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Abstract: Residential water end-use events (e.g., showers, toilets, faucets, etc.) can be derived from
high temporal resolution (<1 min) water metering data. Past studies have collected data at different
temporal resolutions (e.g., 4 s, 5 s, or 10 s) without assessing the impact of the temporal aggregation
interval on end-use event features (e.g., volume, flowrate, duration) due to the unavailability of
data at a sufficient temporal resolution to enable such analyses. We recorded the time between
every magnetic pulse generated by a magnetically driven residential water meter’s measurement
element (full pulse resolution) using a new, open-source datalogging device and collected data for two
residential homes in Utah, USA. We then examined water use events without temporally aggregating
data and compared to the same data aggregated at different time intervals to evaluate how temporal
resolution of the data affects our ability to identify end-use events, calculate features of individual
events, and classify events by end use. Our results show how collecting full pulse resolution data
can provide more accurate estimates of event occurrence, timing, and features along with producing
more discriminative event features that can only be estimated from full pulse resolution data to make
event classification easier and more accurate.

Keywords: residential water use; end uses of water; smart water metering; datalogging; water demand

1. Introduction

Regional water use patterns result from the combination of individual water user
behaviors. Knowledge of water use behavior at the household level is required to un-
derstand and manage these regional patterns through a combination of supply-side and
demand management strategies. Availability of widespread high temporal resolution water
use data can help achieve urban water management sustainability goals and expand our
knowledge about residential water use [1,2]. High temporal resolution data (i.e., obser-
vations recorded with a time interval <1 min) enables detection, characterization, and
classification of water end uses. An end-use event represents a water using occurrence
(e.g., a toilet flush). Most residential water meters in operation today are not capable of
collecting this type of data. Additional dataloggers are commonly used to collect high
temporal resolution data on top of magnetically driven meters [3–5]. These dataloggers
count magnetic pulses (rotations of a magnet within the meter’s measuring element), with
each pulse representing a fixed volume of water passing through the meter. High resolution
data are typically recorded by aggregating the number of pulses that occur within each
time step of a selected temporal resolution. The pulse data are then processed and analyzed
to generate end-use information.

Water use events are usually identified in recorded data as periods of non-zero flow,
and several event features are calculated for use in classifying events into a corresponding
end-use category (e.g., a toilet, shower, faucet). Average, mode, and maximum flow rate;
duration; time of occurrence; volume; and the number of vertices within the shape of an
event’s trace (vertices are defined at the change points where flowrate transitions from one
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flowrate to another) are the most commonly used features for event classification [6–9].
Most of these features are influenced by the temporal resolution at which data are recorded
and by the volumetric pulse resolution of the meter (i.e., the volume of water that each
pulse represents). The volumetric resolution of the pulses is constant across meters of the
same size and brand, while its magnitude can vary significantly across different meter sizes
and brands [3]. For example, the volumetric pulse resolution of a 5/8-inch (in) Neptune
T-10 m is approximately 0.03 liters (L) [3], whereas the pulse resolution for a 1 in Master
Meter Bottom Load meter is approximately 0.16 L [3]. Datalogger devices used for high
temporal resolution water use data collection have no control over this parameter (except
for counting multiple rotations as a single pulse), which leads to inconsistency in collected
data, even when a consistent temporal resolution is used.

Consistency in the temporal resolution of data collection for residential end-use stud-
ies has not been the case, with different studies having collected data at different temporal
resolutions (aggregating all water use within a fixed time interval): 10 s temporal resolu-
tion [10–13], 5 s [14,15], and more recently at 4 s [3,5,16,17]. Cominola et al. [2] assessed
the impact of temporal resolution on end-use disaggregation and classification accuracy
using a stochastic model and found that accuracy increases for data at higher temporal
resolutions. However, the highest temporal resolution simulated was 10 s [2] as the model
relied on a dataset collected at this resolution [10]. Despite the number of end-use studies
reported in the literature, no recommended temporal resolution has emerged as a standard.

Accurately identifying simultaneous events (i.e., two different water use events occur-
ring at the same time) and differentiating events that occur at similar flow rates are highly
dependent on the temporal resolution of the data. Data temporal resolution also affects
the accuracy of calculated event features. For example, the estimated duration of an event
depends on data temporal resolution because the start and end of an event can occur at any
moment within a data recording interval, leading to uncertainty at the beginning and end
of an event, especially with longer recording intervals. The duration of an event, usually
calculated as the number of recorded time intervals for which there is non-zero flow, has an
impact on the average flow rate, which is often calculated by dividing an event’s volume by
its duration. The accuracy with which event features can be estimated, in turn, impacts the
methods that can be used for event classification and the accuracy of classification results.

Water use events can be mechanical (those where the resident has no direct control
over the flow rate, the duration, or both (i.e., toilets, clothes washer, dish washer, automated
irrigation events) or user-regulated (where the resident has control over the flow rate and
or duration—i.e., showers, faucet, bathtub, manual hose irrigation). Mechanical events
are typically classified using their features, including duration, volume, flow rate, or cycle
information [7–9]. However, different approaches have been used to classify user regulated
events. For example, after identifying and classifying mechanical events at a residence,
Nguyen et al. [9] used a rules-based procedure to label all user regulated events with a
volume less than 15 L as faucet events. They then identified events using more than 15 L
as either shower or irrigation events. In contrast, Attallah et al. [7] classified all types
of events using a procedure that relies on training a classification model based on the
features of a set of events manually labeled by a water user, indicating that it is possible
to classify all types of events based on their features. However, the ability to accurately
discriminate between events of different types based on their features clearly requires
accurate estimates of event feature values. Furthermore, the temporal resolution of recorded
data and subsequent processing of time aggregated data using filtering techniques can
remove distinct event features (resulting from flow rate fluctuations) that could otherwise
facilitate the classification process.

There are currently no general methods for filtering raw pulse data, disaggregating
overlapping events, and classifying events that have been tested and proven to work
across the different temporal resolutions that have been used for data collection in past
residential end-use studies. While a generalized approach would be incredibly useful, it
remains impractical given the data collection capabilities of current smart water meters
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and dataloggers (i.e., in many cases, data collection is constrained by available metering
and/or data logging technology). Furthermore, a comprehensive characterization of how
the temporal resolution at which data are recorded affects the values of event features, and
hence our ability to classify them has not been possible until now given the lack of data at a
sufficient temporal resolution to enable this analysis.

In this study, we sought to evaluate how the temporal resolution of residential water
use data affects our ability to identify end-use events, calculate features of individual
events, and classify events by end use. While we tested some of the same data aggregation
intervals tested by Cominola et al. [2], we also explored multiple data recording intervals
with temporal resolutions higher than the finest resolution they used (10 s) to explore data
resolutions used in more recent end-use studies [14,17]. We employed a datalogger device
designed specifically to collect water use data on a residential water meter by recording
all magnetic pulses generated by the meter as they happen, producing what we term
“full pulse resolution data”. These data record water use at the highest possible temporal
resolution (i.e., the full pulse resolution of the meter) and represent data not previously
collected or analyzed. We then used these data to address the following research questions:
(a) How does the temporal aggregation interval of recorded data affect the ability to identify,
classify, and calculate attributes of individual events and the data volumes generated?, and
(b) What unique features can be extracted for events derived from full pulse resolution data
that can be used to identify and classify end-use events, including cases when simultaneous
events occur? We analyzed full pulse resolution data using an innovative data collection
method and then aggregated the data to simulate different temporal resolutions to generate
insights into event features that answer these questions. This paper shows that collecting
full pulse resolution data has several advantages versus temporally aggregated data, a key
contribution to the field of water demand management and water end-use studies.

2. Materials and Methods
2.1. Study Sites

Full pulse resolution water use data were collected at two homes (referred to as
sites in this study) located in the cities of Logan and Providence, UT, USA. These homes
were selected because they had different meter brands as well as different water fixture
technology. Built in 2006, Site 1 has newer water fixtures with faucets and showers using a
single actuation lever. Built in 1968, Site 2 has older water fixtures with separate hot and
cold water adjustment knobs. Table 1 shows the length of the data record collected and the
main characteristics of these sites.

Table 1. Main characteristics of the two sites where full pulse resolution data was collected.

Site
Length of

Record
(Days 1)

Number of
Occupants Meter Brand Meter Size

(in)

Volumetric Pulse
Resolution
(L/Pulse)

Year Built Number of
Bathrooms 2

1 26 4 Master Meter 1 0.16 2006 3

2 18 2 Neptune 1 0.25 1968 2 1
2

1 Days with partial records are counted as 1 day. There are 8 days with partial record at Site 1 and 2 days with
partial record at Site 2.; 2 A half-bathroom consists of a sink and a toilet.

2.2. Data Collection

Full pulse resolution water use data were collected using the Pulse-Datalogger [18],
which is a device designed specifically for this application. The Pulse-Datalogger builds
on hardware previously developed by the authors [3,5] and measures the magnetic field
outside of a magnetically driven water meter’s register, similar to devices used in past
studies. In addition to a magnetometer sensor (LIS3MDL), the Pulse-Datalogger is com-
posed of a microcontroller (ATMEGA328P chip), a Micro SD card, and a real-time clock
(RTC). Figure 1 shows the Pulse-Datalogger deployed and the datalogging board. Most
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water meters operating today are not capable of collecting and storing sub-minute reso-
lution water use data due to power and data volume limitations and because they were
not designed or programmed to do so. These meters were designed to report aggregated
volumes at periodic intervals, primarily for billing purposes. Therefore, studies collecting
high resolution data have relied on datalogger devices that operate on top of existing
meters and temporally aggregate data in an effort to extend the battery or data storage
capacity of such devices to a short number of weeks (usually between 1 and 6 weeks of
continuous deployment).
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Figure 1. (a) Pulse-Datalogger installed on a 1 in Master Meter meter (the yellow rectangle shows the
magnetometer sensor attachment on the meter’s register). (b) Datalogging board with: magnetometer
sensor and battery connections indicated in the top and bottom blue rectangles, respectively; micro-
controller highlighted in the yellow rectangle; micro SD card visible in the center of the board; and
real-time clock visible on the left. In a deployment, the battery and datalogging board are enclosed in
the blue box shown in panel (a).

The Pulse-Datalogger was developed to capture data at the full pulse resolution by
recording the time between each magnetic pulse. To accomplish this, we minimized power
consumption and computation time by moving pulse recognition off the microcontroller
(as is commonly done) and onto the magnetometer sensor. Under this approach, the
Pulse-Datalogger can collect full pulse resolution data and match the highest observed
deployment autonomy of similar dataloggers that record temporally aggregated data
(i.e., approximately 5 to 6 weeks of continuous operation). A two-threshold approach
(upper and lower) is used by the device to register pulses when the observed magnetic
signal goes below the lower and subsequently above the upper threshold. Thresholds are
defined by briefly (<1 min) running water through the meter after installing the device and
recording the maximum and minimum magnetic field values observed in this period. The
upper and lower thresholds are then set as a fraction of the maximum and the minimum
recorded, as shown in Figure 2. The coefficients (0.8 and 0.2) used in threshold definition
were calibrated under controlled conditions at the Utah Water Research Laboratory for the
meter brands and sizes installed at Sites 1 and 2.

The microcontroller spends most of its time in a sleep state, only waking up when it
receives an interrupt from the magnetometer or RTC. On an interrupt from the magnetome-
ter (when a pulse is detected), the microcontroller computes the time since the last pulse
and writes that to the Micro SD card. On an interrupt from the RTC (scheduled every day
at midnight), the microcontroller restarts its internal clock to reduce time drift and starts
logging in a new file. The firmware and hardware design of the Pulse-Datalogger are open
source and publicly available on GitHub [18].
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Figure 2. Sample data collected during the calibration period at Site 2 and upper and lower threshold
definition. The x-axis represents approximately 6.5 s (the magnetic field is sampled at 155 Hz). For the
type of meter available at Site 2 (1 in Neptune T-10) the Pulse-Datalogger was calibrated (thresholds
set) to count only the highest peaks to reduce noise as the smaller peaks are not equally spaced.

The Pulse-Datalogger outputs a comma separated values (CSV) file including a three-
line header with information about (1) Date, a datetime value including the date and
time in format “Year/Month/Day Hour:Minute:Second” indicating when data logging
started; (2) Site, a 3 digit numerical identifier used to keep track of where the logger is
installed; and (3) ID, a datalogger identifier (three-digit numerical) used to identify the
datalogger. The Pulse-Datalogger records a single variable; time since last pulse (in ms)
where the first value indicates time since the datetime included in the header. Raw data
were then formatted, adding a date/time stamp to facilitate subsequent analyses and
resulting in a CSV file containing two columns—the date/time stamp and the time since
last pulse. The raw and formatted data files are publicly available in the HydroShare
repository [19] in the RawPulseData and PulseData_Processed folders, respectively. The raw
and formatted data collected are referred to as “pulse data” from this point forward. All
data were collected between 11 February and 15 April 2022 when no outdoor water use
was happening; therefore, only indoor water use was observed.

To verify the quality of the full pulse resolution data, the volume read by the Pulse-
Datalogger was compared with the volume computed from manual readings of the meters’
registers conducted sporadically during deployments to ensure the accuracy of the data
collected. The Pulse-Datalogger records water use on top of an existing meter by counting
the revolutions of a spinning magnet inside the meter where the movement of the magnet
is actuated by a fixed volume of water flowing through the meter. Thus, the maximum
accuracy that can be obtained by the Pulse-Datalogger is that of the meter on which it is
installed (i.e., the Pulse-datalogger and the meter’s register use the same measurement
element inside the meter and should record the exact same volume). At Site 2, all data
were collected in a single deployment (from 29 March 2022 to 15 April 2022). All data
collected in this deployment were accepted for this study as the percent error of the volume
recorded by the Pulse-Datalogger when compared to the manual meter readings was less
than 0.1%. At Site 1, multiple data collection periods were needed (the start and end of
each data collection period are available in HydroShare [19]). The largest error observed for
deployments at Site 1 was 1.5%. During controlled laboratory experiments, the maximum
error observed was less than 0.5%.

To fully explore event features and to facilitate our ability to identify and classify
individual events in the data, we needed a set of labeled events with known types. Labeled
events were generated in two ways. First, occupants of the two homes were asked to
label a subset of individual water use events by recording the event type and start time
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using a cellphone application. Table 2 shows the total number and type of user labelled
events. Second, we conducted a controlled experiment at Site 1. In this experiment, a set of
individual faucet, toilet, shower, and bathtub events were recorded without any other end
use occurring simultaneously. Each individual event type was repeated sequentially at least
ten times for each fixture in the home, waiting at least 30 s between event repetitions and
two minutes when switching fixtures. Showers, bathtubs, and faucets were kept running
for at least 30 s, and toilets were flushed normally. Repetitions were performed to provide
information about the variability in event feature values. To ensure the quality of the full
pulse resolution data collected during the controlled experiment, we manually read the
water meter’s register at Site 1 at the beginning and end of the experiment, calculated the
volume of water used, and compared it with the volume read by the Pulse-Datalogger. We
observed a percent error of less than 0.05%. The user labeled events and the controlled
experiment event data are also available in the HydroShare repository [19].

Table 2. Summary of user labeled events by site and end use. The events labeled by participants
represent only a small subset of all the events occurring at each site.

Site Total Labeled Events Shower Faucet Toilet Bathtub Clothes Washer Dishwasher

1 89 17 46 17 3 3 3
2 92 10 36 26 0 10 10

2.3. Data Analyses

To evaluate the impact of the temporal resolution on event features and our ability to
identify end uses of water, we aggregated the full pulse resolution data collected into the
following temporal resolutions (selected from past studies): 1 s, 4 s, 5 s, 10 s, 15 s, 30 s, and
1 min. Data for all temporal aggregations evaluated have a start date/time of midnight on
the first day of data available for each site, and subsequent timestamps were generated by
adding the temporal resolution to this date and time. Given that water use events begin and
end at random times, the exact date/time at which temporal aggregation intervals begin
may affect the features calculated for some individual events. However, for consistency of
our analyses, we began all time aggregated data at midnight.

Table 3 lists the features and data temporal resolutions used in several past studies
that developed methods for end-use disaggregation and classification based on single point
water use measurements. Some features (number of vertices, mode flow rate, shape) are
commonly computed after filtering the data to remove oscillations from the flow trace data.
The filtering technique may vary depending on the temporal resolution of the data and
the event features to be calculated. The main function of these features is the identification
of single and overlapping events, disaggregation of overlapping events into single events,
and classification of single events into end-use categories.

Table 3. Temporal resolution, event features, and broad methodology for end-use classification methods.

Authors Temporal Resolution (s) Event Features Broad Methodology

Attallah et al. [7] 4
Volume; duration; average, mode,
maximum, and root mean square
flow rate, shape

Low pass filtering,
supervised classification

Nguyen et al. [9] 10 Volume; duration; average and
maximum flow rate; shape

Decision tree, dynamic time
warping, self-organizing map,
hidden Markov model

Pastor-Jabaloyes et al. [6] 3, 0.02 Volume; duration; average and
maximum flow rate; shape

NSGA-II [20] filtering,
unsupervised classification

De Oreo et al. [8] 10
Start and end time; duration;
volume; average, maximum, and
mode flow rate

Manual and visual inspection by
an analyst assisted by a decision
tree algorithm
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We compared the impact of data temporal resolution on the number of events detected
for each site and the main features obtained for the same events across the selected temporal
resolutions. Additionally, we inspected user-labeled events to illustrate how the temporal
resolution impacts event features beyond those tabulated and to investigate additional
event features that can only be extracted from full pulse resolution data. We observed the
impact of the temporal resolution on parameters included in Table 3 that can be computed
without filtering data or disaggregating overlapping events.

3. Results and Discussion
3.1. Separation of Events

Analyses of the controlled experiment pulse data indicated there are delayed or trailing
pulses happening at the end of each event that need to be counted as part of the event
(Figure 3). After examining 132 events from the controlled experiment, we observed
that only in three cases did these pulses happen more than 9 s after the previous pulse.
Therefore, we adopted 9 s as the threshold to separate events in the pulse data (i.e., if a
pulse happens more than 9 s after the previous pulse, a new event is initiated). For time
aggregated data derived from the pulse data with temporal resolutions that were larger
than 9 s, an event was ended when a value of 0 pulses was recorded. For 1 s, 4 s, and 5 s time
aggregated data, we used 9, 8, and 10 s as the threshold to separate events, respectively. In
past studies [3,5,16,17], event definition did not include these trailing pulses as events were
terminated at the first time-step for which there were no recorded pulses. For example, we
labeled single-pulse events as unclassified in our past studies and identified a large number
of them (79% of all indoor events [17]) across all participant sites. It is unclear whether
such events have been labeled as leaks by other authors; however, the pulse data shows
that trailing pulses are part of the preceding event and have been misrepresented in the
past. Single pulse events can also result from brief end uses or leaks.
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Figure 3. Pulse data for different Site 1 events from the controlled experiment. Each panel shows an
individual event. The first value of each event was removed for visualization as it represents time
since the previous event.

The optimal value of the threshold used to separate events may vary for different
sites depending on pipe pressure and fixtures characteristics (e.g., year, model) or types. If
choosing a smaller value (that does not capture trailing pulses), single-pulse events must
be identified and included in preceding events when they are determined to be resulting
from such events. In the opposite case (selecting a value larger than optimal), a method for
separating events occurring close together must be defined and applied to avoid combining
multiple events into one. Table 4 shows the number of events detected at each temporal
resolution using the thresholds described above. The number of detected events decreases
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as the temporal resolution decreases. This will affect estimation of event features and all
frequency analyses conducted.

Table 4. Number of events identified at each site for different temporal resolutions.

Site Temporal Resolution (s) Number of Events Detected Single Pulse Events Events with More Than One Pulse

1 Pulse data 1605 225 1380
1 1590 210 1380
4 1578 203 1375
5 1536 166 1370

10 1513 153 1360
15 1401 132 1269
30 1158 86 1072
60 960 55 905

2 Pulse data 2118 590 1528
1 2072 554 1518
4 2054 483 1571
5 1878 355 1523

10 1797 319 1478
15 1648 272 1376
30 1373 184 1189
60 1072 125 947

Further analysis showed that if we separate events from 4 s data when a value of
0 pulses is observed as we did in our past studies [3,7,16,17], the total number of events
recorded for Site 1 and 2 is 1928 and 3377, and the number of single-pulse events increases
to 489 and 1266, respectively (as compared to the numbers in Table 4). A similar result is
observed by conducting the same analysis on 5 s data, also used in past studies [14]. When
collecting 10 s data and separating events [10,11], the aggregation interval is long enough
that trailing pulses are included within the last time interval of the event. However, with
10 s data, we observed only approximately 90% and 77% of the events detected with the
pulse data, at Sites 1 and 2 respectively, which will also affect frequency estimates and
calculation of event features. Collecting data at coarser temporal resolutions (30 s or 1 min)
further reduces ability to detect individual events. At these coarser temporal resolutions,
we observed more consecutive events being aggregated into single events as water use
never returns to zero (the criteria used to separate events).

3.2. Analysis of Event Features

Figure 4 shows the percent change in the duration of events and the average flow
rate for each event derived from pulse data versus the four smallest temporal resolutions
analyzed (1, 4, 5, and 10 s). Data at temporal resolutions larger than 10 s were not further
analyzed as the number of events detected already indicates these data are not suitable for
end-use analyses without more advanced event separation and identification techniques.
Single-pulse events were not included in these analyses. Events were matched based on
their start date and time (pairing an event identified from time aggregated data with the
closest event from the pulse data). Events with start time differences larger than 1.5 times
the temporal resolution of the data were removed from the analysis. By doing this, we
ensure we are comparing the same event across all temporal resolutions and removing the
effect of aggregated consecutive events. Comparing an aggregated event with multiple
single components would result in larger differences than those observed in Figure 4. The
volume of the events analyzed will not change in most cases as our constraints are aimed
at identifying the same event across all temporal resolutions, and the number of pulses
for each event does not change, regardless of the temporal resolution at which pulses
are recorded.
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Figure 4. Percent change in the duration of events (top row) and average flow rate (bottom row) for
all events at different temporal resolutions compared with events identified from pulse data.

The calculated duration of events increases as the temporal resolution decreases. The
median percent change in duration when collecting 10 s data is larger than 30%, while
the same value for events identified from 1 s resolution data is approximately 3% for
both sites analyzed. The average flow rate of events decreases as the temporal resolution
decreases. This has important implications when assessing the performance of individual
fixtures using the average flow rate (as is commonly done for faucets or showerheads).
Durations calculated from lower resolution data will be biased high and will not accurately
reflect behavior. Flow rates will be biased low and will not be representative of the true
performance of fixtures.

Furthermore, there are differences in the number of data points collected for each
event (e.g., an event that lasts 11 s will have 11 data points at 1 s resolution and 2 data
points at 10 s resolution). This disparity will impact estimates of event features such as
the mode flow rate, median flow rate, number of vertices in the shape of the event, and
any other features depending on frequency or shape of an event. A smaller number of
data points will produce less information that can be used to identify single or overlapping
events, split overlapping events into single components, and calculate unique features that
can be extracted for classification purposes. The number of data values recorded for each
event is also influenced by the volumetric pulse resolution of the meter. A larger value for
volumetric resolution (L/pulse) will result in fewer pulses.
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Figure 5 presents the distributions of average flow rate values calculated from the
controlled experiment events. Our prior analyses of water use event data indicate that the
most distinctive features used for event classification are duration and average flow rate.
Mode and maximum flow rate are highly correlated (between 0.9 and 1) with the average
flow rate. Event volume, which is a multiple of duration and average flow rate, is highly
correlated with duration. Figure 5 indicates that, at Site 1, it is possible to differentiate end
uses based on the average flow rate of events alone at most temporal resolutions given that
the distributions of average flow rate values for different event types largely do not overlap
(distributions of average event flow rates do overlap for 10 s data). Additionally, mechanical
events of the same type (e.g., toilets, clothes washer, dish washer) will have similar duration.
For showers and faucets, duration will exhibit larger variability. The median average flow
rate for the upstairs bathroom shower at Site 1 estimated from pulse data is 8.38 LPM
versus 6.62 LPM when estimated from 10 s data. The duration of events (with the exception
of toilets) was fixed during the controlled experiment; therefore, duration was not analyzed
for these events.
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Figure 5. Distributions of average flow rate values for the controlled experiment events (Site 1)
derived from pulse data and from data aggregated at different temporal resolutions.

Figure 6 shows the distributions of average flow rate and duration values for events
that were manually labeled by residents at both sites. There are distinct combinations of
flow rate and duration corresponding to each end use at both sites for almost all temporal
resolutions evaluated, suggesting that these features could be sufficient to classify individ-
ual events. However, identifying end uses at the fixture level (i.e., the specific fixture using
water) seems more plausible at higher temporal resolutions. For example, separating half
bathroom and downstairs bathroom events (toilets or faucets) for Site 2 appears possible
for pulse data and 1 s data, but challenging at other temporal resolutions as the flow rates
overlap for temporal resolutions lower than 1 s. Residents of both sites were instructed to
label only single use events (i.e., no other use was happening at the same time). We did
not observe fundamental differences in the data, or event features, from these two sites,
despite their different characteristics (Table 1), as the events presented in Figure 6 suggest.
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This indicates pulse data collection can be generalized for properties with different meter
types and water fixture technologies.
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Figure 6. Distributions of average flow rate and duration values for events manually labeled by
residents from data aggregated at different temporal resolutions and pulse data.

3.3. Event Features Extracted from Pulse Data

To date, features used for classifying events have all been calculated from time aggre-
gated data. As our results above show, depending on the data collection interval, features
calculated from time aggregated data may or may not discriminate events. Pulse data
provide the opportunity to extract new features that may be more discriminating and thus
make classification easier and more accurate. The previous analyses focused on calculating
features that could be compared across multiple temporal resolutions; however, the pulse
data and features calculated from it can also be used to classify events. For example,
Figure 7 shows that median pulse spacing can be used to classify individual events follow-
ing simple rules (e.g., any event with a median pulse spacing larger than 1400 ms is a faucet
event). Such rules may even be able to discriminate individual fixtures (e.g., any event
with a pulse spacing less than 500 ms is a flush of the downstairs bathroom toilet). Similar
rules with different values could be defined for each household, which would facilitate
data processing and classification, particularly in real-time applications. While the specific
rules used to classify events may be unique to each site and its fixtures, we anticipate that
similar rules can be implemented for any residential household, as long as fixtures operate
at different flow rates and have different duration, which is normally the case.
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Figure 7. Distribution of median pulse spacing for all events from the controlled experiment at site 1.

Another pulse data feature that may assist in the classification process is the shape
of events. For example, all shower events in Figure 8 (events from the same fixture)
have a similar starting and ending pattern when observing pulse data. Figure 9 shows
pulse and temporally aggregated data for 10 flushes of the same toilet. The pulse data
shape is consistent for repetitions of the same event, and distinctive for each fixture.
While temporally aggregated data captures high and low flow rate phases within each
event, it does not provide a distinctive signature that can be used for events classification
(Figures 8 and 9). Analyzing the pulse spacing for the first and last n values of each event
may assist in the classification process and support fixture level classification. We found
that these patterns are different but exist in the pulse data for all fixtures analyzed for
both sites.

3.4. Analysis of Overlapping Events

Section 3.3 demonstrates how pulse data can facilitate individual event classification.
However, overlapping events typically require additional processing as the flow trace must
be disaggregated into single components that can later be classified. The frequency with
which overlapping events occur is determined by the number of occupants of a site, their
schedule, and water use preferences. In our analysis of 4 s data collected at 31 residential
properties [21], we found that approximately 10% of all the events identified were overlap-
ping events, and they represented approximately 40% of the volume recorded. However,
data were collected during summer and winter months and include irrigation events that
are long in duration with high probability for overlapping [17]. On average, after applying
a splitting procedure that we designed to disaggregate overlapping events, each identified
overlapping event produced 4.4 single events. Again, the large number of single events per
overlapping event largely resulted from long duration irrigation events. The large volume
comprised of overlapping events makes their disaggregation and classification essential in
order to provide an accurate picture of residential water use. However, identifying and
splitting overlapping events is dependent upon the temporal resolution of the data, and



Water 2022, 14, 2457 13 of 18

classifying events resulting from the decomposition of overlapping events is challenging,
as these events will have different features depending on both the temporal resolution of
the data and the algorithm or method used to separate them.
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Figure 8. Pulse spacing and temporally aggregated data for the downstairs bathroom shower events
from the controlled experiment events at Site 1. Each column (1 to 10) shows a different event.

Figure 10 shows the flow rate of an overlapping event composed of multiple single
events observed at Site 2 The oscillations in flow rate observed at all temporal resolutions
other than the pulse data reinforce the need for applying filtering techniques to smooth the
flow trace for time aggregated data prior to calculating event features. These oscillations
are a result of the volumetric pulse resolution of the meter (i.e., only a discrete number of
pulses can be counted in any time interval) and the data recording interval (i.e., pulses are
not always evenly spaced in time at a factor of the temporal resolution). The oscillations
are largest for 1 s data and decrease for 10 s data by sacrificing flow trace details. Filtering
can be used to address these oscillations but may remove the ability to observe low flow
rate events overlapping other end uses and may also mask features related to the original
shape of the event that are important for fixture level classification.

At certain temporal resolutions, some events and event features cannot be seen. For
example, the short low flow rate event observed after 8:22 a.m. (Figure 10) is of similar
magnitude to the oscillations observed in 4 and 5 s data and would likely be ignored at
these resolutions, while for 10 s data the event is not distinguishable. It would not be
possible to separate such events without building an overly sensitive model that may
erroneously separate some single events given that flow rate changes also occur in some
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single events. In our prior work, the number of overlapping events increased during
summer months when irrigation was occurring, as irrigation events tend to have longer
duration than indoor events. Therefore, the importance of collecting data at a sufficient
temporal resolution to identify and separate overlapping events increases during these
months. The pulse data shown in Figure 10 are clearly superior to the time aggregated data
in recording the complex shape of this overlapping event and will make identification and
separation of overlapping events easier and more accurate. The steady behavior of pulse
data opens the possibility for event disaggregation without filtering, which would facilitate
more accurate classification of the single, disaggregated events as their original features
can be preserved.
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Figure 9. Pulse spacing and temporally aggregated data for the downstairs bathroom toilet events
from the controlled experiment events at Site 1. Each column (1 to 10) shows a different event.

3.5. Data Volumes

Collecting data at higher temporal resolutions has several data management implica-
tions related to the data volume generated [7]. These result from general needs to record
(e.g., locally on a datalogger), transmit (e.g., over a telemetry network), store and organize
(e.g., in a database), manage, and analyze the data for potentially many sites. Commonly,
high temporal resolution data consist of two recorded variables, a date/time stamp identi-
fying the data aggregation interval and the number of pulses and/or volume of water that
has passed through the meter during that interval. Given the high temporal resolution of
the data, the volume of generated data can grow quickly. One strategy for reducing the
volume of data generated is to record only non-zero values. Another strategy is to record a
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beginning date/time and then record only water usage without time stamps (assuming
that the data are regularly spaced). The pulse data we collected consist only of numeric
values for the time since the last pulse, which is similar to the second option. The pulse
data are dense during times when water use is occurring, but no values are recorded when
flow through the meter is zero.
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Figure 10. Pulse data and time aggregated data converted to flowrates at different temporal resolu-
tions for a single overlapping event at Site 2. Event start date and time: 2022-04-02 08:16:30.910 MT,
event duration: 20.6 min.

To assess the impact of these data collection and recording strategies, we compared
daily file sizes generated from pulse data recorded on our datalogger versus daily files for
time aggregated data of different temporal resolution using both possible options: (1) with
time stamps and no zeros; and (2) with zeros without time stamp (Figure 11). We used full
days of data collected and generated daily CSV files for each temporal resolution.
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Figure 11. Comparison of distributions of daily CSV file sizes generated from data collected at
different temporal resolutions versus pulse data files. Option 1 refers to data with time stamps but no
zero values. Option 2 refers to data with zeros but no time stamp. Pulse data does not contain a time
stamp for each recorded value.

It is expected that file sizes (for pulse data and option 1) will be larger during summer
months (or times of higher water use), as file sizes will increase as water use does. Pulse
data preserves more detail about events and generates equal or lesser volumes of data when
compared with temporal resolutions that would allow end-use classification. Recording
data with full pulse resolution does not increase the data volume generated when compared
with time-aggregated data up to a 10 s temporal resolution.

4. Conclusions

In this paper, we presented analyses and comparison of residential water use data
at different temporal resolutions in comparison to full pulse resolution data collected
using a specialized datalogger. To answer our first research question about how the
temporal aggregation interval of recorded data affects ability to identify, classify, and
calculate attributes or features of individual events, we demonstrated that as data temporal
resolution decreases, the number of detected end-use events decreases. We also showed
how estimates of event features and the shape of overlapping events were impacted with
decreasing temporal resolution (e.g., as data temporal resolution decreases, estimated event
duration increases and average flowrate decreases). Our results show that temporally
aggregating pulse data reduces ability to accurately estimate event features and generates
oscillations in the data that require filtering techniques to remedy. However, those same
filtering techniques can remove or mask important event features that could be used for
event classification.

Regarding the volume of data generated, the final component of our first research
question, pulse data captured a larger, and more accurate, number of events at each of the
sites without negatively impacting the volume of data generated when compared to time
aggregated data collected at temporal resolutions most suitable for end-use identification,
disaggregation, and classification (i.e., up to 10 s resolution). Additionally, when over-
lapping events occur, time aggregation of the data can mask the features of such events,
whereas pulse data provide a much cleaner trace that would better facilitate disaggregating
overlapping events.

We observed that the values of features calculated for events changed as the tem-
poral resolution decreased, which will negatively impact any classification algorithm or
methodology that uses those features. Key event features, such as the mode flow rate, the
average flow rate, and the duration vary as the temporal resolution decreases leading to
more overlap in the distributions of these values and less power in using these features
to discriminate event types (e.g., for classification). These variations in the number of
identified events and their features have implications on the accuracy of any analyses based
on frequency or event features. For example, estimates of the technical performance of
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water using fixtures are impacted by data temporal resolution and would best be done
using pulse data.

Regarding our second research question, the pulse spacing values within events
provide unique features that could be used to more accurately identify and classify end-use
events. In our controlled experiment, events of different types exhibited unique behavior
at the beginning and end of events, and the median pulse spacing for events of different
types shows great promise as a discriminating feature for classification purposes. These
results also argue for using meters with higher pulse resolution (i.e., smaller volume per
pulse), which would provide greater detail in the trace of individual events and reduce
the likelihood of “zero-pulse” events (i.e., events having volume smaller than the pulse
resolution of the meter) that are registered as part of the subsequent event. While it may not
be practical to replace existing meters for this reason, and in some cases may be impossible
given requirements for safe and accurate meter operation at higher flowrates (e.g., those
seen at homes with automated irrigation systems), the pulse resolution of the meter may be
an important consideration when installing new or in retrofitting existing meter networks.

While we evaluated data from only two single family residential properties, the
data were similar for both newer, single-lever-type fixtures and older dual-knob-type
fixtures, indicating that the uniqueness of event features from different water use fixtures
we observed in the pulse data (e.g., flow rate, pulse spacing, event shape, and unique
behavior at the beginning and ending of events) will exist across water using fixtures at
any property. Thus, collecting pulse data could provide generalized capability to not only
provide temporally aggregated data for any existing operational purposes (e.g., regular
billing) but can also provide more detailed information and discriminating event features
for use in end-use studies. More discriminating features could, in turn, make end-use
disaggregation and classification algorithms simpler and more computationally efficient.
This could change smart metering technology by enabling more efficient computation
of end-use information directly on the meter using edge computing techniques such as
those demonstrated by Attallah et al. [5]. This would open the door for more real-time
applications of the data, including customer feedback portals, in-home displays, and leak
detection and alerting.

The benefits of pulse data are clearly illustrated here and warrant consideration in
future data collection efforts. While differences in the volumetric pulse resolutions of
different meter brands, models, and sizes will still exist, collecting full pulse resolution
data would eliminate differences among data collected with different temporal resolutions,
leading to greater standardization of data collection and analysis methods. Full pulse
resolution data were superior in clearly identifying a larger number of end-use events, they
contributed to more accurate and less ambiguous calculation of event features, they reduce
or eliminate the need for data filtering prior to calculating event features, they more clearly
capture the complexity of overlapping events, and they provide new event features that are
highly discriminatory among events of different types—all without increasing the volume
of data that have to be recorded, transmitted, stored, and analyzed. These benefits bring
opportunities for smart-metering manufacturers to adopt similar data collection strategies
which can lead to better information about water use, faster analytics, and more accurate
user feedback.
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