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Abstract: Coagulation–adsorption can be effective in the removal of the organic matters remaining in
biotreated coking wastewater (BTCW), and cheap and efficient adsorbents benefit the widespread
application of this technology. In this study, a sludge-based activated carbon (SAC) was prepared
using zinc chloride to activate sludge pyrolysis carbon for the treatment of BTCW with coagula-
tion as the pretreatment process. According to Brunauer-Emmett-Teller (BET) and the scanning
electron microscope (SEM) analysis, the SAC exhibited a specific surface area of 710.175 m2/g and
well-developed pore structure. The removal characteristics of the organic matter in BTCW were
systematically studied. The results show that 76.79% of the COD in the BTCW was removed by
coagulation combined with SAC adsorption, and the effluent COD was below the discharge limit
(80 mg/L) (GB16171-2012), with the optimal dosages of polyaluminum chloride and SAC being
150 mg/L and 4 g/L, respectively. Compared with a commercial powdered activated carbon (PAC)
(48.26%), the SAC achieved a similar COD removal efficiency (47.74%) at a higher adsorption speed.
The removal efficiencies of the hydrophobic components (77.27%) and fluorescent components by
SAC adsorption were higher than those by PAC adsorption. The SAC also had an excellent removal
effect on complex organic compounds and colored substances in the BTCW, as revealed by UV-vis
spectra analyses.

Keywords: sludge-based activated carbon; biotreated coking wastewater; coagulation; adsorption;
organic pollutants

1. Introduction

Coking wastewater is a typical industrial wastewater produced from coking plants
in the process of coal coking, gas purification, and by-product recovery [1–4]. It is a
typical organic wastewater containing a variety of refractory compounds. Biological
methods are commonly used in the treatment of coking wastewater as they are efficient
and economic. However, the COD value of the secondary biochemical effluent of coking
wastewater is generally above 150 mg/L with several remaining refractory organics, such
as aromatic hydrocarbons, long-chain alkanes, benzene series, and polycyclic aromatic
hydrocarbons [5]. The improved discharge standards of coking wastewater in China and
even the zero-discharge strategy in some regions have made secondary biological treatment
insufficient for the treatment of coking wastewater. Therefore, effective advanced treatment
technologies for coking wastewater must be adopted, such as coagulation, adsorption,
enhanced biological treatment, advanced oxidation (AOPs), or a combination of these
techniques [6,7].

Based on our previous study, macromolecular organics with a molecular weight greater
than 30 kDa in biotreated coking wastewater (BTCW) accounted for about 20%, as revealed
by COD measurement [8]. Coagulation can remove suspended solids and macromolecular
matter [9–12], which can be used as a pretreatment process for BTCW. Adsorption has
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been reported to effectively remove organic pollutants from BTCW in recent years [6,7,9],
especially micromolecular organics. Coagulation combined with adsorption has been
found to be an effective technology in the advanced treatment of textile wastewater [13]
and landfill leachate [14] and can be efficient in the removal of organics in BTCW as well.
The development of economic adsorbents, such as sludge-based activated carbon, has great
significance for the development of adsorption technology [15].

With the development of China’s industrialization and urbanization, the amount of
municipal sludge has grown rapidly [16–18]. It was reported that 200 million tons of
sewage was treated and more than 60 million tons of municipal sludge was produced
(with 80% moisture content) every day in China in 2019 [17,18], posing a huge challenge to
waste management. The pyrolysis of sludge into biochar (adsorbents) is one of more cost-
effective and environmentally friendly alternatives, as opposed to the commonly applied
disposal methods for sludge [19]. Sludge-based activated carbon has a developed pore
structure, large specific surface area, and abundant surface functional groups [20], which
showed good removal effects on antibiotics, heavy metal ions, and organic pollutants in
wastewater [20–22]. It is a potential alternative adsorbent for wastewater treatment [23,24].
However, SAC has not been applied in the advanced treatment of coking wastewater by
current studies. Moreover, the understanding of the organic matter adsorption charac-
teristics of BTCW is insufficient. More research on how SAC adsorption performs in the
removal of the organic pollutants in BTCW is needed.

In this study, a SAC was produced from municipal sludge to remove the organic
pollutants in BTCW with a pretreatment process of coagulation. Moreover, adsorption
by a commercial PAC was applied for comparison. The adsorbents were characterized,
the optimal conditions for coagulation and adsorption were studied, and the removal
characteristics of the organic matter in BTCW were systematically analyzed. We believe
that these results can enrich the knowledge of advanced treatment of coking wastewater.

2. Materials and Methods
2.1. BTCW Characteristics

The BTCW used in this study was collected from a coking wastewater treatment plant
in northern China, which adopted a secondary treatment technology of the hydrolysis
acidification-anoxic/oxic (HA-A/O) process. Characteristics of the BTCW are shown in
Table 1, with the COD value ranging from 200 mg/L to 250 mg/L.

Table 1. Main water quality parameters of BTCW.

COD (mg/L) BOD5 (mg/L) pH NO3−-N (mg/L) NH4
+-N (mg/L)

200~250 20~25 7.0~8.0 11.5~14.0 4.0~4.5

2.2. Sludge-Based Activated Carbon Preparation

The dehydrated sludge (with 80% moisture content) obtained from a municipal
wastewater treatment plant in Beijing, China, was used to produce SAC according to
the method of Li et al. [23,24]. First, the sludge was dried, pulverized, and sieved to a
uniform size of 200 mesh. Then, the sludge was placed in a tube furnace, heated to 500 ◦C,
and stayed for 30 min in a nitrogen atmosphere. After cooling, the pyrolyzed solid was
soaked in 6 mol/L HCl for 6 h, washed with deionized water to a neutral pH, and dried.
Next, it was soaked in 8 mol/L ZnCl2 with stirring for 15 h for activation, and the mass
volume ratio of solid to ZnCl2 solution was 1:3. After filtration and drying, the solid was
placed in a tube furnace, heated to 800 ◦C, and stayed for 1 h in a nitrogen atmosphere.
After cooling, the solid was washed with HCl, subsequently washed with deionized water
to a neutral pH, and dried at 105 ◦C for 24 h. The activated carbon prepared under the
above conditions was named SAC.
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2.3. Adsorbent Characterization

The pore structure characteristics of SAC and PAC were determined by using a gas
adsorption analyzer (Quantachrome, NOVA 2000e, Boynton Beach, FL, USA) at 77.35 K.
The surface properties of the two adsorbents before and after adsorption were analyzed
by using a scanning electron microscope (JEOL, JSM-7800F, Tokyo, Japan), respectively.
The surface organic functional groups were studied by using a Fourier transform infrared
spectroscopy (Thermo Scientific, Nicolet iS10, Waltham, MA, USA). The spectra were
recorded in the wavenumber range of 4000~400 cm−1. The XRD patterns were studied by
using an X-ray diffractometer (Rigaku, Ultima IV, Tokyo, Japan).

2.4. Coagulation Pretreatment

The coagulation experiment was performed at room temperature. Polyaluminum
chloride (10 g/L) was used as the coagulant. An amount of 200 mL BTCW was initially
mixed at a speed of 250 r/min for 30 s. After the coagulant’s addition, the system was
mixed at a speed of 200 r/min for another 90 s. Then, the speed was reduced to 40 r/min
for 30 min. Finally, the mixture was allowed to stand for 30 min, and the supernatant
samples were extracted at about 2 cm below the solution’s surface with a syringe for further
analyses.

2.5. Adsorption Treatment

After the coagulation pretreatment, adsorption was performed with 20 mL BTCW at
room temperature, with pH values between 7 and 8, and the vibration speed at 200 rpm/min.
Then, the solution was filtered through a 0.45 µm cellulose membrane filter for further
analysis. The effects of the adsorption time and adsorbent dosage on the adsorption perfor-
mance were investigated for both the SAC produced in this study and a commercial PAC
(CAS No. 7440-44-0) purchased from Macklin (Shanghai, China).

2.6. Dissolved Organic Matter (DOM) Fractionation

The DOM in the wastewater was classified into three different components using
XAD-4 and XAD-8 resins, namely, hydrophilic fraction (HPI), transphilic fraction (TPI),
and hydrophobic fraction (HPO) [6,25]. The resins were cleaned with methanol before use
until no organic matters released and no changes in the ultraviolet spectrum of methanol
were detected. An amount of 50 mL BTCW was acidified by using HCl until the pH value
was 2, and then it passed through the XAD-8 column at a speed of 90 mL/h. The organic
matters adsorbed on the XAD-8 resin were considered as the hydrophobic fraction (HPO).
The effluent from the XAD-8 was subsequently passed through the XAD-4 column at a
speed of 120 mL/h, and the substances adsorbed on the XAD-4 resin were considered as
the transphilic fraction (TPI). Those remaining in the effluent of XAD-4 were classified as
the hydrophilic fraction (HPI). The COD of raw wastewater was defined as DOM1. The
COD values of the effluents from XAD-8 and XAD-4 were defined as DOM2 and DOM3,
respectively.

The concentration of each DOM fraction was calculated as follows:

Hydrophobic fraction = DOM1 − DOM2 (1)

Transphilic fraction = DOM2 − DOM3 (2)

Hydrophilic fraction = DOM3 (3)

2.7. Three-Dimensional Excitation–Emission Matrix (3D-EEM) Analysis

The three-dimensional fluorescence spectra were measured by using an F-7000 fluo-
rescence spectrophotometer. The excitation wavelengths (Ex) were set as 200~400 nm, and
the emission wavelengths (Em) were 220–500 nm. The wavelength interval was 5 nm, and
the scanning speed was 12000 nm/min.
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The 3D-EEM spectrum is divided into 5 regions, including Region I (Ex/Em =
200~250 nm/260~330 nm), Region II (Ex/Em = 200~250 nm/330~380 nm), Region III
(Ex/Em = 200~250 nm/>380 nm), Region IV (Ex/Em = 250~450 nm/260~380 nm), and
Region V (Ex/Em = 250~450 nm/>380 nm). The fluorescence area integration (FRI) was
used to quantitatively analyze the EEM spectrum with MATLAB 2016b [26,27]. Before the
FRI analysis, blank subtraction and interpolation methods were used to correct the area of
the 3D-EEM spectrum affected by Rayleigh scattering and Raman scattering.

2.8. UV-Vis Spectrum Analysis

The UV-Vis absorption spectrum was measured by using a DR6000 spectrophotometer.
A 1 cm quartz cuvette was scanned in the range of 190–700 nm to measure the absorbance
of the sample. Nonlinear fitting on the absorbance of different bands was performed in
R 4.0.5.

2.9. Adsorption–Desorption Performance Analysis

To evaluate the SAC regeneration ability, we carried out adsorption–desorption exper-
iments for SAC. Cyclic adsorption–desorption batches were performed by employing a
0.1 mol/L NaOH solution as the regenerant. SAC with adsorbed pollutants was treated
with 0.1 mol/L NaOH for 1 h, with a mass-to-volume ratio of 1 g/10 mL. Afterwards,
the desorbed SAC was rinsed and dried, exposed again to BTCW in a flask and agitated
with 200 rpm at room temperature. The COD removal efficiency was measured for each
repetition.

3. Results and Discussion
3.1. Optimal Coagulant Dosage and Coagulation Efficiency

Coagulant dosage, as a fundamental parameter, can affect the coagulation performance
and determine the coagulation efficiency [28,29]. The effect of the polyaluminum chloride
dosage on the coagulation capability for BTCW treatment was investigated in the jar test.
The results are shown in Figure 1. The COD removal efficiency of BTCW greatly increased
with the increase in the coagulant dosage in the range from 0 to 150 mg/L. The COD
removal efficiency decreased and then stabilized with the increase in coagulant dosage in
the range from 150 mg/L to 400 mg/L, which may be attributed to the repulsive force be-
tween the negatively charged flocs [28,30]. Thus, the optimal dosage of the polyaluminum
chloride was 150 mg/L, and the optimal COD removal efficiency of BTCW was 28.52%.
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3.2. Adsorbent Characterization
3.2.1. Pore Structure of the Adsorbents

The Brunauer-Emmett-Teller (BET) results of SAC and PAC used in this study are
shown in Table 2. For the SAC, the specific surface area (SBET) before adsorption was
710.175 m2/g, the total pore volume (Vtotal) was 0.433 cm3/g, and the average adsorption
pore size (Dp) was 2.436 nm. In general, SAC showed a slightly smaller SBET than PAC
(789.189 m2/g), but it had larger Smicro and Vmicro values (Table 2). After adsorption
treatment, the SBET and Vtotal of both SAC and PAC decreased (Table 2), which indicates
that organic pollutants entered the internal pores of the adsorbents during the adsorption
process. Micropores play an important role in adsorption [31]. Organic pollutants with
smaller molecular sizes can be more easily adsorbed into the SAC and PAC through pore
filling, and some of the remaining micropores after adsorption were newly formed from
mesopores [1,25]. Although the volume of the mesopores (Vmeso) accounted for a large
proportion in the adsorbents, they only provided surface adsorption due to their large pore
size [32] and did not contribute much to the organics’ removal. Therefore, in spite of the
difference between the Vmeso values of SAC and PAC, both of the adsorbents can achieve
efficient adsorption of organic matter.

Table 2. Specific surface area and pore size parameters of SAC and PAC.

Samples SBET
(m2/g)

Smicro
(m2/g)

Vmicro
(cm3/g)

Vmeso
(cm3/g)

Vtotal
(cm3/g)

Dp
(nm)

SAC
B 1 710.175 414.142 0.187 0.246 0.433 2.436
A 2 689.674 375.874 0.163 0.259 0.422 2.447

PAC
B 1 789.189 350.021 0.147 0.687 0.834 2.113
A 2 632.617 295.574 0.125 0.558 0.683 4.319

1 B, before adsorption; 2 A, after adsorption.

3.2.2. Surface Morphology of the Adsorbents

The XRD patterns of SAC and PAC are shown in Figure S1a. SAC and PAC both
exhibited a peak in the diffraction angle range of 20◦~30◦ (Peak 002), which indicates
that the crystallite structures of the SAC and PAC had the same spatial arrangement [33].
However, the 002 peak intensity of the SAC was stronger than that of the PAC, indicating
that the SAC fabrication process produced more microcrystals, most of which might be
similar to graphitized non-crystallites [33].

The FTIR spectra of SAC and PAC are shown in Figure S1b. It can be seen that the SAC
had almost no functional groups, while the PAC had a C-OH bond stretching vibration
at 1037 cm−1. C-OH is a hydrophilic group [34], which enhances the affinity of PAC for
hydrophilic organics [7,25,35,36]. C-OH also occupied a certain hydrophobic adsorption
site, resulting in a weaker adsorption capacity of PAC for hydrophobic organics than SAC.
This is consistent with the results in the following part.

The SEM images of SAC and PAC before and after adsorption are shown in
Figure S2a–d. The surface of the SAC was uneven and rough, and the interior presented
a loose and porous morphology, indicating a rich pore structure of SAC. This is consis-
tent with the results of specific surface analysis (Table 2). The abundant pore structure is
beneficial for increasing the contact area between the adsorbent and adsorbate, providing
more adsorption sites [22,37]. Correspondingly, it was observed that the pore structure on
the surface of SAC significantly reduced after adsorption (Figure S2b), indicating that the
pollutants entered the interior and blocked the pores during the adsorption process.

3.3. Optimal Conditions of Adsorption

The effect of SAC dosage on the COD removal efficiency of BTCW is shown in
Figure 2a. With the increase in SAC dosage in the range from 3.0 to 4.0 g/L, the COD
removal efficiency of BTCW increased, reaching 47.74% at the dosage of 4.0 g/L. When
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the SAC dosage was over 4.0 g/L, the increase in SAC dosage resulted in very limited
increase in the COD removal rate of BTCW. The reason is as follows. The organic matter
content in the wastewater was constant. When the stable stage of adsorption was reached,
the addition of excess SAC provided excess adsorption sites, resulting in a decrease in site
utilization [38]. Therefore, comprehensively considering the adsorption rate and material
cost, the optimal dosage of SAC was decided to be 4 g/L. The effluent COD was below
80 mg/L and compliant with the emission standard of pollutants for the coking chemical
industry (GB16171-2012) in China. Zhang et al. treated BTCW with lignite-activated coke
and coal tar-derived activated carbon both at a dosage of 30 g/L [7], and their treatment
efficiencies of the recalcitrant organic contaminant reached 45% and 57%, respectively. Gao
et al. treated BTCW with sulfuric acid surface-modified coking coal [39], and the COD
removal efficiency was 42.14% with the adsorbent dosage being 40 g/L. Therefore, the
above results show that the SAC produced in this study achieved efficient COD removal at
a lower dosage. The effect of the adsorption time of SAC on the COD removal rate of BTCW
is shown in Figure 2b. The SAC achieved an adsorption equilibrium after 40 min, while
the PAC reached the adsorption equilibrium after 60 min. The higher adsorption rate and
good adsorption capacity of the SAC demonstrated its potential in practical wastewater
treatment.
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Based on the above results, the optimal conditions for adsorption in this study were as
follows. For the SAC, the dosage was 4 g/L, the adsorption time was 40 min, the rotation
speed was 200 rpm/min, the adsorption temperature was 25 ◦C, and the pH values were
7~8. For the PAC, the dosage was 3 g/L, and the adsorption time was 60 min. Other
conditions, including the shaking speed, temperature, and pH, were the same as those of
the SAC.

3.4. Adsorption Isotherm

In the adsorption isotherm experiment, raw BTCW and diluted BTCW with different
COD values were used to analyze the adsorption characteristics of SAC. The dosage of
the adsorbent was 2 g/L, the shaking speed was 200 rpm/min, and the pH values were
between 7 and 8, respectively. Two models, the Langmuir adsorption isotherm and the
Freundlich adsorption isotherm, were used to fit the adsorption process of BTCW by SAC
at 25 ◦C. The equations for these two models are as follows:

Non-linear Langmuir equation:

qe =
qmaCe

aCe+1

Non-linear Freundlich equation:

qe= K f C
1
n
e
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where qm is the maximum adsorption capacity (mg/g), a is the Langmuir constant (L·mg−1),
Ce is the concentration at adsorption equilibrium, and K f and n are the adsorption constants.

The Langmuir equation was based on a monolayer adsorption model, according to
which the adsorbent surface was homogeneous, had no competition in any adsorption sites,
and had the same chemical properties.

The adsorption equilibrium data fitted well with the Freundlich equation (R2 = 0.9471,
p < 0.05), as shown in Figure 3. The constant n−1 in the Freundlich equation can characterize
the affinity between the adsorbent and adsorbate in the system, as well as the degree of
difficulty in the adsorption process [40]. When 0.1 < n−1 < 5, it indicates easy adsorption [40].
The n−1 value of organic matter adsorption by SAC in this study was 1.568, which suggests
that the organic pollutants were easily adsorbed by the SAC. The Langmuir equation did
not fit the data well with a convergence failure and a R2 value of 0.8445. This shows that the
non-linear Langmuir model is not suitable for COD adsorption in BTCW by our SAC. The
Langmuir model is reported to be usually suitable for the adsorption of high concentrations
of solutes [41]. The diluted BTCW used here did not have high concentrations of COD,
which may partly explain the failure of the Langmuir model. On the other hand, the low fit
of the Langmuir model also indicates that the COD adsorption in the BTCW by the SAC is
not a monolayer adsorption and that the SAC has complex surface chemistry. Based on the
experimental data, the qm value of the SAC was 54.11 mg·g−1, which was higher than that of
other adsorbents reported in previous studies. For example, the activated carbon prepared
from municipal sludge and bamboo waste treating BTCW showed a phenol adsorption
capacity of 20.02 mg·g−1 [42]. The activated carbon prepared from date palm waste treating
municipal sewage showed a COD adsorption capacity of 41.3 mg·g−1 [43]. The activated
carbon from peanut shells treating dye wastewater showed a COD adsorption capacity of
32 mg·g−1 [44].
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3.5. Removal Characteristics of Organic Matter
3.5.1. Removal of Hydrophilic and Hydrophobic Components by Coagulation Combined
with SAC Adsorption

The DOM in the BTCW was divided into three different components: hydrophilic
fraction (HPI), transphilic fraction (TPI), and hydrophobic fraction (HPO). In the raw
wastewater, HPO was the main component, accounting for 76.69% of the COD (Figure 4).
The proportion of TPI was the smallest, accounting for only 4.38% of the COD, which
was consistent with the previous studies [6,45,46]. After coagulation and SAC adsorption,
a ranking of the removal efficiencies of organic components by coagulation and SAC
adsorption shows HPO (77.27%) > HPI (18.42%) > TPI (2.27%), while that of coagulation and
PAC adsorption was HPO (74.68%) > TPI (44.44%) > HPI (21.05%). Carbonaceous materials
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usually exhibit strong hydrophobicity [36], so the affinity for HPO of the two adsorbents
used in this study were greater than that for HPI and TPI. The removal efficiencies of HPO
by the adsorbents in the present study were higher than that of other research on BTCW
(59.55%) [25]. The SAC showed a stronger affinity for hydrophobic components than the
PAC. A possible reason for this is as follows. The C-OH group of the PAC occupied certain
adsorption sites, which weakens its adsorption capacity for hydrophobic organics, resulting
in a stronger adsorption capacity of the SAC for hydrophobic organics than the PAC. The
TPI fractions refer to the materials whose solubility is between hydrophobic fractions and
hydrophilic fractions [47,48], which are difficult to be removed by adsorption, according
to previous study [48]. Although the removal efficiency of TPI by the SAC was low, the
SAC achieved efficient COD removal as TPI took up a very small proportion in the raw
wastewater (Figure 4a).
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3.5.2. Fluorescence Regional Integration (FRI) Analysis of Organic Matter Removal
Characteristics

Three main fluorescence peaks (I, II, III) were detected in the EEM spectra of the raw
wastewater and coagulation effluent, as shown in Figure 5. The central wavelengths of
Ex/Em were about 220/295 nm, 230/355 nm, and 280/355 nm, corresponding to tyrosine-
like, tryptophan-like, and soluble microbial by-products (SMP), respectively [8,27,49]. After
the SAC and PAC treatments, the three main fluorescence peaks were not present in the
effluents (Figure 5c,d).
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To quantify compositional differences, the EEM spectra of the DOM were analyzed
using the FRI method [18,50,51]. It can be seen from Figure 6 that coagulation showed a
limited removal effect on the fluorescent components in each area. The removal efficiencies
of the tyrosine-like (Q1) and tryptophan-like (Q2) substances were 15.93% and 21.78%,
respectively. The removal efficiency of soluble microbial by-products (Q4) was 19.20%.
The removal efficiencies of fulvic acid organic matter (Q3) and humic acid organic matter
(Q5) were the highest (28.52% and 27.95%, respectively). Similarly, previous studies also
reported that the hydrophilic macromolecular organics and humic acids were preferentially
removed in the coagulation stage [52]. After the SAC treatment, the removal efficiencies of
the tyrosine-like (Q1), tryptophan-like (Q2), fulvic acid-like organic matter (Q3), soluble
microbial by-products (Q4), and humic acid organic matter (Q5) were 88.37%, 98.78%,
97.86%, 89.63%, and 95.31%, respectively. After the PAC treatment, the removal efficiencies
of the tyrosine-like (Q1), tryptophan-like (Q2), fulvic acid-like organics (Q3), soluble mi-
crobial by-products (Q4), and humic acid-like organics (Q5) were 85.09%, 98.55%, 96.16%,
87.66%, and 92.15%, respectively. The eliminating effect of the SAC on each of the five
fluorescent components was higher than that of the PAC. The 3D-EEM and UV-vis spectra
of raw wastewater after DOM fractionation are shown in Figures S3 and S4. Combining
Figures S3 and S4, the HPO in BTCW was mainly tryptophan-like substances, the HPI
was mainly monocyclic aromatic tyrosine-like organic matters, and the TPI was mainly
humic-like and fulvic-like acids. Both the SAC and PAC had the highest removal efficiency
of tryptophan-like (Q2) substances, which are suggested to be hydrophobic organics [53,54].
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sponds to tyrosine-like organic compounds; Q2 corresponds to tryptophan-like organic compounds;
Q3 corresponds to fulvic acid-like organic compounds; and Q4 and Q5 corresponded to soluble
microbial by-products and humic acid-like organic compounds, respectively.

3.5.3. UV-Vis Spectroscopic Analysis of Organic Matter Removal Properties

The organic matter is a series of organic mixtures containing conjugated systems,
and its aqueous solution has a strong absorption signal in the ultraviolet region of the
absorption spectrum [55]. The UV-vis absorbance spectra of raw BTCW and the effluents
of coagulation, SAC adsorption, and PAC adsorption are displayed in Figure 7. After
the SAC or PAC treatment, the absorbance between 200 and 250 nm of the wastewater
decreased little, indicating that SAC and PAC had a poor adsorption effect on monocyclic
aromatic compounds [56]. However, the absorbance between 250 nm and 400 nm of the
SAC and PAC effluent was relatively stable and close to 0, proving that the SAC and PAC
had better treatment effects on polycyclic aromatic hydrocarbons and nitrogen heterocyclic
compounds [56,57]. In addition, the wastewater after SAC or PAC treatment showed
absorbance values close to 0 at the wavelengths between 380 nm and 700 nm, which belong
to the visible light region [58]. This indicates that the colored substances in the coking
wastewater were basically removed by adsorption.
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A nonlinear fitting on the absorbance of different bands was performed to obtain
their spectral characteristics and spectral slopes. The results are shown in Table 3. Among
them, a254 and a300 are the absorption coefficients of 254 nm and 300 nm, which can
represent the relative content of organic matter [58]. It can be known that after SAC and
PAC adsorption, most of the organics were removed (Table 3). A254/A204 represented
the ratio of UV absorbances at 254 nm and 204 nm, which was positively correlated
with the hydrophobic/hydrophilic ratio [59]. The smaller A254/A204 of SAC adsorption
effluent indicates that the removal efficiency of the hydrophobic components by the SAC
was higher than that of the PAC (Table 3), which is consistent with the results shown in
Figure 4. E3/E4 was the ratio of UV absorbances at 300 nm and 400 nm, which can measure
the degree of humification and aromaticity [55]. The smaller the ratio, the higher the
degree of humification. After coagulation pretreatment, the E2/E3 value of the wastewater
increased, indicating that the humification of the wastewater decreased, which is consistent
with the result of the 3D-EEM analysis. Coagulation preferentially removes hydrophilic
macromolecules and humic organic matter [11,52], thus reducing humification of the
effluent. On the other hand, the E2/E3 value of the wastewater decreased after SAC and
PAC adsorption, indicating increased humification. The affinity of SAC and PAC to humic
substances was not as good as that to other components, such as low molecular weight
organics [11], resulting in a relative increase in effluent humification.

Table 3. Spectral characteristic parameters of BTCW and effluent with coagulation and SAC and PAC
treatments.

Samples a254 a300 A254/A204 E2/E3 E3/E4

Raw wastewater 683.66 399.26 0.8365 3.61 40.20
Coagulation effluent 433.16 233.97 0.5311 4.26 73.43

SAC adsorption effluent 20.49 11.28 0.0298 2.25 10.80
PAC adsorption effluent 32.15 15.80 0.0449 2.90 18.00

3.6. SAC Reusability

To evaluate the SAC’s reusability, an adsorption–desorption experiment was per-
formed for SAC. After four adsorption–desorption cycles, the adsorption efficiency of the
COD in BTCW by SAC adsorption only decreased by approximately 10% (Figure 8), indi-
cating a good reusability of SAC. Moreover, the method of using NaOH as the regenerant
has the advantages of being cost effective. Together, these indicate that the SAC produced
in this study has great potential for application in practical wastewater treatment.
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4. Conclusions

In this study, an SAC was produced from municipal sludge to remove organic pollu-
tants in the BTCW with a pretreatment process of coagulation. Adsorption by a commercial
PAC was applied for comparison as well. The adsorbents were characterized, and their
removal characteristics for organic matter were systematically studied. The SAC exhibited
a specific surface area of 710.175 m2/g and a well-developed pore structure based on BET
and SEM analyses. The best COD treatment effect was achieved when the dosages of polya-
luminum chloride and SAC were 150 mg/L and 4 g/L, respectively. After coagulation and
SAC adsorption of the BTCW, the organic pollutants were able to be effectively removed,
with the effluent COD below the discharge limit (80 mg/L). Compared to the commercial
PAC, the SAC showed a similar performance in COD removal at a higher adsorption speed
and with a higher removal effect of hydrophobic organics (77.27%), which were the main
organic component in BTCW. The results of the 3D-EEM and UV-vis analysis showed that
SAC and PAC had the highest removal efficiency for hydrophobic tryptophan-like sub-
stances (98.78% and 98.55%, respectively) and also had good removal of complex organic
compounds and colored substances. All in all, SAC can effectively solve the problems of
large proportions of hydrophobic components and complex organic compounds in BTCW,
and a promising adsorbent for the removal of organic matter in BTCW.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152446/s1, Figure S1: (a) XRD patterns of SAC and PAC,
(b) infrared spectrograms of SAC and PAC; Figure S2: (a,b) SEM images of SAC before and after
adsorption, respectively, (c,d) SEM images of PAC before and after adsorption, respectively; Figure S3:
3D-EEM spectra of raw wastewater after DOM fractionation; Figure S4: UV-vis spectra of raw
wastewater after DOM fractionation.
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