fazenda Aliança −50.0314 −18.1047 451 1307
31 1850002 Quirinópolis −50.5219 −18.5011 443 1592
32 1850003 Maurilândia −50.3372 −17.9797 479 1230
33 1851001 Campo Alegre −51.0936 −18.5178 569 1845

The Bois River catchment, in turn, amounts to an area of 35,435 km2, which corresponds
to 9% of the area of Goiás. Forty-three municipalities, which comprise 651,391 inhabitants,
are partially or entirely contained in this catchment. According to Santos, Bayer and
Carvalho (2008) [40], this is also a region with marked seasonality, having a dry period
between May and September and a wet counterpart from October to April. Mean annual
rainfall amounts range from 1400 mm to 1800 mm.

2.2. Data from Ground-Based Rainfall Gauging Stations

Daily rainfall amounts were obtained from the digital platform of the Brazilian Agency
of Water and Sanitation (Agência Nacional de Águas e Saneamento Básico, ANA). A col-
lection of 37 gauging stations with a period of record spanning from 1988 to 2017 were
initially selected for this study. In order to fill missing data that amounted to 31 days for the
1750000 gauging station, 13 days for the 1750001 and a single day for the 1750008 gauging
station, we resorted to using simple linear regression. The procedure, which was per-
formed with the “hyfo” R package [41], is as follows: for a given gauging station with
data to be filled, the candidate neighboring gauges are ranked based on their correlation
coefficients; next, simple linear regression equations are derived by using the data from
each candidate as explanatory variables; finally, for each day with missing data the rainfall
amount estimate is derived from the most correlated candidate with available data. We
acknowledge that this simple linear regression may not be the most accurate alternative to
fill missing precipitation data on a daily scale [42], and that the predictive abilities of the
obtained regression models are relatively low (R2 < 0.30). However, since the number of
missing data is small, we believe that the use of this simplified tool did not strongly affect
the performance assessment.

Additional data quality checks comprised excluding gauging stations with more than
20% of missing data in addition to those that received annual rainfall amounts larger than
2500 mm or smaller than 1000 mm, which are deemed unreasonable values for the study
region on the basis of the 30-year average annual precipitation.
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After the data quality check and the filling of missing data, four gauging stations
which presented anomalous behaviors with respect to the mean annual rainfall (values less
than 1000 mm) were discarded. The gauges that were retained for analyses are shown in
Table 1. Finally, for assessing the performance of the GPM precipitation product, whose
data are available from 2014 onwards, the daily rainfall amounts recorded in the water
year of September 2016–August 2017 were utilized. We note that this decision resulted
from the large amount of missing data prior to 2016 and from 2017 onwards in most of the
rainfall gauging stations utilized in our study; this could introduce high levels of bias in the
comparison. On the other hand, 2017 presented an annual rainfall amount relatively close
to the long-term average (1339 mm and 1500 mm, respectively, for the Meia Ponte River
catchment), which may, at least to some extent, attenuate the effects of low data availability
in subsequent analyses.

2.3. Data from the GPM Precipitation Product

Satellite precipitation estimates were retrieved with IMERG, the algorithm developed
by the GPM team to provide the precipitation product. The algorithm’s fifth version
(level 03), which provides rainfall estimates with a spatial resolution of 0.1◦ × 0.1◦ and
a 30-min sampling frequency, was utilized. The algorithm was designed to combine
information from multiple international satellites and develop long-term precipitation
records in uniformly distributed pixels across the globe [43].

For our analyses, the IMERG-GPM product, provided in format HDF5 by NASA, was
initially imported to the software ArcGIS (version 10.6, Esri, RedLands, CA, USA). Next,
precipitation estimates were extracted for the water year of 2017 and for those pixels located
between 52◦ and 19◦ S and 19◦ and 16◦ W, which entirely enclosed the study area. The
satellite retrievals were then aggregated for daily, monthly, and annual time scales and
compared to spatialized and raw ground-based rainfall measurements.

2.4. Data Interpolation

Data derived from rainfall gauges were interpolated in order to form uniform grids
with the same spatial resolution as the GPM satellite retrievals (i.e., 0.1◦ × 0.1◦ or ap-
proximately 11 km). The interpolation was performed in ArcGIS (version (10.6) by using
the ordinary kriging technique, a method that assumes a spatial Gaussian field with a
covariance function defined by a semivariogram [44]. Ordinary kriging is a widespread
interpolation technique that frequently outperforms alternative methods when dealing
with precipitation data [45]. For fitting the theoretical Gaussian field to the empirical
sample points, a spherical semivariogram was utilized with a range of 150 km and a cutoff
point of 300 km. Then, the rainfall amounts were estimated at the vertices of each pixel
defined by the IMERG-GPM product and averaged over these points in order to match the
satellite’s resolution.

Once the precipitation time series were interpolated, spatialized average values were
computed for both the catchments’ drainage areas and for each of the gridded elements with
ground-based gauges; this allows the identification of those regions across the study area in
which the satellite retrievals present larger deviations with respect to the measured rainfall
amounts. The comparisons comprised the period of record spanning from 1 September 2016
to 31 August 2017.

2.5. Comparison of Precipitation Amounts

The performance assessment of the IMERG-GPM algorithm was based on the com-
putation of the goodness-of-fit metrics presented in Table 2 [46], which are intended to
provide a comprehensive evaluation of the satellite product. Absolute metrics such as
the mean absolute error (MAE) and the root mean square error (RMSE) assess the overall
agreement between ground-based and satellite estimates, whereas the mean error (ME) and
the percent bias (PBIAS) disclose the existence of systematic errors which result in under- or
overestimation. Finally, we also utilized as benchmarks the Nash–Sutcliffe efficiency crite-
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rion (NSE) as well as the coefficient of persistence (CP); the former is a common metric that
is used in hydrological applications but sometimes criticized by misinterpretations [47]; the
latter, which uses the previous day’s observed precipitation as an alternative to the satellite
information, provides a naïve yet usually more robust benchmark. Some of these indexes,
such as the MAE and RMSE, provide similar information regarding model performance;
however, marked distinctions among them might indicate a more general lack of fit or large
deviations solely with respect to higher-order statistics [48].

Table 2. Goodness-of-fit metrics utilized in the comparison of the GPM precipitation product and the
ground-based measurements.

Goodness-of-Fit Metrics Description Equation Perfect Value

Coefficient of correlation (CC) Evaluates the agreement between satellite retrievals and
ground-based rainfall measurements CC =

∑n
i=1(Oi−O)(Ei−E)√

∑n
i=1(Oi−O)2.

√
∑n

i=1(Ei−E)2
1

Mean absolute error–(MAE) mm Measures the mean value of the absolute errors MAE = 1
n

n
∑

i=1
|Ei −Oi| 0

Root mean square error (RMSE) mm Measures the mean value of the squared errors RMSE =

√
1
n

n
∑

i=1
(Ei −Oi)2 0

Percent bias (PBIAS) % Expresses systematic errors PBIAS =
∑n

i=1(Ei−Oi)
∑n

i=1 Oi
× 100 0

Mean Error
(ME)
mm

Expresses the uncertainty in a measurement ME = 1
n

n
∑

i=1
(Ei −Oi) 0

Nash–Sutcliffe Efficiency (NSE) Evaluates the predictive ability of hydrological models. NSE = 1− ∑n
i=1(Ei−Oi)2

∑n
i=1(Oi−O)2

1

Coefficient of Persistence (CP) Compares the performance of the model being used and
performance of the persistent CP = 1− ∑n

i=2(Ei−Oi)
2

∑n−1
i=1 (Oi+1−Oi)

2
1

Note(s): n is the number of sample points, O denotes the ground-based rainfall measurements, and E corresponds
to the IMERG-GPM retrievals.

In addition to the interpolated rainfall, we also evaluated the performances of the
retrieval algorithm with the raw data extracted from the gauges as a means of assessing
potential benefits or shortcomings of the kriging procedure. Furthermore, we computed the
metrics for those ground-based rainfall amounts that equaled or exceeded the 95th-quantile
data from each gauging station (from the raw data set) in order to assess the goodness-of-fit
of the IMERG-GPM product regarding daily rainfall extremes.

3. Results
3.1. Daily Time Scale

A comparison of satellite retrievals and rainfall gauging measurements averaged over
the catchments’ drainage areas is presented in Figure 2 for the Meia Ponte River catchment,
and in Figure 3 for the Bois River catchment. It is possible to note that, for the former, the
temporal coherence of rainfall events is reasonably reproduced by the satellite product,
as demonstrated by the relatively high CC, albeit with a tendency to overestimate; this is
detected from the values of the ME and PBIAS. The value of the RMSE, in turn, is almost
twice that of the MAE, which suggests that the higher-order statistics are not properly
reproduced by the satellite retrievals—this may constitute a major limitation for utilizing
the IMERG-GPM product for both block-maxima and peaks-over-threshold frequency
analysis. Finally, the benchmarks NSE and CP indicate that the satellite product has larger
predictive skills than the observed mean and the observed previous day’s precipitation
data, respectively, even though their values are relatively close to zero.

For the Bois River catchment, the overall tendency of overestimation is even more
pronounced, with higher values for the ME and PBIAS, as compared to the Meia Ponte data
set. Moreover, a poorer representation of the temporal dynamics of the observed rainfall is
perceived, with some lag between GPM retrievals and observed events throughout most
of the period of record. Finally, the distinctions among the RMSE and MAE values are
also noticeable, suggesting an unsuitable description of rainfall extremes by the satellite
retrieval; additionally, both benchmarks are negative, indicating that the mean and/or the
previous day’s observed precipitation are preferable for prediction. On the other hand, the
dry season was reasonably described in both catchments, which suggests at least for the
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study area that the GPM product is sufficiently accurate for detecting non-rainfall events.
We note, however, that this is a poorly gauged catchment, in which many of the rainfall
gauging stations are located in areas with more complex terrain and stronger topographic
gradients (Figure 1). At least to some extent, this fact may explain the poorer performance
of the IMERG-GPM product in the Bois River catchment. In effect, it is well established
that most satellite products are unable to properly reproduce rainfall regimes in regions
with complex topographies [6].
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Figure 3. Comparison of the daily precipitation, as obtained from the GPM and the ground rainfall
gauging network, averaged over the area of the Bois River catchment.

Figure 4 depicts scatterplots for the GPM precipitation estimates and the observed
rainfall amounts. For the Meia Ponte River catchment (left panel), a linear functional form
may be visualized, despite the large dispersion of the errors for precipitation amounts
larger than 10 mm, which entailed a value of 0.61 for the coefficient of determination R2,
and some degree of deviation from the 1:1 line. For the Bois River catchment (right panel),
on the other hand, the linear association is much weaker with R2 = 0.29, which indicates
that the satellite retrievals are unable to explain the variation in the observed rainfall in
this area.
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We also compared the daily precipitation of each rainfall gauging station, after inter-
polation and with raw data, with those obtained from the corresponding grid of the GPM
product. Results are summarized in Table 3 for the Meia Ponte River catchment, and in
Table 4 for the Bois River catchment. One may notice that for the former, the metrics across
gauges for the interpolated rainfall are somewhat similar, with exception of the PBIAS,
which presented mostly positive low values, but indicated a tendency to underestimate
(slightly) in the Meia Ponte gauging station. Hence, the performance of the GPM product
did not present marked spatial variability in this catchment. We also note that despite entail-
ing similar values for most metrics, using the raw data affected the systematic biases either
by changing their signs or by increasing their values (in absolute terms). This fact would
favor the interpolation approach. On the other hand, the benchmarks suggest that satellite
retrievals are closer to the raw data, whose use entailed substantial improvements in the
values of both the NSE and CP—for the interpolated rainfall, these are mostly negative or
close to zero.

Table 3. Goodness-of-fit metrics for interpolated and raw (in parentheses) daily precipitation data
from four gauging stations located in the Meia Ponte River catchment.

Gauging Station with
Reference Number CC MAE (mm) RMSE (mm) PBIAS (%) ME (mm) NSE CP

16-Cromínia 0.59
(0.57)

3.31
(4.07)

7.29
(9.48)

3.10
(−9.4)

0.11
(−0.39)

−0.16
(0.27)

0.02
(0.56)

2-Goianápolis 0.63
(0.48)

3.40
(4.17)

6.78
(8.94)

4.57
(3.7)

0.17
(0.14)

0.07
(0.04)

0.37
(0.43)

3-Inhumas 0.53
(0.49)

3.47
(3.97)

7.21
(8.66)

6.01
(15.6)

0.22
(0.52)

−0.20
(0.08)

0.17
(0.47)

29-Meia Ponte 0.57
(0.51)

3.37
(3.84)

7.79
(9.11)

−1.03
(2.7)

−0.04
(0.09)

0.05
(0.17)

0.33
(0.47)

Inspection of Table 4, in turn, indicates a much larger variation in the values of the
goodness-of-fit metrics, and an overall worse performance with respect to the interpolated
rainfall in the Bois River catchment. In effect, whilst most values of the CCs ranged from
0.39 to 0.50, suggesting a poorer description of the temporal dynamics of the observed
rainfall, the values of RMSE surpass, in many cases, more than 20% of those in the Meia
Ponte catchment. High levels of variation are also verified for the PBIAS, and the tendency
of overestimation is much stronger in the Bois River catchment—in some cases, systematic
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errors larger than 15% were verified. Of course, this may have stemmed from the inaccurate
spatialization of the observed rainfalls in some portions of the catchment, as well as from
the locations of the rainfall gauging stations in areas with complex terrain. However, our
results suggest that the GPM product was unable to retrieve the real evolution of the
daily precipitation activities across this entire region, and this certainly calls for further
investigation in regard to potential causes of this phenomenon.

Table 4. Goodness-of-fit metrics for interpolated and raw (in parentheses) daily precipitation data
from 12 gauging stations located in the Bois River catchment.

Gauging Station with
Reference Number CC MAE (mm) RMSE (mm) PBIAS (%) ME (mm) NSE CP

17-Barra do Monjolo 0.61
(0.44)

3.15
(3.93)

6.99
(9.26)

22.05
(23.6)

0.7
(0.74)

−0.36
(−0.11)

−0.16
(0.31)

11-Edeia (Alegrete) 0.40
(0.35)

4.04
(4.58)

9.82
(11.09)

1.32
(30.4)

0.05
(0.88)

−0.33
(−0.24)

0.12
(0.37)

30-Fazenda Aliança 0.49
(0.38)

3.45
(4.36)

7.55
(10.58)

2.28
(−1)

0.08
(−0.04)

−0.25
(0.01)

0.05
(0.39)

12-Fazenda Boa Vista 0.65
(0.6)

3.22
(3.86)

6.42
(7.92)

−0.24
(15.8)

−0.01
(0.5)

0.17
(0.29)

0.4
(0.59)

18-Fazenda Nova do
Turvo

0.44
(0.39)

3.61
(4.16)

8.86
(10.88)

7.95
(5.5)

0.27
(0.19)

−0.89
(−0.16)

−0.35
(0.32)

20-Fazenda Paraíso 0.39
(0.28)

3.81
(4.63)

8.54
(10.31)

3.37
(5.9)

0.12
(0.2)

−0.26
(−0.25)

0.22
(0.34)

13-Joviânia 0.70
(0.61)

3.04
(3.87)

6.36
(8.47)

11.24
(−0.2)

0.39
(−0.01)

0.19
(0.31)

0.34
(0.57)

32-Muarilândia 0.46
(0.37)

3.44
(4.06)

7.84
(9.56)

9.68
(8.3)

0.32
(0.28)

−0.41
(−0.18)

−0.03
(0.38)

24-Montividiu 0.50
(0.47)

3.34
(3.86)

7.37
(8.4)

25.18
(25.9)

0.78
(0.8)

−0.27
(−0.04)

0.07
(0.37)

5-Palmeiras de Goiás 0.58
(0.46)

3.37
(4.06)

6.71
(8.78)

14.25
(14.5)

0.46
(0.47)

−0.25
(0)

0.13
(0.47)

21-Paraúna 0.41
(0.4)

4.08
(4.86)

10.56
(12.1)

1.32
(−7.7)

0.05
(−0.33)

−0.48
(−0.11)

0.05
(0.4)

19-Ponte Rodagem 0.41
(0.28)

3.87
(4.81)

8.92
(11.36)

11.31
(24.8)

0.39
(0.76)

−0.52
(−0.3)

0.06
(0.34)

As for the comparison between raw and interpolated data, similar remarks to those
in the Meia Ponte River catchment can be made: the PBIAS is strongly affected by the
sampling approach, and the use of raw data increased the values of the benchmarks.
However, compared to the Meia Ponte river catchment, such increases in the NSE and CP
were less noticeable. Overall, the interpolation procedure did not seem to be beneficial,
which could be at least to some extent anticipated, based on the large distances between
the rainfall gauging stations. The incorporation of covariates such as topographic features
to the kriging procedure may improve the interpolation results, and this will be addressed
in future research.

Finally, the goodness-of-fit assessment regarding observed daily extreme events, as
materialized by the empirical 95th-quantile data from each rainfall gauging station, are
shown in Tables 5 and 6 for the Meia Ponte and the Bois River catchments, respectively. It
is generally possible to note that the values of metrics such as RMSE and MAE are close
to the empirical quantiles themselves, which indicates a strong disagreement between
satellite retrievals and ground-based information for large rainfall amounts. Moreover,
the benchmarks are mostly negative, and the values of CCs are low, which may be due to
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poorer performance of the retrieval algorithm for extreme rainfall conditions, or because
such extreme events are not being recorded on the same days by the satellite and the
gauges. Overall, as previously hypothesized, the IMERG-GPM product was unable to
reproduce daily rainfall extremes, which might limit its use for frequency analysis and
risk assessment.

Table 5. Goodness-of-fit metrics for daily rainfall amounts above the 95th empirical quantiles from
four gauging stations located in the Meia Ponte River catchment.

Gauging Station with
Reference Number

95th Empirical Quantile
Rainfall Gauging Station

95th Empirical
Quantile GPM CC MAE RMSE PBIAS ME NSE CP

16-Cromínia 25.84 19.26 0.62 25.83 28.99 −57.6 −24.8 −2.56 −0.44

2-Goianápolis 23.92 24.12 0.33 19.02 23.39 −50.4 −17.91 −3.48 −1.65

3-Inhumas 21.42 21.39 0.55 22.1 24.59 −54.1 −20.73 −3.78 −2.34

29-Meia Ponte 25.26 21.21 0.43 21.74 26.05 −58.7 −20.76 −2.14 −0.34

Table 6. Goodness-of-fit metrics for daily rainfall amounts above the 95th empirical quantiles from
12 gauging stations located in the Bois River catchment.

Gauging Station with
Reference Number

95th Empirical Quantile
Rainfall Gauging Station

95th Empirical
Quantile GPM CC MAE RMSE PBIAS ME NSE CP

17-Barra do Monjolo 22.30 21.66 −0.18 20.62 26.44 −51.6 −17.39 −4.8 −4.14

11-Edeia (Alegrete) 21.60 20.57 0.41 27.02 31.15 −62.5 −25.32 −3.35 −0.7

30-Fazenda Aliança 27.18 21.34 0.21 28.15 32.11 −68 −26.69 −4.52 −1.55

12-Fazenda Boa Vista 20.74 18.06 0.82 19.13 20.65 −48.5 −17.56 −0.87 −0.78

18-Fazenda Nova do Turvo 22.72 19.64 0.52 34.62 38.2 −69 −33.9 −4.4 −0.61

20-Fazenda Paraíso 24.70 19.64 0.06 25.29 29.07 −74.7 −25.29 −5.79 −2.62

13-Joviânia 24.82 24.29 0.41 22.34 24.61 −42.4 −16.54 −1.68 −0.07

32-Muarilândia 22.90 18.37 −0.28 21.1 25.73 −52.1 −15.6 −4.64 −1.16

24-Montividiu 19.36 20.04 0.33 19.13 22.35 −54.2 −19.13 −4.73 −1.73

5-Palmeiras de Goiás 18.50 19.83 0.57 23.57 26.8 −59.8 −21.43 −2.25 −0.36

21-Paraúna 28.18 16.54 −0.2 35.45 41.01 −47 −19.81 −3.75 −1.42

19-Ponte Rodagem 22.74 20.87 −0.13 28.19 35.59 −62.2 −22.89 −3.44 −1.22

3.2. Monthly Time Scale

Figure 5 depicts the comparison of the monthly precipitation for the rainfall gauging
stations located in the Meia Ponte River catchment; the values of the goodness-of-fit metrics
are presented in Table 7. A similar plot is shown in Figure 6 for the Bois River catchment,
with the metrics being provided in Table 8. One may observe that, as expected for larger
time scales which smooth out strong variations in precipitation activity on a daily or
sub-daily scale, the performance of the IMERG-GPM product considerably improves. In
effect, the values of CCs were larger than 0.90 in all situations, although the tendency to
overestimate still persisted in some gauging stations, such as Montividiu (PBIAS = 25.18%).
In all cases, the values of the NSE and CP indicate that the satellite product has considerably
greater predictive skills as compared to the benchmarks. Again, we note that a higher level
of variability in the goodness-of-fit metrics was verified for the Bois River catchment, and
the values of the RMSE and MAE present marked distinctions for this area, which may
suggest that the GPM product could not properly capture the spatial patterns of variability
and describe the rainfall behavior during the wet season, even on a monthly time scale, for
this region.

On the other hand, when precipitation amounts are averaged over the entire areas
of the catchments, the performance of the GPM product is suitable and similar for both
geographical regions. In fact, as depicted in Figure 7, the satellite retrievals present good
agreement with spatialized gauge data for all months, and are able to explain 98% (left
panel) and 99% (right panel) of the latter’s variability for the Meia Ponte and the Bois
River catchments, respectively. In other words, the averaging procedure across large
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extensions smoothed out the larger variations in particular locations of the catchment that
were verified in the previous analyses, hence improving GPM performance overall.
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the Meia Ponte River catchment.

Table 7. Goodness-of-fit metrics for monthly precipitation data from four gauging stations located in
the Meia Ponte River catchment.

Gauging Station with
Reference Number CC MAE (mm) RMSE (mm) PBIAS (%) ME (mm) NSE CP

16-Cromínia 0.98 12.41 17.96 0.03 3.43 0.96 0.9

2-Goianápolis 0.95 18.26 28.45 0.05 5.22 0.9 0.75

3-Inhumas 0.96 21.68 27.06 0.06 6.64 0.91 0.84

29-Meia Ponte 0.97 13.23 23.11 −1.03 −1.14 0.93 0.83

As for the other goodness-of-fit metrics, the GPM product presented values of 10.9 mm
for the MAE, 13.51 mm for the RMSE, 4.31% for the PBIAS, 4.81 mm for the ME, 0.97 for
the NSE and 0.94 for the CP in the Meia Ponte River catchment; and 9.55 mm for the MAE,
14.64 for the RMSE, 7.46% for the PBIAS, 7.5 mm for the ME, 0.97 for the NSE and 0.92
for the CP in the Bois River catchment, when compared to gauging measurements. These
results indicate a considerable enhancement with respect to the pixel-based analyses, which
are again indicative of the potential advantages of averaging the precipitation amounts
over larger geographical areas.
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Figure 6. Monthly rainfall amounts as obtained from the GPM product and ground-based gauges for
the Bois River catchment.
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Table 8. Goodness-of-fit metrics for monthly precipitation data from 12 gauging stations located in
the Bois River catchment.

Gauging Station with
Reference Number CC MAE (mm) RMSE

(mm) PBIAS (%) ME (mm) NSE CP

17-Barra do Monjolo 0.92 28.63 44.60 0.22 21.41 0.67 0.41

11-Edeia (Alegrete) 0.96 17.89 25.96 0.01 1.49 0.92 0.86

30-Fazenda Aliança 0.97 12.89 22.84 0.02 2.40 0.93 0.85

12-Fazenda Boa Vista 0.97 16.06 22.48 0.00 −0.27 0.93 0.88

18-Fazenda Nova do Turvo 0.95 20.06 28.67 0.08 8.19 0.89 0.76

20-Fazenda Paraíso 0.93 24.58 34.39 0.03 3.64 0.86 0.75

13-Joviânia 0.98 15.12 24.86 0.11 11.93 0.91 0.80

32-Muarilândia 0.96 18.75 27.25 0.10 9.79 0.89 0.78

24-Montividiu 0.91 32.17 49.35 0.25 23.80 0.60 0.17

5-Palmeiras de Goiás 0.94 24.92 31.95 0.14 14.08 0.84 0.67

21-Paraúna 0.96 18.75 27.25 0.10 9.79 0.89 0.78

19-Ponte Rodagem 0.91 32.17 49.35 0.25 23.80 0.60 0.17
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Figure 7. Scatterplots of monthly rainfall amounts for the GPM retrievals and ground-based gauges
in the Meia Ponte (left panel) and the Bois River catchments (right panel).

3.3. Anual Time Scale

The spatial distribution of the annual rainfall amounts for the water year of 2017
is depicted in Figure 8; the spatialized ground-based measurements are shown in the
left panel and those of the GPM product are in the middle counterpart. It is possible to
observe that as with the other time scales, the GPM product overestimated the precipitation
amounts for both catchments; for the maximum values of annual rainfall, the ground-based
gauges accumulated 1400 mm while the satellite retrievals obtained 1600 mm. In addition,
the satellite product was not able to reproduce the spatial pattern of variability in the
observed rainfall. Whereas some variability is verified for the ground-based rainfall data,
particularly for the northeastern portion of the Bois River catchment which presents a more
complex topography, the satellite estimates are relatively homogenously distributed across
the entire study region. Such a condition resulted in a noticeable gradient in the errors in
the southeastern–northwestern direction (right panel of Figure 8). We again hypothesize
that the spatial interpolation may play a large role on the rougher behavior verified in the
left panel of Figure 8. However, our results suggest that bias correction would be troubling
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for annual rainfall amounts in the study area since the regional distinctions in rainfall
distribution might not be readily explained by the usual covariates, such as altitude.
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As a final remark, we note that previous research demonstrated that the GPM product
has suitable abilities in describing spatial precipitation patterns, but the rainfall intensities
and spatial variability, which are closely linked to seasonality, have some influence on the
capability of the GPM retrievals to capture local precipitation patterns [48]. Our results are
at least to some extent in agreement with these conclusions. In fact, in many situations, the
spatial distribution of rainfall was not properly described by the IMERG satellite retrievals,
with a tendency of generating smoother surfaces as compared to the data captured by
ground-based information. Nonetheless, as may be inferred from Melo et al., 2015, and
Moraes and Gonçalves, 2021 [29,35], the IMERG-GPM may be a preferable alternative
for our study region after spatial averaging, as it more properly described the rainfall
amounts on a daily time scale. Hence, despite the inaccurate descriptions of daily rainfall
extremes, which are not considerably improved under bias correction [6], the short size
of our sample, and the relatively poor representation of spatial patterns, we still believe
that the IMERG-GPM product may be a useful data source for the Brazilian midwestern
region, as compared to well-established alternatives such as TRMM, mainly for continuous
rainfall–runoff simulation based on a daily time step, and drought management, which
requires data at monthly or longer time scales.

4. Conclusions

The GPM mission has provided a new generation of high-resolution precipitation
products that could be utilized in several fields, such as hydrology and climatology. In
this paper, the performance of the fifth version of the IMERG retrieval algorithm for the
GPM constellation was assessed by comparing its satellite retrievals with ground-based
information, on daily, monthly and annual scales throughout the period spanning from
September 2016 to August 2017. The study evaluated the precipitation fields and the
rainfall amounts, averaged at the catchment scale, for the Meia Ponte and the Bois River
catchments, both located in the state of Goiás in the Brazilian midwestern region.

Our results indicated that for the Meia Ponte River catchment, a reasonable agree-
ment between satellite retrievals and ground-based measurements in the precipitation
fields was obtained, with a tendency of overestimation in all time scales, by the satellite
precipitation products. For the Bois River catchment, which is located in a region with
more complex terrain and is less densely gauged, the performance of the satellite product
was considerably worse, with a disruption in temporal coherence for daily data, and a
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stronger positive systematic bias, as compared to its performance with the Meia Ponte
River catchment. When averaged over the catchment area, the precipitation estimates
were reasonable for monthly and annual scales, indicating that the averaging procedure
smoothed out the largest deviations in some areas of the catchments. Nonetheless, the
spatial rainfall patterns were more often than not misrepresented by the IMERG retrievals,
which generated oversmoothed surfaces and did not capture local features of the observed
rainfall fields. Furthermore, in both spatial scales the most extreme events on a daily scale
were not properly reproduced by the satellite product.

Satellite precipitation products are advantageous for practical applications, since they
capture in a more effective manner the space–time patterns of precipitation events and are
not affected by missing data. Nonetheless, as shown in this study and in several others, due
to the indirect mechanisms for estimating rainfall amounts, satellite products are biased—
mainly for the most extreme events, which are paramount for design and risk assessment.
Hence, despite the technological development applied to the GPM mission for providing
high-quality precipitation products, some research effort is still necessary to develop more
effective techniques for bias correction. This is envisaged as our next research objective.
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