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Abstract: The Danjiangkou hydropower station is a water source project for the middle line of the
South-to-North Water Transfer Project in China. The dam is composed of riverbed concrete dam
and earth rock dam on both banks, with a total length of 3442 m. Once the dam is wrecked, it will
yield disastrous consequences. Therefore, it is very important to evaluate the dam safety behavior in
time. Based on the long-term and short-term memory (LSTM) network, the deformation prediction
models of the embankment dam of the Danjiangkou hydropower station are constructed. The models
contain two LSTM layers, adopt the rectified linear unit function as the activation function and
determine the super parameters of the models with Bayesian optimization algorithm. According to
the settlement monitoring data of LD12ZT01 measuring point (dam crest 0 + 648) on the left bank
of the embankment dam of the Danjiangkou hydropower station from July 2013 to March 2022, the
LSTM and bidirectional LSTM models are constructed. In total, 80% of the monitoring data are taken
as the training set data and 20% of the monitoring data are taken as the test set data. The mean
absolute error, root mean square error and mean square error for the test set are 0.42978, 0.56456 and
0.31873 for partial least squares regression (PLSR), 0.35264, 0.47561 and 0.22621 for LSTM and 0.34418,
0.45400 and 0.20612 for bidirectional LSTM, respectively. The results show that the bidirectional
LSTM model can obtain better deformation prediction value than the LSTM model and the PLSR.
Then, the bidirectional LSTM model is used to predict the settlement value of LD16YT01 measuring
point (dam crest 0 + 658) on the right bank, and the mean absolute error, root mean square error
and mean square error for the test set are 0.5425, 0.66971 and 0.4520, respectively. This shows the
bidirectional LSTM model can effectively predict the settlement value of the embankment dam of the
Danjiangkou hydropower station.

Keywords: Danjiangkou hydropower station; embankment dam; deformation prediction; LSTM;
Bidirectional LSTM; machine learning; deep learning

1. Introduction

Dam deformation, cracks and dam leakage seriously affect the safe operation of
earth rock dams [1]. Dam deformation is characterized by uncertainty, diversity and time
variability. Based on the prototype monitoring data, building a deformation prediction
model is an important means to evaluate the dam operation safety.

The most commonly used monitoring model is the statistical model [2], which is simple
to implement, and the accuracy can meet the needs of the project. Mata et al. [3] presented a
hydrostatic-thermal-time statistical model for concrete dam deformation based on principal
component analysis, in which the seasonal function is replaced with the recorded tempera-
tures. Xi et al. [4] proposed an immune statistical model of dam deformation by coupling
the statistical model with the immune algorithm. Sigtryggsdottir et al. [5] developed a
hydrostatic-seasonal-time statistical model for predicting the settlement of concrete-faced
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rockfill dam during operation. The statistical models are also widely applied in civil and
environmental problems. Tatin et al. [6] proposed a statistical model considering the water
temperature profile, and a polynomial approximation of influence functions is imposed
to constrain the statistical problem. Borzooei et al. [7,8] studied the effects of rainfall and
daily precipitation on the influent flow rate and water quality constituents, and time series
segmentation was applied through the sliding window algorithm. Borzooei et al. [9] pro-
posed a stepwise approach for model-based energy optimization of the biological nutrient
removal activated sludge system. Chatrabgoun et al. [10] investigated the risk and impacts
of frost phenomenon in the vineyards by modeling the joint distribution of duration and
severity factors. Noori et al. [11] predicted the total sediment load in rivers by developing
a robust approach in terms of multiple linear regression and principal component analysis-
based support vector regression models. However, when there is multicollinearity among
factors, the prediction accuracy of the statistical model is not good [12].

With the development of computer technology, machine learning algorithms such as
support vector machine [13], extreme learning machine [14], artificial neural network [15,16]
are widely used in deformation prediction models. However, these machine learning algo-
rithms have various shortcomings, such as over fitting, easy to fall into local extremum and
difficult to determine model super parameters. In recent years, with the development of
deep learning technology, long short-term memory (LSTM) [17] has effectively solved the
problems of gradient explosion, gradient disappearance and long-term dependence of con-
ventional recurrent neural network (RNN) models by introducing cell state and gating. The
LSTM models have been widely used for various predictions, such as streamflow [18], well
production [19], vehicle trajectory [20], dam deformation [21–24] and so on. Yang et al. [21]
compared the LSTM model, the stepwise regression method and the partial least square
regression method for deformation prediction of concrete dam. Liu et al. [22] respectively
coupled the principal component analysis and moving average method with the LSTM to
predict the long-term deformation of Lijiaxia arch dam. Xing et al. [23] forecasted the dam
deformation with historical monitoring data using an LSTM network with dynamic update
strategy. Qu et al. [24] studied single-point and multipoint deformation prediction models
of concrete dam in terms of the LSTM network combined with the rough set theory.

The traditional LSTM is a one-way network that only receives the previous input in-
formation. The actual output results are often related to both the previous and subsequent
inputs. To overcome the shortcomings of traditional LSTM model, a bidirectional LSTM
model composed of forward LSTM layer and backward LSTM layer was proposed [25,26].
The bidirectional LSTM model has independent hidden layers in both directions (forward
and backward), and can process sequences at the same time. Zhang et al. [27] predicted
the displacements of the Bazimen and Baishuihe landslides in the Three Gorges, China
with a variational mode decomposition-bidirectional LSTM model with optimized features.
Wei et al. [28] presented a missing data processing method in terms of the partial dis-
tance fuzzy C-means model and bidirectional LSTM network. Le et al. [29] evaluated the
performance of several deep learning models for streamflow forecasting, and the study
shows that the LSTM-based models have better performance and stability than the feed-
forward neural network (FFNN) and convolutional neural network (CNN) models. Lee and
Kim [30] predicted the inflow rate with a sequence-to-sequence mechanism combined with
a bidirectional LSTM. Li et al. [31] used a deep-stacked bidirectional LSTM neural network
with a self-attention mechanism to capture the temporal dependencies of the original sensor
data, and the method can deal with various missing data scenarios in dam monitoring
system. Feizi et al. [32] proposed a hybrid deep learning inflow prediction-rolling window
framework for inflow prediction.

Numerical methods can obtain highly accurate deformation of structure, but numerical
methods have some shortcomings, such as complex preprocessing, difficult determination
of material parameters, long calculation time and so on. To predict deformation in real
time, statistical models and deep learning models are generally used in a dam monitoring
system. The LSTM can effectively solve the gradient explosion, gradient disappearance and
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long-term dependent problems in conventional RNN models, it can reasonably consider
the influence of early information in time series samples and effectively predict dam
deformation, and it usually performs better than time RNN and hidden Markov model
(HMM). In addition, LSTM can be used as a complex nonlinear element to construct a
larger deep neural network. This work aims to establish the LSTM-based deformation
prediction models of the embankment dam of the Danjiangkou hydropower station based
on the monitoring data. According to the settlement monitoring data of measuring point
LD12ZT01 (dam crest 0 + 648) on the left bank of the earth rock dam of the Danjiangkou
hydropower station from July 2013 to March 2022, the partial least squares regression model,
LSTM and bidirectional LSTM recurrent neural network models are constructed, and the
results are compared. The results shows that the deformation prediction model based
on LSTM has better prediction performance, and the prediction accuracy of bidirectional
LSTM model is higher than that of LSTM model. Finally, the bidirectional LSTM model is
used to predict the settlement of measuring point LD16YT01 on the right bank.

After the introduction, Section 2 introduces the deformation prediction theory of earth
rock dam, Section 3 presents the deformation prediction model of the earth rock dam based
on LSTM. Section 4 predicts the deformation of the earth rock dam of the Danjiangkou
hydropower station. Finally, some conclusions are given.

2. Theory of Deformation Prediction for Earth Rock Dam

The vertical displacement (settlement) of earth rock dams is larger than the horizontal
displacement, so the deformation monitoring model is generally based on the settlement
model. For existing earth rock dams in nonalpine regions, water pressure and rheology are
the main influencing factors of dam deformation.

The hydraulic deformation δH is related to the first, second and third power of the
upstream water depth H. Earth rock dams have obvious rheological properties. For
simplicity, the time-dependent deformation can be described in the form of a straight line
δθ . Set t as cumulative monitoring days and θ = 0.01t, then the settlement δ of the earth
rock dam can be expressed as [2]:

δ = δH + δθ =
3

∑
i=1

ai Hi + (c1θ + c2 ln θ) (1)

where ai, c1 and c2 are regression coefficients.

3. Prediction Model of the Earth Rock Dam Deformation Based on LSTM
3.1. LSTM Model

LSTM is a kind of recurrent neural network model, which has excellent time series
prediction performance. The structure of LSTM unit is shown in Figure 1. Information
is transmitted through a cell state (memory unit). Forgetting gate, input gate and output
gate control the update of the cell state. The forgetting gate and the input gate determine
the information discarded and added from the cell state, respectively, and the output gate
determines the output cell state. LSTM can effectively use long-distance time series data,
so it is suitable for predicting dam deformation.

The more hidden layers of LSTM model, the higher the fitting accuracy, but the lower
the model training efficiency. The study shows that the LSTM model with two hidden
layers can effectively predict dam deformation [8]. In order to avoid over fitting (good
model training effect and poor prediction performance), it is recommended to use dropout
technology for network training.
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Figure 1. Structure of the LSTM unit.

3.2. Bidirectional LSTM Model

The traditional LSTM is a one-way network that only receives the input information.
The bidirectional LSTM model can process the sequence in the forward and backward
directions, so it can receive the front and rear input information. Figure 2 shows the
bidirectional LSTM model structure. Storage units in the LSTM layer are updated at each
time step t.
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Set xt as input vector of time t, ht−1 output vector of time t − 1 and σ(.) sigmoid
activation function, then the activation value vectors ft, it and ot of the forgetting gate,
input gate and output gate can be expressed as [12]:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(2)

it = σ(Wxixt + Whiht−1 + bi) (3)

ot = σ(Wxoxt + Whoht−1 + bo) (4)

where Wx f , Wh f , Wxi, Whi, Wxo and Who are weight matrixes, b f , bi and bo are deviation vectors.
The cell state vector ct at time t is calculated by:

ct = ft ◦ ct−1 + it ◦ tanh(Wxcxt + Whcht−1 + bc) (5)

where ◦ is the Hadamard product.
The memory cell output vector ht of time t can be expressed as:

ht = ot ◦ tanh(ct) (6)

In order to contain future information, the bidirectional LSTM consists of forward
and backward LSTM layers. The output layer simultaneously processes the input from
the LSTM layer. ht and ht are the vectors of the backward and forward propagation layers,
respectively, and yt is the vector of the output layer, so the update method of the neural
network is as follows [12]:

ht = H(W1xt + W2ht−1 + b) (7)

ht = H
(
W3xt + W5ht−1 + b

)
(8)

yt = H
(
W4xt + W6ht−1 + by

)
(9)

where b, b and by are deviation vectors and W1~W6 are weight coefficients.

3.3. Modeling Steps

The modeling steps of LSTM-based earth rock dam deformation prediction are as
follows [9]: (i) preprocess the measured data: gross error processing of monitoring data,
remove unreliable data, and retain reliable data; (ii) build a prediction model: the input
of the model is the training sample of the reliable data set, and the Bayesian optimiza-
tion algorithm is used to determine the super parameters of the model and build the
trained prediction model; (iii) predict deformation: obtain the deformation value by in-
putting the independent variable factor data into the prediction model; (iv) evaluate the

model performance: the mean absolute error MAE = 1
m

m
∑

i=1
|yi − ŷi|, root mean square

error RMSE =

√
1
m

m
∑

i=1
(yi − ŷi)

2 and mean square error MSE = 1
m

m
∑

i=1
(yi − ŷi)

2(m is the

number of samples and yi and ŷi are the true value and predicted value of the first sample i,
respectively) are often applied to evaluate the model performance.

4. Deformation Prediction of the Earth Rock Dam of the Danjiangkou Hydropower Station

The Danjiangkou hydropower station is composed of a dam, power plant, ship lift and
water diversion project. The total length of the dam is 3442 m, the riverbed is a concrete
dam and the two banks are earth rock dams. The earth rock dam on the right bank is a
clay core dam with a dam length of 877 m and a maximum dam height of 60 m. The earth
rock dam on the left bank is a clay inclined wall and clay core dam, with a dam length of
1424 m and a maximum dam height of 70.6 m. According to the settlement monitoring
data of measuring point LD12ZT01 on the left bank (dam crest 0 + 648) and measuring
point LD16YT01 on the right bank (dam crest 0 + 658) from July 2013 to March 2022, the
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settlement prediction models of the two measuring points are established. The positive
value is assumed as settlement.

According to the deformation prediction principle of earth rock dam, the output and
input are dam deformation δ and its influence factors (H, H2, H3, θ, ln θ), respectively. The
number of input layer nodes is 1, and the number of output layer nodes is 5. The LSTM and
bidirectional LSTM models for dam deformation prediction are constructed. The Bayesian
optimization algorithm is used to determine the hyperparameters of the recurrent neural
network, and the activation function is the rectifier linear unit function.

Firstly, the measuring point LD12ZT01 (dam crest 0 + 648) on the left bank is modeled
and predicted. The initial parameters of LSTM and bidirectional LSTM models are set as maxe-
pochs = 300, minibatchsize = 16, maxigrationnumber = 30 and dropoutvalue = 0.6. The super
parameter range is: numoflayer = [1, 4], numofunits = [50, 150], initiallearnrate = [0.01, 1],
l2regulation = [10−10, 0.01]. The optimized super parameters of the LSTM model are:
numoflayer = 1, numofunits = 51, initiallearnrate = 0.02286, l2regulation = 0.00123. The opti-
mized super parameters of the bidirectional LSTM model are: numoflayer = 1,
numofunits = 130, initiallearnrate = 0.03528, l2regulation = 0.00613. The training set
data are 80% of the total data, and the remaining data are test data. In order to compare the
modeling and prediction accuracy of the model, the corresponding statistical prediction
model is constructed by using partial least squares regression (PLSR). The partial least
squares equation is:

y = 1.537920− 0.010800H − 0.000078H2 − 0.000000H3 + 0.362265θ + 0.276584 ln θ (10)

Figures 3–5 are the settlement process lines of LSTM, bidirectional LSTM and PLSR
models of measuring point LD12ZT01, respectively. Table 1 compares the errors of dif-
ferent models. The values of RMSE, MAE and MSE are almost as large as those in the
References [33,34], which verifies the accuracy of the present method. From the figures
and table, it is found that the results of LSTM and bidirectional LSTM models are better
than those of the PLSR model, and the results of bidirectional LSTM model on the test set
are better than those of LSTM model. Therefore, the bidirectional LSTM model is more
suitable to predict the deformation of the Danjiangkou earth rock dam. Figure 6 shows the
settlement training and testing process line of measuring point LD16YT01 predicted by the
bidirectional LSTM model, and the mean absolute error, root mean square error and mean
square error for the test set are 0.5425, 0.66971 and 0.4520, respectively. This shows that the
bidirectional LSTM model can obtain high prediction accuracy.
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Table 1. Comparison of errors of different models.

RMSE MAE MSE

PLSR 0.56456 0.42978 0.31873
Training set of LSTM 0.52767 0.39556 0.27844

Test set of LSTM 0.47561 0.35264 0.22621
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5. Conclusions and Outlook

This study presented the deformation prediction models of the Danjiangkou earth
rock dam based on LSTM recurrent neural network, and compared the prediction accuracy
of LSTM, bidirectional LSTM and PLSR models. The results shows that the deformation
prediction model based on LSTM has better prediction performance, and the prediction
accuracy of bidirectional LSTM model is higher than that of LSTM model. Finally, the
bidirectional LSTM model was selected to predict the settlement value of LD16YT01 mea-
suring point (dam crest 0 + 658) on the right bank, and the mean absolute error and root
mean square error for the test set are 0.5425 and 0.66971, respectively. This shows that the
bidirectional LSTM model can effectively predict the settlement value of the embankment
dam of the Danjiangkou hydropower station.

The case study show the bidirectional LSTM model can establish the complex nonlinear
relationship between the deformation of the earth rock dam and its influencing factors
without overfitting. At present, the amount of measured data in Danjiangkou hydropower
station is not large. The proposed bidirectional LSTM model will be further validated with
the increase of the amount of measured data. In addition, the uncertainty and reliability of
the present results will be investigated by training group method of data handling using
extreme learning machine conceptions [35].
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