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Abstract: Modeling pollutant transport in heterogeneous media is an important task of hydrology.
Pollutant transport in a non-homogeneous environment typically exhibits non-local transport dynam-
ics, whose efficient characterization requires a parsimonious model with the non-local feature. This
study encapsulates the non-local transport characteristic of pollutants into the peridynamic differ-
ential operator (PDDO) and develops a PDDO-based model for quantifying the observed pollutant
non-local transport behavior. The simulation results show that the proposed model can describe
pollutant non-local transport behavior in various heterogeneous media. The non-local nature of pol-
lutant transport can be adjusted by pre-defined weight function w(|ξ|) and horizon Hx. Applications
show that the PDDO-based model can better capture pollutant non-local transport behavior than
the classical advection–diffusion equation (ADE) model, especially for quantifying the tail of the
experimental data late. Analyses further reveal that the PDDO-based model can characterize both
normal (Fickian) and anomalous (Lévy) diffusion regimes.

Keywords: pollutant transport; non-local model; heterogeneous media; peridynamic differential
operator; weight function

1. Introduction

The efficient modeling of pollutant transport in a natural environment (surface and
subsurface water) is one of the major issues of computational hydrology [1–5]. Pollutant
transport in heterogeneous media exhibits complex dynamics, due to the multi-scale
heterogeneity of the media, the complex exchange processes between water and tracer, and
complex turbulence in the natural environment [5–7]. A key problem is how to accurately
characterize pollutant transport with complex dynamics in heterogeneous media. Thus,
many models which are capable of well describing the complex processes of pollutant
transport in heterogeneous media have attracted extensive attention in the last two decades,
especially the non-local models [8–11]. It is also noteworthy that although the physical
heterogeneity of the porous medium is essential, many studies have focused on the effects of
spatially variable geochemical heterogeneities because the heterogeneous soil cannot be treated
as uniform and homogeneous in the natural subsurface environment. The spatially variable
geochemical heterogeneities affect pollutant transport significantly [12–15]. Additionally,
many researchers have investigated the transport behavior of molecular size pollutants as
well as suspended particle pollutants and found that the transport behavior between the
solute type and suspended particle type of pollutants is very different [15,16]. In this study,
we focus on the non-local pollutant transport in heterogeneous media, which is usually
characterized by an apparent early arrival feature of the pollutant plume and can pose a
high risk to the environment [17]. The dynamics of pollutant non-local transport in the
heterogeneous systems are not fully understood, motivating this study.

The non-local transport dynamics of pollutant particles may be related to the pref-
erential flow paths in heterogeneous systems [18]. As shown in Figure 1, the pollutant
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particles may experience a sudden entrainment process, and they can travel considerably
far along the ”preferential flow paths”. Considering the non-local transport behaviors of
pollutants, various non-local models have been proposed [19–21]. The main discrepancy
between the non-local and classical local models is that non-local models usually refer to
the integro-differential expression to characterize the spatial interaction natures in heteroge-
neous systems. The non-local transport behavior of pollutants exists at all scales: from the
macroscale in field experiments to laboratory experiments, especially on the micro-scale.
Hence, the existing models in prediction are sometimes acceptable in practice, but not
always. The measured concentration flux can differ by one to two orders of magnitude
from predictions [22].

Preference flow path

Heterogeneous media

Figure 1. Conceptual map of preference flow path in heterogeneous media, the preferential flow path
is drawn with red arrows.

However, despite considerable efforts over the last two decades, the capability to
accurately characterize pollutant transport behavior in the heterogeneous system remains
inadequate. One of the major obstacles is the poor understanding and modeling of non-local
transport behaviors of pollutants in a wide range of conditions. The advection–dispersion
equation (ADE) model provides a classical framework for characterizing pollutant trans-
port and makes an important contribution to the following theoretical development. How-
ever, a growing number of researchers have found that the pollutant moving through
non-homogeneous media (surface or subsurface water) cannot be described by using the
classical ADE model. This study aims to quantify pollutant non-local transport behaviors in
a wide range of conditions and proposes a peridynamic differential operator (PDDO) based
model for quantifying the observed non-local transport behavior. PDDO was first built by
Madenci et al. [23,24], who proposed the PDDO by introducing the classical peridynamic
(PD) theory [25]. The PDDO can describe any order of partial derivatives of the spatial
and temporal functions by using the orthogonality property of the PD functions. The
PDDO is expressed in terms of only integration over the domain of the pre-defined horizon.
Hence, PDDO converts the local differentiation equation to its non-local integration form
in a unified manner, and it is not prone to the singularities that arise from the presence
of discontinuities in modeling [24,26]. Here, this study introduces a PDDO into the ADE
model to describe the dynamics of pollutant non-local transport. Considering various
pre-defined weight functions and horizon domains, the proposed PDDO-based model can
characterize pollutant non-local transport behavior in various conditions. The classical
local model is extended to a general region scale model, even on a global scale, as shown
in Figure 2.

The literature reviewed above takes into account the basic concept maps of the pollu-
tant non-local transport and lays the foundation for the wide application of the PDDO-based
model. The purpose of this study is to answer the following three questions using the
proposed PDDO-based model. First, can the PDDO-based model bridge the pollutant
transport’s local and regional scales? Second, how do the pre-defined weight function and
horizon domains of the PDDO-based model affect the dynamics of the pollutant non-local
transport process? Third, can the PDDO-based model accurately characterize the spatial
correlation of pollutant non-local transport?
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The rest of this work is organized as follows. Section 2 reviews the PDDO theory and
proposes a PDDO-based model. Section 3 gives an analytical solution and numerical algorithm
of the PDDO-based model. One-dimensional and two-dimensional results of the PDDO-based
model with different weight functions and horizon domains are calculated, and the applications
of the proposed non-local model are also shown in this section. Section 4 discusses the diffusion
regime of the PDDO-based model with various PD functions, and the limitations of the PDDO-
based model are also stated here. Conclusions are finally drawn in Section 5.

2. Model Development

Pollutant transport simulation is one of the core tasks of computational hydrology, and
various physical models have been developed and applied in the past decades [21,27–29].
Mathematical modeling and understanding pollutant transport requires determining spa-
tial derivatives of the concentration. However, many studies have found that pollutants
exhibit non-local transport behavior, especially in non-homogeneous environments, which
cannot be well characterized by the classical local definition of spatial derivatives in mod-
eling [17,30]. Considering the drawbacks of the differentiation processes, the integration
processes are more suitable for characterizing non-local pollutant transport. Integration is a
typical non-local process because it depends on the entire range of integration. Hence, the
PDDO is introduced in this study to characterize the pollutant non-local transport behavior.

The most widely used model ADE is always applied to characterize the pollutant
transport behavior, which, however, cannot well describe the non-local transport behavior
of pollutants in heterogeneous media [21,31]. The classical ADE types model can be
expressed as follows [32–36]:

R
∂c(x, t)

∂t
= −v

∂c(x, t)
∂x

+ D
∂2c(x, t)

∂x2
(1)

where c(x, t) is a representation of the pollutant concentration as a function of the space
and time, v [L/T] and D [L2/T] are the mean advection velocity and diffusion coefficient
of pollutant particles, respectively. R (dimensionless) is the retarded coefficient. Thus,
Equation (1) is called the retarded advection–diffusion equation (R-ADE) [37].

The above ADE-type models have been widely used in many studies to describe the
pollutant transport process. However, the observed non-local pollutant transport cannot
be precisely described by the R-ADE model. The non-local transport that exists in various
systems proposes, as do many studies, the following fractional ADE (F-ADE) model to
characterize the observed non-local transport behavior of pollutants:

R
∂c(x, t)

∂t
= −v

∂c(x, t)
∂x

+ D
∂βc(x, t)

∂xβ
(2)

where ∂β/∂xβ is the fractional operator. In this study, the Riemann–Liouville fractional
derivative is considered in the simulation [38].

The F-ADE model provides a robust tool to describe the non-local pollutant transport
along the preferential flow path, as shown in Figure 1. The basic form of space F-ADE
replaces the integer-order derivative in space with a fractional one β (1<β ≤2). When β = 2,
the F-ADE model reduces to the classic ADE. However, various environmental factors
can affect pollutant transport in natural conditions. The F-ADE model cannot capture the
non-locality of the bedload transport at various spatial scales due to the mathematical
definition of the fractional operator. This theoretical deficiency limits researchers from
further understanding the pollutant non-local transport behavior. Large deviations can
arise from the lack of comprehensive quantification of the pollutant non-local transport
process. Hence, we will propose a non-local model for quantifying pollutant non-local
transport behavior with various conditions.
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2.1. A Brief Review of PDDO

Unlike the classical methods (such as finite difference method, finite element method,
etc.) for solving the advection–diffusion equation (ADE) type models to characterize the
pollutant transport, the PDDO can be used to reconstruct the integral form of the target
differential equation [24,26]. Hence, PDDO is an alternative tool to describe the solute non-
local transport. Although the differentiation process is usually more direct than integration
in analytical mathematics, the reverse is true in computational mathematics, especially in
the presence of a jump discontinuity or a singularity. Integration is a non-local process
because it depends on the entire range of integration. Considering non-local pollutant
transport, the PDDO is an efficient tool for describing the pollutant non-local transport
behavior along the preferential paths.

The PDDO can be obtained by using the Taylor series expansion of a function f (x + ξ)
as follows:

f (x + ξ)− f (x) = ξ · d f (x)
dx

+
ξ2

2
· d2 f (x)

dx2 + · · ·+ ξN

N!
· dN

dxN f (x) + R(x) (3)

where R(x) represents the remainder.
Here, a orthogonality property of PD functions, gp

N(ξ), is introduced, which satisfies
the following equations [23]:

1
n!

∫
Hx

ξngp
N(ξ)dξ = δnp with (n, p = 0, 1, · · · , N) (4)

and

gp
N(ξ) =

N

∑
q=0

ap
q wq(ξ)ξ

q (5)

where wq(ξ) is the weight functions, and it can be used to measure the strength of the
influence of the integral points in the defined horizon Hx.

Assuming that the value of the remainder, R(x), is negligibly small, and multiplying
each term in Equation (3) by the proposed PD functions gp

N(ξ) and integrating over the
family of point, x, defined as Hx = x′ ∈ [a, b], one obtains

∫
Hx

[ f (x + ξ)− f (x)]dξ =
∂ f (x)

∂x

∫
Hx

ξgp
N(ξ)dξ+

∂2 f (x)
∂x2

∫
Hx

1
2

ξ2gp
N(ξ)dξ+ · · ·

+
∂N f (x)

∂xN

∫
Hx

1
N!

ξN gp
N(ξ)dξ + R(N, x)

(6)

It is worth noting that each point has its family members in the range of the horizon Hx
and occupies an infinitesimally small entity. Hence, each family’s properties (such as size,
shape, etc.) can be very different, and they significantly affect the strength of non-locality.
The strength of the interaction between the family points in each family group is specified
by the proposed weight functions wq(ξ).

Based on the orthogonal nature of the function gp
N(ξ), the spatial derivatives can be

expressed as follows:

dp f (x)
dxp =

∫
Hx

[ f (x + ξ)− f (x)]gp
N(ξ)dξ (7)

Equation (7) gives a integration expressions of the spatial derivatives in the horizon
Hx. In the regular PDDO, the shape of the horizon is specified as a sphere (3 dimensions),
cylinder (2 dimensions), and segment (1 dimension) of the modeling. Further, the charac-
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teristic internal length parameter (radius of the defined sphere, circle, or line), δ, referred to
as the “horizon”, is constant.

2.2. PDDO-Based Model

As described above, pollutants may exhibit non-local transport behavior in heteroge-
neous media, and the classical ADE types model (1) cannot well characterize the non-local
transport behavior. Considering the drawbacks of the model (1), the PDDO is introduced
here to characterize the non-local transport behavior of pollutants. Figure 2 plots the
conceptual map of the defined horizon Hx, and the local field of the model (1) is drawn
for comparison. As shown in Figure 2, the horizon Hx determines the non-local transport
zone of pollutants, which also indicates the length of the preferential path in the media.
A longer preferential path implies a stronger non-local transport behavior of pollutant
particles, resulting in a larger horizon Hx.

By introducing the PDDO into Equation (1), the following PDDO-based non-local
transport model can be obtained:

R
∂c(x, t)

∂t
=
∫

Hx

(
−v · g1

N(ξ) + D · g2
N(ξ)

)
[c(x + ξ, t)− c(x)]dξ (8)

the parameters v, D, and R are same as Equation (1), and the PD functions g1
N(ξ) and g2

N(ξ)
are determined by using Equations (4) and (5).

Since gp
N(ξ) is zero outside of the defined horizon Hx, Equation (8) can be written as

follows:

R
∂c(x, t)

∂x
= −v ·

[
g1

N ∗ c
]
(x, t) + D ·

[
g2

N ∗ c
]
(x, t)− βc(x, t) (9)

where (∗) denotes the convolution operator:[
gp

N ∗ c
]
(x, t) =

∫
R

gp
N(ξ)c(x + ξ, t)dξ (10)

and

β =
∫

Hx

(
−v · g1

N(ξ) + D · g2
N(ξ)

)
dξ (11)

Thus, Equation (9) is the PDDO-based model for characterizing the non-local transport
behavior of pollutants. The analytical solution and numerical algorithm for solving the
PDDO-based model (9) will be further given in the following section.

x(2)x(1) x(3) x(N-2)... x(i-1) x(i) x(i+1) ...

x
Local

Horizon:

x(N-1) x(N)

Global

xH

Figure 2. Cont.
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Figure 2. Conceptual map of the PDDO-based model and the non-local transport behavior (early
arrivals and trailing edges) of pollutants in the framework of the PDDO-based model. Snapshots at
T0 (start time), T1 and T2 times, respectively.

2.3. Numerical Algorithm of the PDDO-Based Model

As described above, the analytical form of the PDDO-based model cannot be obtained
in most cases. Hence, the numerical algorithm is herein developed to solve the proposed
PDDO-based model.

The one-dimensional case of the PD functions gp
N(ξ) can be set as follows [39]:

gp
2 (ξ) = ap

1 w1(|ξ|)ξ + ap
2 w2(|ξ|)ξ2, p = 1, 2 (12)

Considering the same weigh functions w1(|ξ|) and w2(|ξ|), for all terms, the Equa-
tion (4) can be expressed as follows:

2

∑
q=1

Anqap
q = bp

n (13)

where

Anq =
∫

Hx

w(|ξ|)ξn+qdξ (14)

Equation (13) can be written as follows:

Aa = b (15)

and

a = A−1b (16)

where

A =

[
A11 A12
A21 A22

]
(17)
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and

a =

[
a1

1 a2
1

a1
2 a2

2

]
, b =

[
1 0
0 2

]
(18)

Inserting a into Equation (12), gp
2 (ξ) can be obtained. The implicit discrete form of

Equation (8) can be expressed as follows:

R
cj+1

i − cj
i

∆t
=

Ni

∑
k=1

(
−v · g1

2(ξ) + D · g2
2(ξ)

)[
cj+1

k − cj+1
i

]
∆x (19)

where Ni is the number of the family point of the i-th space point, ∆x and ∆t are space
interval and time interval, respectively.

Equation (19) gives an implicit form of the proposed PDDO-model. Compared with the
discrete form of the classical ADE models by using the finite difference method, the discrete
form of the PDDO-based model also indicates that the target point is not only affected by
the nearby points, but also affected by all family points in the defined near-field Hx.

3. Results
3.1. Analytical Solution of PDDO Model

PDDO-based model (9) gives a powerful tool to solve the non-local transport behavior
of pollutants, and the PD functions gp

N(ξ) and horizon Hx determine the strength of the
non-local property of pollutant transport. The horizon Hx and weight function w(ξ) are
pre-defined according to the environment state before the simulation. In the simulation,
the PD functions gp

N(ξ) should be analytically or numerically determined according to the
pre-defined horizon Hx and weight function w(ξ), which are the core tasks in modeling.

In order to analytically solve the proposed PDDO-based model (9), taking the Fourier
to transform Equation (9), one obtains

R
∂ĉ(k, t)

∂t
= −v ·

(
ĝ1

N(k) · ĉ(k, t)
)
+ D ·

(
ĝ2

N(k) · ĉ(k, t)
)
− βĉ(k, t) (20)

where k is the Fourier variable.
Collating Equation (20) yields

∂ĉ(k, t)
∂t

=

{
1
R

[
−v · ĝ1

N(k) + D · ĝ2
N(k)− β

]}
ĉ(k, t) (21)

Considering the initial point source condition ĉ(k, 0) = 1, the analytical solution of
Equation (21) is

ĉ(k, t) = exp
(

1
R

[
−v · ĝ1

N(k) + D · ĝ2
N(k)− β

]
· t
)

(22)

Taking inverse Fourier transform of Equation (22) yields

c(x, t) = F−1
{

exp
(

1
R

[
−v · ĝ1

N(k) + D · ĝ2
N(k)− β

]
· t
)}

(k) (23)

Equation (23) gives a general form of the analytical solution of the proposed PDDO-
based model (9). In order to obtain an explicit expression of the analytic solution (23), it
is necessary to obtain the form of the function gp

2 (ξ) in the Fourier space. However, it is
impossible to obtain an analytical form of the function gp

2 (ξ) in the Fourier space in most
cases. Therefore, we will use the numerical algorithm to solve the PDDO-based model (9),
as described in the section methodology.
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3.2. One-Dimensional Results of the PDDO-Based Model

PDDO-based model gives an alternative tool to describe the non-local transport be-
havior of pollutants, and the non-local property of pollutants are determined by the weight
function w(|ξ|) and w2(|ξ|) and horizon Hx. To investigate the effect of the weight function
on the pollutant transport process, the following power-law form of the weight function
is considered:

w(|ξ|) = δk

|ξ|k
(k = 0, 1, 2, 3 · · · ) (24)

Figure 3 shows the weight function with different parameter k, and an exponential
function exp(−|ξ|2/δ6) is also drawn for comparison. The result shows that the strength
of point influence in the horizon increases as k decreases, and a smaller k implies a stronger
non-local nature of pollutant transport. The exponential form of the weight function
exhibits the weakest non-local property to characterize pollutant transport.

-0.3 -0.2 -0.1 0 0.1 0.2

10
-10

10
-5

10
0

W
ei

g
h

t 
F

u
n

ct
io

n
 w

(|
|)

k = 3

k = 5

k = 7

k = 9

k = 0

Exponential

Figure 3. The weight function w(|ξ|) (24) with different parameter k, exponential weight function is
also drawn for comparison. All parameters are dimensionless here.

Figure 4 plots the breakthrough curves (BTCs) and the snapshots of the PDDO-based
model (9) with different weight functions; the results of the classical ADE model are also
drawn for comparison. As shown in Figure 4a, the PDDO-based model gives a significant
leading edge characteristic in the early time, which means that the pollutants described
by the non-local model can reach the observation site much earlier than described by
the local model. Furthermore, the early arrival characteristic of pollutants becomes more
evident with the enhancement of the non-local nature, and this is mainly because the
pollutants are easier to reach the observation point through the preference paths. Figure 4b
shows the snapshots of the PDDO-based model, and the results indicate that the non-local
transport behavior of pollutants exhibits trailing edge characteristics. Compared with the
ADE model, the snapshots of the PDDO-based model show a significantly asymmetric
characteristic. The difference between the PDDO model and the ADE model is that the
non-local nature is considered in the PDDO model. The concentration of the pollutant is not
only locally relevant but also correlates with regions within the non-local area. Therefore,
the introduction of the non-local nature leads to pollutant particles with early arrival
features in BTCs and a significant trailing edge in the spatial snapshots.
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Figure 4. The simulation results of the one-dimensional PDDO-based model (9) with different
parameter k. The weight functions are set as Equation (24). (a) The breakthrough curves with
parameters R = 1, v = 0.3 m/min, D = 0.3 m2/min, Hx = 0.6 Ω, (b) R = 1, v = 0.3 m/min,
D = 0.2 m2/min, Hx = 0.12 Ω, and Ω is the entire computing domain. The results of the advection–
diffusion equation model (1) are also drawn for comparison.

3.3. Two-Dimensional Results of the PDDO-Based Model

Equation (9) gives a non-local description of one-dimensional pollutant transport. To
further investigate the non-local transport behavior of pollutants in heterogeneous media,
here we give the following two-dimensional form of the PDDO-based model. We assume
that the advection process occurs only in the x-direction. One obtains

R
∂c(x, y, t)

∂t
=
∫

Hx

[
−v · g10

2 (ξ) + Dx · g20
2 (ξ) + Dy · g02

2 (ξ)
]

·(c(x + ξ1, y + ξ2, t)− c(x, y, t))dVx

(25)

where g10
2 , g20

2 , and g02
2 are PD functions; see Madenci et al. [24] for the detailed derivation.

The last subsection discusses the weight function for characterizing the pollutant
non-local transport. Here, we compared two different horizon ranges Hx in describing
pollutant transport. Figure 5 shows the simulation results of the two-dimensional PDDO-
based model (25); two different Hx are considered, i.e., Hx = 0.6 Ω and Hx = 0.05 Ω. The
results indicate that the plume gives a symmetric (Gaussian) shape in a smaller Hx. This is
mainly because the PDDO-based model can regress to a local ADE form, and the analytical
solution of the ADE is Gaussian distribution in space.

It is worth noting that the domain of the PDDO-based model is divided into a finite
number of cells, and the interior points can be assigned a symmetric family in space, while
the points near the boundary have non-symmetric families. Therefore, the points near the
boundary have their own PD function gp

N(ξ). As shown in Figure 5a, the large horizon
Hx give a large number of non-symmetric families of the points, and the plumes show
significantly asymmetric features.
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(a) Hx = 0.6 Ω (b) Hx = 0.05 Ω

Figure 5. The simulation results of the two-dimensional PDDO-based model (25) with different
horizon Hx. The weight functions set as k = 3 for Equation (24), other parameters are set as R = 1,
v = 0.3 m/s, D = 0.3 m2/s.

3.4. Applications

Here, we check the applicability of the PDDO-based model (9) in quantifying pollutant
non-local transport documented in the literature [17]. To explore the dynamics of tracers
transport in the alluvial setting with heterogeneity, Yin et al. [17] built a two-dimensional,
different alluvial setting with various hydrofacies structures generated by using the T-
PROGS, and simulated the conservative tracer transport by using the Monte-Carlo method.
The detailed information can be found in the literature [17].

Hence, Yin et al. [17] gives an ideal set of data for investigating the non-local pollutant
transport in heterogeneous media. As shown in Figure 6, four snapshots of the tracers are
documented in the studies, i.e., 27 days, 132 days, 224 days, and 328 days. The experimental
data show that the trailing edge becomes stronger with time evolution, which indicates
that the non-local transport behavior enhances with time evolution.

We used the first snapshot (27 days) to determine the parameters v, D, and R for the
PDDO-based and F-ADE models and then predicted the later snapshots by adjusting the
parameters Hx and β. Considering the parameters v and D of the R-ADE model have
the same dimensions as those of the PDDO-based model, the parameters v and D in the
R-ADE model were set to be the same as those of the PDDO-based model, andonly the
parameter R was adjusted. The results of the ADE and F-ADE models are calculated for
comparison. The weight function of the PDDO are pre-defined as w(|ξ|) = δ2/|ξ|2 in the
simulations. Figure 6 plots the fitting results of the PDDO-based model for each snapshot.
The results show that the PDDO-based and F-ADE models can well capture the non-local
transport behavior, while the ADE model cannot capture the observation results. Moreover,
the F-ADE model can capture the trailing edge of the snapshot well, but it is not accurate
for the peak position. This phenomenon may be due to the F-ADE model being a global
non-local model, which assumes that the pollutant transport process is affected by the entire
space, leading it to overestimate the non-local transport behavior of the pollutant. The main
discrepancy between the PDDO-based model and the ADE model is that the PDDO-based
model can well capture the trailing edge feature of the experimental data. The ADE model is
a local definition, which cannot capture the observed non-local pollutant transport behavior.
Additionally, the experimental data show significant asymmetric features in the snapshots,
and the ADE can describe the symmetric transport behavior of the pollutants. Table 1 lists
the best-fitting parameters of the PDDO-based and ADE models, respectively. The results
show that the horizon Hx of the PDDO-based model increases with time evolution, which
is consistent with the experimental data.
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Figure 6. Comparison between the documented snapshots (symbols) and the best-fit results using
the ADE (1) and PDDO-based (9) models at four times (t = 27, 132, 224, and 328 days) along the
300-m-long heterogeneous media. The weight function set as k = 2 for Eq. (24), and the horizon set
as Hx = n · ∆x.

We used the first snapshot (27 days) to determine the parameters v, D, and R for
the PDDO-based and F-ADE models and then predicted the later snapshots by adjusting
the parameters Hx and β . Considering the parameters v and D of the R-ADE model
have the same dimensions as those of the PDDO-based model, the parameters v and D
in the R-ADE model were set to be the same as those of the PDDO-based model, only
the parameter R was adjusted. The results of the ADE and F-ADE models are calculated
for comparison. The weight function of the PDDO are pre-defined as w(|ξ|) = δ2/|ξ|2
in the simulations. Figure. 6 plots the fitting results of the PDDO-based model for each
snapshot. The results show that the PDDO-based and F-ADE models can well capture
the non-local transport behavior, while the ADE model cannot capture the observation
results. Moreover, the F-ADE model can capture the trailing edge of the snapshot well,
but it is not accurate for the peak position. This phenomenon may be since the F-ADE
model is a global non-local model, which assumes that the pollutant transport process is
affected by the entire space, leading it to overestimate the non-local transport behavior
of the pollutant. The main discrepancy between the PDDO-based model and the ADE
model is that the PDDO-based model can well capture the trailing edge feature of the
experimental data. The ADE model is a local definition, which cannot capture the observed
non-local pollutant transport behavior. Besides, the experimental data show significant
asymmetric features in the snapshots, and the ADE can describe the symmetric transport
behavior of the pollutants. Table. (1) lists the best fitting parameters of the PDDO-based
and ADE models, respectively. The results show that the near-filed Hx of the PDDO-based
model increases with time evolution, which is consistent with the experimental data.

Figure 6. Comparison between the documented snapshots (symbols) and the best-fit results using
the ADE (1) and PDDO-based (9) models at four times (t = 27, 132, 224, and 328 days) along the
300 m-long heterogeneous media. The weight function set as k = 2 for Equation (24), and the horizon
set as Hx = n · ∆x. (a) 27 days, (b) 132 days, (c) 224 days, and (d) 328 days.

Table 1. The best-fit parameters for F-ADE (v1, D1, R1, β), ADE (v2, D2, R2) and PDDO-based (v2,
D2, R3, Hx) models.

Time
(Days)

v1
(m/day)

D1
(mβ/day)

β R1
v2

(m/day)
D2

(m2/day) R2 R3 Hx(n)

27

0.018 10 1.4 10 0.18 20 10 1

60
132 65
224 70
328 80

The non-local pollutant transport that exists in various systems can be attributed to
very different mechanisms. For example, in open water (e.g., rivers), the turbulence and the
heterogeneous riverbed that will have an accelerated effect on the pollutant transport lead
to non-local transport behavior. The early arrivals and trailing edges of pollutants (as shown
in Figure 4) can be observed for highly permeable preferential paths in non-homogeneous
media, especially in the media with fractures [18]. The ADE model does not consider
the long-distance spatial correlation (i.e., the non-local nature in space), resulting in its
inability to effectively capture the transport behavior of pollutants in non-homogeneous
media. However, the F-ADE model assumes that pollutant particles can jump an infinite
distance in one movement, which is inconsistent with the actual situation. The FADE
model is a global domain model that may often overestimate the extent of the non-local
transport of pollutants. More specifically, in non-homogeneous domains, highly developed
spatial continuity causes the preferential flow path, producing high-velocity regions, and
the pollutant tracers have a relatively high probability in the non-local jump. Due to
the adjustability of the weight function and horizon zone, the PDDO-based model can
describe pollutant non-local transport in various conditions. Considering the diversity
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of pollutant non-local transport mechanisms, the PDDO-based model is a generalized
model that can describe the transport of pollutants in aquifers, the transport of pollutants
in surface waters, etc.

4. Discussion
Diffusion Regime of the PDDO-Based Model

The theoretical issue of pollutant diffusion has long been central when using fluid
mechanics to explore pollutant transport. A standard tool to explore the stochastic motion
of Brownian tracers is the mean squared displacement (MSD) of the tracers. Similar to
Brownian motion, this subsection aims to evaluate the PDDO-based model by comparing
the MSD, which is the criteria for diffusion states in quantifying pollutant transport. The
MSD is herein defined as follows [40]:

RMSD(t) =
〈
(x(t)− 〈x(t)〉)2

〉
(26)

Equation (26) gives an analytical form of the MSD of particles. Here, we use the
following equation to calculate the MSD of particles in the framework of the PDDO-based
model [31,40]:

RMSD(t) =
∫ +∞

−∞
x2c(x, t)dx (27)

where c(x, t) is the solution of the model (9) in the case of v = 0 with an instantaneous
point source c(x, 0) = δ(x).

Based on the analytical solution, (23) of model (9), and set v = 0, yields

c(x, t) = F−1
{

exp
(

1
R

[
D · ĝ2

N(k)− β
]
· t
)}

(k)

β =
∫

Hx

(
D · g2

N(ξ)
)

dξ
(28)

Considering a general form of ĝ2
N(k) as follows

ĝ2
N(k) = −C · |k|α (29)

Inserting Equation (29) into Equation (28), one obtains

c(x, t) = F−1{exp
(
−C1|k|α · t

)}
(k) (30)

where C1 = D · C/R
First, we consider that α = 2, taking inverse Fourier transform of Equation (30) yields

c(x, t) =
1√

2C1t
exp

(
− x2

4C1t

)
(31)

Inserting Equation (31) into Equation (27), one obtains

RMSD(t) = 2
√

2πC1t (32)

Equation (32) gives that the MSD RMSD(t) is linear with time, and the Fickian diffusion
regime is obtained in the case of α = 2.
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Furthermore, considering that 1 < α < 2, Equation (30) is the characteristic function
of a centered and symmetric Lévy distribution. Therefore, the c(x, t) has the following
power-law asymptotic:

c(x, t) ∼ C1t

|x|1+α (33)

Due to Equation (33) being a Lévy distribution, the mean squared displacement diverges:〈
x2(t)

〉
→ ∞ (34)

Hence, the analytical result shows that the MSD is nonlinear with time in the case of
1 < α < 2, and the anomalous diffusion regime occurs. Based on the above analysis of the
MSD of the PDDO-based model, the proposed non-local model can capture both normal
(Fickian) and anomalous diffusion regimes of pollutants. The PDDO-based model bridges
the local and regional scales by considering various PD functions.

It is also noteworthy that this study has three main limitations of the PDDO-based
model (9) in quantifying pollutant non-local transport behavior. First, the weight function
w(|ξ|) is chosen as empirical, which should be further explored for various conditions.
Second, the horizon Hx is determined by fitting the experimental data, and the quantitative
relationship between Hx and media needs to be established in the future. Third, the non-
local property leads to the calculation time of the PDDO-based model being much higher
than that of the local model. Fast algorithms for solving the PDDO-based model need to be
further investigated.

5. Conclusions

This study proposes a non-local model for quantifying pollutant transport in a hetero-
geneous environment. The non-local property of pollutant transport is encapsulated in the
PDDO. Three conclusions can be drawn from this study.

(1) PDDO gives an efficient tool to describe the non-local transport behavior of pol-
lutants, and the non-local transport feature of pollutants can be adjusted by considering
different weight functions w(|ξ|) and horizon Hx.

(2) The analyses of the MSD for the PDDO-based model give that the PDDO model
can characterize both the normal (Fickian) and anomalous transport behavior of pollutants.
The PDDO-based model bridges the local scale and region scale by considering various
PD functions.

(3) Applications show that the PDDO-based model can efficiently characterize the
observed non-local transport behavior of pollutants, and the non-local feature of pollutant
transport enhances with time evolution.
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