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Abstract: The identification of groundwater contamination source parameters is an important pre-
requisite for the control and risk assessment of groundwater contamination. This study developed
an innovative approach for the optimal design of observation well locations and the high-precision
identification of groundwater contamination source parameters. The approach involves Bayesian
theory and integrates Markov Chain Monte Carlo, Bayesian design, information entropy, machine
learning, and surrogate modeling. The optimal observation well locations are determined by in-
formation entropy, which is adopted to mine valuable information about unknown groundwater
contamination source parameters from measurements of contaminant concentration according to
Bayesian design. After determining the optimal observation well locations, the identification of
groundwater contamination source parameters is implemented through a Bayesian-based Differential
Evolution Adaptive Metropolis with Discrete Sampling–Markov Chain Monte Carlo approach. How-
ever, the processes of both determination and identification are time-consuming because the original
simulation model (that is, the contaminant transport model) needs to be invoked multiple times. To
overcome this challenge, a machine learning approach, that is, Multi-layer Perceptron, is used to build
a surrogate model for the original simulation model, which can greatly accelerate the determination
and identification processes. Finally, two hypothetical numerical case studies involving homoge-
neous and heterogeneous cases are used to verify the performance of the proposed approach. The
results show that the optimal design of observation well locations and high-precision identification
of groundwater contamination source parameters can be implemented accurately and effectively
by using the proposed approach. In summary, this study highlights that the integrated Bayesian
and machine learning approach provides a promising solution for high-precision identification of
groundwater contamination source parameters.

Keywords: groundwater contamination source identification; Bayesian; Markov Chain Monte Carlo;
surrogate model; multi-layer perceptron

1. Introduction

Groundwater contamination has become a global issue due to industrial wastewater
discharge, agricultural fertilizer utilization, landfill leakage, and so on, which damages
the groundwater environment and drinking water safety [1–4]. The spatiotemporal dis-
tribution characteristics of groundwater contamination sources are an important basis for
formulating remediation plans and risk assessments of groundwater contamination [5–7].
However, groundwater contamination is characterized by concealment and hysteresis, so
it is difficult to obtain groundwater contamination source parameters (GCSPs) directly,
such as the location and release history of the groundwater contamination source [8–10].
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Consequently, it is urgent to explore an effective approach for high-precision identification
of GCSPs.

Since it is almost impossible to measure GCSPs directly, many existing identification
approaches infer GCSPs from the easily obtained measurements of contamination concentra-
tion and hydraulic head, which results in an inverse problem. At present, the inverse prob-
lem can be solved through the following approaches [8]: (i) the simulation-optimization ap-
proach [11–13]; (ii) the probabilistic and geostatistical simulation approach [14–16]; (iii) the
analytical solution and regression approach [17–19]; and (iv) the direct approach [8,18,20].
The simulation-optimization approach has been applied extensively in previous stud-
ies, but it is limited by an inadequate description of the uncertainty of solutions [21].
Fortunately, a promising approach, that is, Bayesian inversion, can effectively solve this un-
certainty problem [22–24]. The generalized likelihood uncertainty estimation (GLUE) [25]
is a Bayesian approach first applied to the hydrology field, and it has been applied to
the identification of GCSPs [26,27]. However, the GLUE approach is only suitable for
low-dimensional systems due to its inefficient sampling technique [28,29]. Markov Chain
Monte Carlo (MCMC) [30,31] uses a more efficient sampling technique than that of GLUE.
To date, MCMC has been successfully used for the identification of GCSPs in hydrology
and groundwater fields [7,16,23,24,32].

To date, the MCMC approach has developed many sampling algorithms, including the
Metropolis–Hastings (MH) algorithm [30], the adaptive Metropolis (AM) algorithm [33,34],
the delayed rejection adaptive Metropolis (DRAM) algorithm [35], the Differential Evolu-
tion Adaptive Metropolis (DREAM) algorithm [36], and Differential Evolution Adaptive
Metropolis with Discrete Sampling (DREAM(D)) [37]. For GCSP identification, the unknown
parameters are both continuous (such as contamination source intensity) and discrete (such
as contamination source location). However, many studies assume the contamination
source location as a continuous variable [23,24,38,39]. To identify GCSPs more accurately
and effectively, the DREAM(D)-MCMC approach, which can consider both discrete and
continuous variables, is used for GCSP identification in this study.

Moreover, the observation well locations (OWLs) largely affect the identification accu-
racy of GCSPs [40,41]. However, it has usually been assumed that OWLs are known prior
to Bayesian inversion of GCSPs in previous studies [7,39,42]. Generally, the identification
of GCSPs will be more effective and accurate when the measurements of OWLs have more
valuable information related to unknown GCSPs [16,23]. Moreover, the Bayesian design
is applicable to high-dimensional nonlinear systems such as the groundwater contami-
nant transport model [19,43]. Therefore, information entropy (IE), which is a quantitative
measurement index of information, is employed to scientifically and effectively determine
optimal OWLs through Bayesian design prior to the high-precision identification of GCSPs
in this study.

Furthermore, the processes of the optimal design of OWLs and high-precision identifi-
cation of GCSPs need to invoke the original simulation model thousands of times, which
not only requires an enormous amount of time but also results in a huge computational
load. Establishing a surrogate model for the original simulation model has been regarded
as a promising approach to overcome this challenge [32,44–46]. Multi-layer Perceptron
(MLP) introduces the hidden layer on the basis of a single-layer neural network, which
can be effectively applied to the regression for high-dimensional nonlinear systems [47].
Hence, a surrogate model is constructed to describe the relationship between the input and
output of the high-dimensional nonlinear simulation model by using the MLP approach in
this study. To significantly reduce the computational load and time requirement of optimal
design of OWLs and high-precision identification of GCSPs, the surrogate model is directly
invoked in the whole subsequent iteration process after constructing the surrogate model.

The main objectives of this study are the optimal design of OWLs and the high-
precision identification of GCSPs. An innovative approach that integrates the Bayesian
design, IE, MCMC, and surrogate modeling was developed for the above objectives. The
overall research process is shown in Figure 1. Section 2 mainly explains the proposed
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theoretical framework of this study, including the theory and research approaches. Section 3
mainly examines the performance of the proposed approaches using two hypothetical
numerical case studies. Section 4 shows the results and discusses them. Section 5 presents
the main conclusions of this study.
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2. Theoretical Framework
2.1. Simulation Model

A numerical model of groundwater contamination can describe the real processes
of advection, dispersion, and biochemical reactions of groundwater contaminants so as
to research the excitation response relationship between the input and output of an ac-
tual groundwater system. This study assumes that there is only one conservative con-
taminant, so only advection and dispersion in groundwater need to be considered. A
two-dimensional homogeneous (heterogeneous) steady-flow partial differential equation
is described as follows:

∂

∂xi

(
Ki

∂h
∂xi

)
= 0 (1)

A two-dimensional advection and dispersion groundwater contaminant transport
equation is described as follows:

∂c
∂t

=
∂

∂xi

(
Dij

∂c
∂xj

)
− ∂

∂xi
(cui) +

qcs

nb
(2)

where xi and xj represent the Cartesian coordinates for i, j = 1, 2 (L); Ki symbolizes a
principal component of the hydraulic conductivity tensor (LT−1); h represents the hydraulic
head (L); c is the concentration of a contaminant dissolved in groundwater (ML−3); t
is time (T); q is the volumetric flow rate per unit area of the aquifer representing fluid
sources (positive) (LT−1); cs symbolizes the concentration of the source or sink (ML−3); n
denotes the porosity of the porous medium; b symbolizes the aquifer thickness (L); Dij is
the hydrodynamic dispersion tensor (L2T−1); and ui represents the actual flow velocity
(LT−1). Dij and ui can be written as:
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ui = −
Ki
n

∂h
∂xi

(4)

where αL and αT represent the longitudinal and transversal dispersivities (L), respectively;
ux and uy are the components of the actual flow velocity (LT−1); and |u| denotes the

modulus of u, such that |u| =
√

u2
x + u2

y.
The partial differential equation ((Equations (1)–(4)) is combined with initial conditions

and boundary conditions to form the groundwater flow model and the contaminant
transport model. In this study, MODFLOW [48] and MT3DMS [49] are employed to
solve the groundwater flow and contaminant transport equations, respectively.

2.2. Optimal Observation Well Location Design

According to Bayes’ theorem, the unknown GCSPs φ can be estimated by concentration
measurements m under an observation condition v, and the expression [43] is as follows:

p(φ|m , v) =
p(φ|v )p(m|φ , v)

p(m|v )
(5)

where p(φ|m , v) is the posterior distribution,p(φ|v ) symbolizes the prior distribution,
p(m|φ , v) is the likelihood, p(m|v ) is usually regarded as a normalization constant, and
p(m|v ) =

∫
p(m|φ , v)p(φ|v )dφ. In this study, v symbolizes OWLs corresponding to the

concentration measurements m. The prior distribution p(φ|v ) represents the knowledge
of the unknown parameters prior to obtaining the measurements, which is independent of
the OWLs, so p(φ|v ) = p(φ).

The unknown GCSPs φ are identified based on the concentration measurements m.
The IE of the posterior distribution p(φ|m , v) can be expressed as follows [50]:

H(v) = −
∫

p(φ|m , v) ln p(φ|m , v)dφ (6)

In this study, the expected IE is used as the utility function. The expected IE of an
observation condition v can be expressed as follows [50]:

E(v) = −
∫
[
∫

p(φ|m , v) ln p(φ|m , v)dθ]p(φ|m , v)dm
= −

∫ ∫
p(φ|m , v)p(m|v ) ln p(φ|m , v)dφdm

(7)

where E(v) denotes the expected IE.
The analytic solutions of expected IE in Equation (7) are nonexistent, and expected IE

can be approximately numerically solved using the approach [43] by Huan and Marzouk.
Then, optimal OWLs can be obtained by solving the expected IE.

2.3. Parameter Identification
2.3.1. Bayesian Inversion

After determining the optimal OWLs, the corresponding measurements can be ob-
tained. Subsequently, Bayesian inversion is used for the identification of GCSPs in this
study. The posterior distribution p(φ|m ) can be calculated as:

p(φ|m ) =
p(φ)p(m|φ )

p(m)
(8)

where p(m|φ ) denotes the likelihood equation, and p(m) is usually regarded as a normal-
ization constant.
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This study assumes that the measurement errors conform to the normal distribution
with a mean of 0 and a covariance of R, so the likelihood equation can be expressed
as follows:

p(m|φ ) =
1

(2π)(n/2)|R|1/2
exp

{
−1

2
[m− F(φ)]T R−1[m− F(φ)]

}
(9)

where n represents the number of measurements, |R|means the determinant of the covari-
ance matrix R, R−1 symbolizes the inverse of R, F(·) denotes the simulation model, and T
denotes transposition.

The analytical form of the posterior parameter distribution is usually difficult to obtain
directly for a groundwater simulation model because it is a highly nonlinear system. MCMC
is used to calculate and analyze the statistical characteristics of the posterior parameter
distribution p(φ|m ) in this study.

2.3.2. MCMC

Markov Chain Monte Carlo (MCMC) can randomly search and sample the posterior
parameter space. In the sampling process, MCMC constructs a suitable Markov chain,
which can reach a stable distribution π(φ), that is, the posterior probability distribution of
the parameters, after running for a long enough time. Then, a sampling approach is used
to draw samples from the posterior probability distribution p(φ|m ), and these samples are
used to analyze the statistical characteristics of p(φ|m ).

In this study, Differential Evolution Adaptive Metropolis with Discrete Sampling
(DREAM(D)), which can consider both discrete and continuous variables, is used to identify
GCSPs. The DREAM(D) approach is not described in detail here; interested readers are
referred to Vrugt and Ter Braak [37].

2.4. Multi-Layer Perceptron

Multi-layer Perceptron (MLP) is a supervised machine learning approach that learns a
function F(·) by training on a dataset. Given a set of features Θ = [φ1, φ2, · · · , φk] and a
target y, it can be used to learn a nonlinear function approximator for regression, where k is
the number of dimensions for input. MLP contains one or more nonlinear hidden layers
between the input and the output layer, which is different from logistic regression [47], as
shown in Figure 2.
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model, than that with only one hidden layer. The general regression expression of the MLP
approach [51,52] is:
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where Θ and y denote the inputs and outputs of the regression relationship, respectively;

W and b the weights and bias, respectively; m is the number of hidden layers, and m = 3 in
this study; f is the activation function, including Sigmoid, Tanh, and Relu. The activation
function used in this study is Tanh.

More details related to MLP are available in the study by Noriega [53].

3. Numerical Applications

The above theoretical framework was applied to two hypothetical case studies, includ-
ing a homogeneous case and a heterogeneous case. The advantage of using hypothetical
case studies is that the performance of the proposed approaches can be verified clearly
and accurately, which is because the calculated results can be directly compared with the
theoretical results [54].

3.1. Case Studies
3.1.1. Case 1

The range of the groundwater flow field is 240 L × 180 L in the first case study, and the
discretization graph is shown in Figure 3. The upper and lower boundaries are impervious,
and the left and right boundaries are linearly varying heads, as shown in Figure 3. The
hydraulic conductivity, porosity, and dispersivities are homogeneous and known, as shown
in Table 1. It is assumed that the unknown GCSPs of Case 1 are the intensity (S), release
duration (D), and the location of the groundwater contamination source (X and Y). The
unknown GCSPs φ = [S, D, X, Y] are assumed to obey a uniform distribution. The prior
ranges and true values of the unknown GCSPs are presented in Table 2. Furthermore, we
assume that there is only one contamination source, and the contamination source releases
conservative contaminants from the beginning of the simulation.

Table 1. Parameters values of simulation model for Case 1.

Parameters Values Unit

Hydraulic conductivity, K 18.00 LT−1

Porosity, n 0.30 -
Longitudinal dispersivity, αL 12.00 L
Transverse dispersivity, αT 3.60 L

Table 2. The prior ranges and true values of unknown GCSPs for Case 1.

Parameters True Values Prior Ranges Unit

S 3600 [2000, 5000] MT−1

D 480 [450, 550] T
X 11 [10, 18] L
Y 5 [4, 9] L

In this case study, three observation wells need to be designed, but the OWLs are
unknown. The concentration measurements of all potential observation wells are obtained
at t = 660 T, 720 T, 780 T, 840 T and 900 T . It is assumed that the measurement error ε
conforms to an independent normal distribution with a mean of 0 and a variance of 0.05.
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3.1.2. Case 2

The groundwater flow field range of the second case study is 240 L × 180 L. The
boundary conditions, porosity (n), dispersivities (αL and αT), unknown parameters, ob-
servation well conditions, etc., are the same as in Case 1. However, the conductivity field
has three zones with hydraulic conductivity K of 6, 15, and 22 (LT−1) from left to right,
respectively, as shown in Figure 3.

3.2. Application of the Surrogate Model

The MLP approach is used to construct a surrogate model for the original simulation
model to reduce the computational load of the optimal design of OWLs and the identifi-
cation of GCSPs. The first step of constructing the MPL surrogate model is to draw the
necessary parameter samples from the prior range of unknown GCSPs to obtain training
samples. The obtained parameter samples are used as the input data for the original simu-
lation model, and then the original simulation model is run to obtain the corresponding
concentration outputs. Next, the MLP surrogate model is constructed based on the input–
output datasets. In this study, the MLP surrogate model is constructed for the original
simulation model according to 1000 sets of input–output datasets, and 200 sets of new
parameter samples are randomly selected from the prior range of unknown GCSPs as test
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samples to test the accuracy of the newly constructed MLP surrogate model. The 200 sets
of parameter samples are used as the input of both the original simulation model and the
newly constructed MLP surrogate model. Then, 200 sets of corresponding concentration
outputs of the original simulation model are compared with those of the MLP surrogate
model to analyze the accuracy of the constructed MLP surrogate model. We compared all of
the outputs of the original simulation model with those of the constructed MLP surrogate
model one by one in this study to test the accuracy of the constructed MLP surrogate
model more accurately. Relative error (RE) is used to quantify the accuracy of the MLP
surrogate model:

RE =

∣∣∣∣output of original simulation model− output of surrogate model
output of original simulation model

∣∣∣∣× 100% (11)

3.3. Optimal Observation Well Location Design for Case Studies

According to the constructed MLP surrogate model and Equations (5)–(7), the values
of E(v) are obtained for all of the potential OWLs. According to the meaning of IE, the
observation well design scheme with the minimum value of E(v) is regarded as the optimal
observation well design scheme. Three optimal OWLs were obtained to suit the needs of
the two case studies.

3.4. Computational Time Analysis

One of the main objectives of this study is to improve the efficiency of the iteration
process for the optimal design of OWLs and the identification of GCSPs. Therefore, the
execution time of the original simulation model and the MLP surrogate model was mea-
sured and compared throughout the computational process. Furthermore, the purpose of
simultaneously applying the proposed approach to Cases 1 and 2 is to test whether the
approach is suitable for both homogeneous and inhomogeneous media.

4. Results and Discussion
4.1. Analysis of the Surrogate Model

The performance of the constructed MLP surrogate model of Cases 1 and 2 in this
study is illustrated in Figures 4 and 5, respectively. To evaluate the performance of the
MLP surrogate model more objectively, the contamination concentration outputs of the
MLP surrogate model and the original simulation model and the average relative errors
between them are displayed randomly, which are obtained by any one parameter sample
of the 200-set test samples at each moment (t = 660 T, 720 T, 780 T, 840 T and 900 T).
Figures 4 and 5 show that the contamination concentration outputs of the MLP surrogate
model are very close to those of the original simulation model, and the relative error value
is very small, which indicates that the MLP surrogate model achieves high accuracy and is
very close to the original simulation model. The results also show that the MLP approach is
suitable for constructing a surrogate model for both the homogeneous and heterogeneous
groundwater simulation models. Therefore, the MLP surrogate model can be directly used
for the optimal design of OWLs and the identification of GCSPs in the two case studies,
which not only enhances the overall computing efficiency but also maintains high precision.

However, the surrogate model has some limitations, such as the inability to analyze
the precise mechanism, which is because it is a black box model. Generally, the surrogate
model is applied to the situation in which the simulation model must be invoked thousands
of times, such as simulation optimization and uncertainty analyses.
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4.2. Analysis of the Optimal Observation Well Locations

With the values of E(v) obtained for two case studies, the optimal OWLs were
determined, and the three optimal OWLs are shown in Figure 6.
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Most of the optimal observation wells determined by Bayesian design and IE are
located along the flow direction of groundwater. This shows that more valuable information
about unknown GCSPs can be obtained by sampling along the flow direction.

4.3. Analysis of the Parameter Identification Results

We compared the identification accuracy of GCSPs of the optimal design with that
of three other random designs to verify the feasibility and effectiveness of the optimal
design of OWLs proposed in Section 4.2. The OWLs of the optimal design and the other
three random designs are shown in Figure 6. The corresponding trace plots of the MCMC
simulation for the two case studies are shown in Figures 7 and 8.
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Figure 8. Trace plots of the MCMC simulation for Case 2.

Figures 7 and 8 show that compared with the other three random schemes, the
trace plots corresponding to the optimal design of OWLs can converge to near the true
value faster.
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To further ensure the stable convergence of the Markov chains, the Gelman–Rubin
approach was used for convergence diagnosis, which is a variance ratio approach proposed
by Gelman and Rubin [55]. The index of convergence diagnosis can be expressed as:

R =

√
g− 1

g
+

q + 1
q
· B

W
(12)

where R denotes the diagnostic index, which is the scale reduction score; g denotes the
length of Markov chain in the DREAM(D) algorithm; q is the number of Markov chains; B
represents the variance of the average value of the q Markov chains; W denotes the average
value of the intrachain variance of the q Markov chains. Generally, if the value of R is less
than 1.2, it is considered that the Markov chain has attained a stable convergence state; that
is, the sampling process of the algorithm has converged.

The last 20,000 sets of samples in the stable convergence stage were used to estimate
the statistical characteristics of the posterior parameter distribution. The comparison results
of the posterior probability distributions of GCSPs obtained by the optimal design of OWLs
and the other three random designs are shown in Figure 9. It should be noted that only
the delayed probability distributions of parameters D and S are shown in Figure 9. This
is because parameters D, X, and Y are treated as discrete variables in the identification
process of GCSPs in this study; only the parameter S is treated as a continuous variable,
while X and Y are sensitive to the obtained contamination concentration measurements,
and their posterior probability distribution is one or several vertical lines, so their posterior
probability distribution is not displayed in this study.

Water 2022, 14, 2447 14 of 17 
 

 

where R  denotes the diagnostic index, which is the scale reduction score; g  denotes 

the length of Markov chain in the DREAM(D) algorithm; q  is the number of Markov 

chains; B  represents the variance of the average value of the q  Markov chains; W  

denotes the average value of the intrachain variance of the q  Markov chains. Generally, 

if the value of R  is less than 1.2, it is considered that the Markov chain has attained a 

stable convergence state; that is, the sampling process of the algorithm has converged. 

The last 20,000 sets of samples in the stable convergence stage were used to estimate 

the statistical characteristics of the posterior parameter distribution. The comparison re-

sults of the posterior probability distributions of GCSPs obtained by the optimal design 

of OWLs and the other three random designs are shown in Figure 9. It should be noted 

that only the delayed probability distributions of parameters D and S are shown in Figure 

9. This is because parameters D, X, and Y are treated as discrete variables in the identifi-

cation process of GCSPs in this study; only the parameter S is treated as a continuous 

variable, while X and Y are sensitive to the obtained contamination concentration meas-

urements, and their posterior probability distribution is one or several vertical lines, so 

their posterior probability distribution is not displayed in this study. 

 

 

Figure 9. Comparison results of the posterior probability distributions for the optimal design and 3 

other random designs for Case 1 (Upper) and Case 2 (Lower). 

Figure 9 shows that compared with the other three random designs, the optimal de-

sign of OWLs obtains the maximum a posteriori probability (MAP) and mean values of 

parameters D and S that are closer to their true value. The uncertainties of posterior pa-

rameter distributions obtained by the optimal design of OWLs are also lower than those 

obtained by the other three random designs. This shows that the optimal design of OWLs 

can obtain more accurate identification results. Therefore, the optimal design of OWLs 

and the approaches for GCSP identification are feasible and efficient. 

It is noted that although the MLP surrogate model and the simulation model have a 

highly similar input–output relationship, the error between them still exists. The error still 

has a slight impact on identification results. We will study this aspect in detail in future 

research. 

Figure 9. Comparison results of the posterior probability distributions for the optimal design and
3 other random designs for Case 1 (Upper) and Case 2 (Lower).

Figure 9 shows that compared with the other three random designs, the optimal
design of OWLs obtains the maximum a posteriori probability (MAP) and mean values
of parameters D and S that are closer to their true value. The uncertainties of posterior
parameter distributions obtained by the optimal design of OWLs are also lower than those
obtained by the other three random designs. This shows that the optimal design of OWLs
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can obtain more accurate identification results. Therefore, the optimal design of OWLs and
the approaches for GCSP identification are feasible and efficient.

It is noted that although the MLP surrogate model and the simulation model have a
highly similar input–output relationship, the error between them still exists. The error still
has a slight impact on identification results. We will study this aspect in detail in future
research.

Moreover, the constructed MLP surrogate model effectively reduces the calculation
time in the processes of the optimal design of OWLs and the identification of GCSPs.
Completing the same 50,000 simulations only takes 175 min when using the MLP surrogate
model, while it takes 1400 min to use the simulation model. These operations were run
on a PC platform with an AMD R5-3600X 3.80 GHz processor and 16 GB RAM. The MLP
surrogate model is characterized by short computation time and high accuracy, which
promotes its application in solving the identification problem of GCSPs.

5. Conclusions

This study developed an integrated Bayesian inversion and machine learning approach
that combines MCMC, IE, MLP, and surrogate modeling for the optimal design of OWLs
and the identification of GCSPs. The expected IE is used to quantify valuable information
related to GCSPs carried by concentration measurements by linking it with Bayesian design
so as to determine the optimal OWLs. After determining the optimal OWLs and obtaining
the corresponding contamination concentration measurements, the posterior distributions
of the unknown GCSPs are obtained by using the DREAM(D)-MCMC approach.

The MLP, which is a type of machine learning approach, is applied to construct a
surrogate model for the original simulation model, which is directly invoked for the op-
timal design of OWLs and the high-precision identification of GCSPs. The constructed
MLP surrogate model can significantly reduce the computing load and computing time,
which shows that the processes of design and identification can be greatly accelerated by
integrating surrogate modeling and machine learning. Overall, the accuracy and effec-
tiveness of the proposed approach were verified through case studies of homogeneous
and heterogeneous media in this study. In summary, this study highlights that the inte-
grated Bayesian and machine learning approach provides a promising solution for the
high-precision identification of GCSPs. In future research, a numerical case of groundwater
contamination source identification that is closer to the real situation will be established to
further illustrate the feasibility and effectiveness of the approach proposed in this paper.
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