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Abstract: Forest change affects the relative magnitudes of hydrologic fluxes such as evapotranspira-
tion (ET) and streamflow. However, much is unknown about the sensitivity of streamflow response
to forest disturbance and recovery. Several physically based models recognize the different influences
that overstory versus understory canopies exert on hydrologic processes, yet most input datasets
consist of total leaf area index (LAI) rather than individual canopy strata. Here, we developed
stratum-specific LAI datasets with the intent of improving the representation of vegetation for ecohy-
drologic modeling. We applied three pre-existing methods for estimating overstory LAI, and one
new method for estimating both overstory and understory LAI, to measurements collected from a
probability-based plot network established by the US Forest Service’s Forest Inventory and Analysis
(FIA) program, for a modeling domain in Montana, MT, USA. We then combined plot-level LAI
estimates with spatial datasets (i.e., biophysical and remote sensing predictors) in a machine learning
algorithm (random forests) to produce annual gridded LAI datasets. Methods that estimate only
overstory LAI tended to underestimate LAI relative to Landsat-based LAI (mean bias error ≥ 0.83),
while the method that estimated both overstory and understory layers was most strongly correlated
with Landsat-based LAI (r2 = 0.80 for total LAI, with mean bias error of −0.99). During 1984–2019,
interannual variability of understory LAI exceeded that for overstory LAI; this variability may affect
partitioning of precipitation to ET vs. runoff at annual timescales. We anticipate that distinguish-
ing overstory and understory components of LAI will improve the ability of LAI-based models to
simulate how forest change influences hydrologic processes.

Keywords: forest inventory; leaf area index; hydrologic modeling; overstory; understory

1. Introduction

Forest cover type, density, and dynamics (i.e., change over time) affect the relative
magnitudes of ecohydrologic fluxes such as evapotranspiration (ET) and streamflow [1–3].
Thus, water supply is influenced, at least in part, by how vegetation partitions precipitation
into ET vs. streamflow. Forest canopies exert particularly strong effects on this partitioning
because they intercept precipitation, which is often then lost to evaporation rather than
accumulating as seasonal snowpack or reaching the ground surface to contribute to either
runoff or recharge [1,3–5]. After more than a century of research into vegetation–streamflow
linkages [6], questions remain about how future forest disturbance, recovery, or conversion
to nonforest vegetation, as well as differences between overstory and understory influences
on hydrologic processes, may affect future water supply [1,4,7].

While observational studies of individual or paired catchments provide insights to the
mechanisms of hydrologic response to vegetation change [8], for logistical and practical
reasons, the ability to study individual or paired catchments in detail is largely confined to
small watersheds [6]. Broad-scale questions about hydrologic response to forest change
can be answered by using process-based models that are capable of representing vegeta-
tion in multiple canopy strata, such as the Regional Hydro-Ecologic Simulation System
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(RHESSys) [9] and Distributed Hydrology-Soil-Vegetation Model (DHSVM) [10]. Such
models, and indeed most quantitative relationships of hydrologic processes to vegetation
states, express vegetation density in terms of leaf area index (LAI) [11]. Often these models
are applied using coarse-resolution total LAI derived from remote sensing platforms such
as MODIS (e.g., [12]) if higher-resolution observations are not available. An advantage of
LAI datasets based on spectral remote sensing is their wall-to-wall spatial coverage and
fine temporal resolution, i.e., interannual or seasonal variability, but a disadvantage is
that they represent total LAI and do not distinguish overstory from understory LAI. To
capitalize on the ability of hydrologic models to provide insights into the linkage between
water resources and forest disturbance or vegetation type changes, better representations
of actual forest vegetation strata (i.e., overstory vs. understory) are required.

In contrast to remote sensing-based LAI, ground-based observations have the potential
to distinguish overstory from understory LAI and also attribute causes of change such
as type and severity of disturbance. It is possible that interpolation models, e.g., random
forests or other machine learning algorithms, that are developed from sparse plot-based
LAI and spatially continuous predictors (e.g., reflectance, elevation, aspect) may produce
improvements in gridded LAI estimates representing overstory and understory strata,
compared to estimates of total LAI produced using remote sensing data alone. Ground-
based observations ideally would be unbiased and representative of the full range of
variability of forest characteristics that occurs within a domain of interest, but sites are often
selected for a specific purpose that may lead to biased inference when taken as generally
representative [13]. Several countries, including the USA, are monitored continuously by
strategic national forest inventories that conduct probabilistic and repeated sampling of
permanent plots that could provide inputs for plot-level LAI estimates. In the USA, the
US Forest Service’s Forest Inventory and Analysis (FIA) program monitors a plot network
of over 300,000 plots nationwide, across all forest types and ownership categories with
a mean plot spacing of about 5 km [14]. FIA collects detailed information on trees and
the overstory canopy, understory vegetation, and causes and timing of disturbances [15].
However, FIA and other national-scale forest inventories do not measure LAI [16,17]. Thus,
a method of using existing inventory data to estimate plot-scale LAI is needed.

In the absence of ground-based LAI measurements such as those obtained via tech-
niques such as light-sensing instruments or hemispherical photography, previous research
has derived LAI estimates based on other available measurements such as tree canopy
cover or canopy closure (e.g., [18,19]). Methods and mathematical forms typically fall
into the following categories, where the choice depends on the intended purpose: (1) a
linear scaling factor relating canopy cover to LAI, where a local maximum LAI is imposed
on the scaling factor (e.g., [18]); (2) an exponential function relating tree canopy cover to
LAI for the purposes of modeling snow cover (presented as Equation (4) in [19], derived
from [20]); or (3) allometric equations based on destructive measurements and detailed
dissections of a small sample of trees (e.g., [21]). The main limitation of these ground-based
methods for measuring or estimating LAI is that they are spatially discontinuous and
thus require interpolation to produce gridded LAI datasets for use in spatially distributed
hydrologic models.

This study bridges the gap between remote sensing and ground-based estimates of
LAI using data from the USA national forest inventory. The objectives of this study were,
first, to use multiple LAI estimation methods to estimate plot-scale LAI for overstory and
understory canopy strata from standard forestry measurements at FIA plots and, second,
to combine plot-scale LAI data with spectral reflectance and other gridded variables in a
machine-learning algorithm to produce spatially and temporally explicit maps of overstory
and understory LAI on an annual basis. We compared alternative methods for estimating
plot-level LAI, developed a machine learning method for interpolating yearly gridded
overstory and understory LAI across large watersheds, and compared gridded estimates
of annual LAI to Landsat-based LAI. Finally, our third objective was to examine annual
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time series of overstory and understory LAI for two test watersheds that have experienced
natural disturbances but no land-use change.

2. Materials and Methods
2.1. Study Area

The study area encompassed the South Fork Flathead River and Middle Fork Flathead
River watersheds of northwestern Montana, USA (Figure 1). Most of the South Fork
watershed and part of the Middle Fork watershed are within the Bob Marshall Wilderness
Area, which was designated in 1964 and precluded any substantial vegetation management
since that time. The South Fork and Middle Fork are 83% and 75% forested, respectively,
with mean elevations of 1870 and 1722 m; areas of 3002 and 2914 km2; mean annual
temperatures of 2.63 and 2.46 ◦C; and annual precipitation of 1248 and 1268 mm [22].
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Figure 1. Digital elevation map of the study area. Domain for modeling leaf area index (LAI) is
shown by the outer rectangle; domains for time series analysis of LAI and evapotranspiration are
the South Fork Flathead River and Middle Fork Flathead River watersheds (outlined in blue and
yellow, respectively).

Figure 2 illustrates how this study’s workflows involve plot data vs. gridded data as
well as comparison of plot-scale vs. gridded LAI estimates.
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2.2. Field Sampling Protocols

In Montana, FIA began measuring permanent plots in 2003. Plots were established
in a semisystematic grid where each plot represents approximately 2400 hectares, with a
remeasurement period of 10 years, and a representative sample of 10% of all permanent
plots measured each year [15]. Each plot consists of four subplots, each with a radius of
7.3 m, where one subplot is centrally located and the other three subplots are established
36.6 m from the first subplot’s center at azimuths of 0, 120, and 240 degrees (Figure 3). On
each subplot, field crews measure and record information about the site (e.g., slope and
aspect), including tree canopy cover as determined using four line transects per subplot,
or 16 total transects per plot; ocular estimates of percent cover of understory vegetation
by growth habit (tree, shrub, graminoid, or nongraminoid herbaceous vegetation), where
“understory” includes any cover by any of the aforementioned growth habits, regardless of
whether those plants occur under trees or not; and individual live and dead trees that are
at least 12.7 cm at a height of 1.35 m [17], which is commonly known as breast height and
the measurement is thus known as diameter at breast height (DBH). Characteristics of trees
with DBH < 12.7 cm are measured on a 2.1 m radius subsample of each subplot [17]. Data
collection protocols and definitions are described in full detail in the US Department of
Agriculture’s published field manual for the national forest inventory [17]. Data collection
occurs within the growing season, which for this region is typically June–September.
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Figure 3. FIA plot configuration [15]. Metric units: subplots have a radius of 7.3 m with subplot
centers 36.6 m apart; microplots have a radius of 2.1 m and are located 3.6 m from subplot centers;
and macroplots were not used in this study.

FIA defines forest as land that either currently contains, or previously supported, at
least 10% tree cover, with a minimum forest patch size of 0.4 ha. Thus, plots that burned,
or otherwise lost all tree cover due to natural disturbance, are still defined as “forest” but
may have zero percent tree canopy cover until trees regenerate. For plots that did not meet
FIA’s definition of “forest” (i.e., there is no evidence that the site previously supported at
least 10% tree cover), we assumed overstory LAI to be zero. If understory vegetation data
were collected on a nonforest plot, we used the field-collected vegetation measurements to
estimate understory vegetation cover for that plot. If understory vegetation data were not
collected (i.e., for efficiency reasons of focusing on forest plots or if plots were covered with
rare summertime snows), we treated the plot’s understory vegetation data as nonresponse
(i.e., no data rather than zero) and thus did not include them in the training dataset for the
understory LAI model.

2.3. Estimation of Plot-Level Leaf Area Index (LAI)

We estimated LAI at each FIA plot using four plot-level estimation methods (Table 1).
Among these four methods, the first method is most commonly used in the previous
literature and consists of linear scaling of tree canopy cover fraction, C, which ranges from
0 to 1, relative to LAI ranging from 0 to a local maximum that must be obtained from
either ground observations or previous studies [18]. We used a local maximum LAI of 5.3,
which was determined for coniferous forests of western Montana [23]. Coniferous forests in
western Montana typically contain small patches of Populus tremuloides as a nonconiferous
species that is frequently present as a minor and often temporary (i.e., seral) component of
coniferous forest stands [24]. The LAI measurements in this earlier LAI study [23] assumed
that leaf area angles can be assumed to be random based on validation of this assumption
for broadleaf species (i.e., Quercus) [25]. This earlier work is thus representative of the
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coniferous forests included in the present study that encompass mostly coniferous species
as well as nonconiferous individual species such as Populus.

The second method was developed to relate tree canopy cover to snow cover [20],
using Equation (1), which is the inverted form of the relationship presented as Equation (4)
in [19]:

LAI = e(C−0.55)/0.29 (1)

These earlier studies modeled change in snow cover as a function of change in LAI [19,20].
Because direct LAI measurements were not available in those studies but tree canopy cover
measurements were available, the studies’ authors used the equation above (or an inverted
form) to calculate LAI as a function of canopy cover and thus obtain the required input for
their snow cover model [19,20].

For the third method, we estimated LAI as a function of tree diameter and species-
specific coefficients, based on destructive sampling of a small number of trees of four tree
species [21]: Engelmann spruce (Picea engelmannii Parry), subalpine fir (Abies lasiocarpa
(Hook.) Nutt.), lodgepole pine (Pinus contorta var. latifolia Engelm.), and quaking aspen
(Populus tremuloides Michx.). Because this suite of four species does not encompass all
species present in our study area, and allometric models of LAI have not been developed
for the other species in our area, we adopted the approach of applying an allometric
model developed for one species to a species of similar architecture or growth habit [26].
To determine which species should utilize each of the four species-specific allometric
equations for LAI [21], we relied on FIA’s existing lookup tables for applying a single
allometric equation for biomass (including foliage) to groups of species [15].

Table 1. Empirical methods used for estimating plot-level LAI at Forest Inventory and Analysis
(FIA) plots.

Method Description FIA Inputs Outputs Source

LAI1 Linear scaling of tree canopy cover
with local max LAI Tree canopy cover Overstory LAI [18] for method; [23] for

max LAI

LAI2 Empirical (natural exponential)
function of tree canopy cover Tree canopy cover Overstory LAI [19]

LAI3 Species-specific allometric equations
(quadratic function of tree diameter)

Tree species and
diameter Overstory LAI [21]

LAI4
Gap-fraction model based on Beer’s

law, with clumping indices specific to
vegetative cover type

Tree and understory
vegetation cover; forest

type; understory
vegetation type

Overstory and
understory LAI

[27] for equation and
clumping indices

The fourth method for estimating LAI has not, to the best of our knowledge, been pre-
viously used to estimate LAI directly. This method (LAI4) used percent cover of understory
and overstory (tree) vegetation as inputs to an inverted gap-fraction model based on Beer’s
law (Equation (1) in [27]):

P(θ) = e−G(θ) ∗ LAI ∗ Ω/ cos (θ) (2)

In Equation (2), P(θ) is the gap fraction at zenith angle of view θ representing the
fraction of canopy gaps through which light would penetrate to the ground if illuminated
from that angle of view; G(θ) is the extinction coefficient of light, which has a value of 0.5 for
random leaf and branch arrangements; and Ω is a dispersion parameter, or clumping index,
that is specific to vegetation type and was conceptually developed by [28]. When leaf
arrangement is truly random, then Ω is equal to 1.0, but for most vegetation clumping of
leaves and branches means that Ω is less than 1. Canopy fraction measured on FIA plots
is the fraction of area that is canopy when viewed from above. Thus taking θ to be zero,
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canopy fraction becomes 1.0 minus gap fraction, cos(θ) becomes 1, and the equation above
can be inverted to solve for LAI, resulting in:

LAI =
ln(1 − C)

−0.5 ∗ Ω
(3)

Values for the clumping index, Ω, were based on mean clumping indices developed
by [27] (see Table 3 in that paper). We associated each FIA vegetation type with a clumping
index category from [27] to determine its clumping index value (Table 2). Understory
vegetation was assigned the clumping index that [27] assigned to “sparse herbaceous or
sparse shrub cover” areas (i.e., 0.75). Cover was summed for all understory growth habits
(graminoids, herbaceous vegetation, and shrubs) prior to applying the clumping index,
which yielded LAI for the understory in its entirety.

Table 2. Look-up table used to assign clumping index values to each vegetation type for method
LAI4. Clumping index categories that do not occur in the study area are omitted.

FIA Vegetation Type 1 Clumping Index Category 2 Clumping Index 2

Hardwood deciduous forest types (codes 501–988, with canopy cover ≥65%) 2: Tree cover, broadleaf, deciduous, closed 0.69
Hardwood deciduous forest types (codes 501–988, with canopy cover <65%) 3: Tree cover, broadleaf, deciduous, open 0.70

Softwood evergreen forest types (codes 101–319 & 341–391) 4: Tree cover, needleleaf, evergreen 0.62
Softwood deciduous forest type (code 321) 5: Tree cover, needleleaf, deciduous 0.68

Oak/pine forest types (forest type codes 401–409) 6: Tree cover, mixed leaf type 0.69
Nonstocked forest type (code 999) and nonresponse (inaccessible) plots with

possible tree cover
9: Mosaic: Tree cover/other natural vegetation 0.72

Understory vegetation and nonforest plots where vegetation data were collected 14: Sparse herbaceous or sparse shrub cover 0.75

1 FIA forest types and nonforest/nonresponse status are described by the variables FORTYPCD and
COND_STATUS_CD in [15]. 2 Clumping index categories and values are from Table 3 of [27].

Evaluation of the four plot-scale LAI estimation methods (Table 1) was accomplished
by means of comparison with Landsat-based total LAI at 30 m resolution [29]. For this
comparison, we used plot-scale estimates for plots measured in 2019 (n = 87) and Landsat-
based LAI for the 2019 growing season at those same plot locations. We compared the
frequency distributions of the four plot-scale estimation methods with the frequency
distribution of Landsat total LAI, produced scatterplots of plot-based vs. Landsat-based LAI
for each plot-scale estimation method, and compared the Spearman correlation coefficient of
each method’s plot-scale LAI with the Landsat LAI. The rationale for using Spearman’s r for
plot-scale comparisons was that, first, the imposition of LAI maxima affects the correlation
with Landsat LAI, and our objective was to evaluate these methods’ ability to estimate
variation in LAI, rather than evaluating our specific choice of LAI maxima. Second, the
relationship between LAI2 and Landsat was not linear but was monotonic.

For all of these comparisons, methods LAI1, LAI2, and LAI3 represent only overstory
LAI, while method LAI4 represents overstory LAI, understory LAI, and total LAI as the
sum of overstory and understory LAI estimates (Table 1). Landsat-based LAI represents
total (i.e., overstory plus understory) LAI but is known to saturate at a value of about 4 [29].
Thus, we expected that our overstory LAI estimates would not precisely equal Landsat-
based LAI but that there should be some correlation given that most of the study area is
forested with overstory contributing the majority of total LAI. Moreover, ground-based
estimates that include both understory and overstory vegetation may exceed Landsat-
based estimates because ground-based estimates are not subject to the same saturation
constraints as reflectance-based LAI. Therefore, we expected that LAI4 might produce total
LAI estimates that exceed Landsat-based total LAI.

2.4. Interpolation of Gridded LAI Datasets

Our second objective was to combine plot-scale LAI with spectral reflectance data and
other spatially explicit variables in a machine learning algorithm to produce spatially and
temporally explicit maps of overstory and understory LAI on an annual basis. We focused
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on annual maximum LAI because variations in forest LAI over time have been mainly
attributed to interannual changes in tree cover due to management or disturbance, where
such interannual dynamics are greater in magnitude than growing-season variability in
LAI [30]. Plot-scale LAI estimates were derived using four different methods, described
above. The machine learning algorithm we used was random forests, which is a non-
parametric statistical technique that builds an ensemble model from many iterations of
individual classification or regression trees and uses bootstrapping, or bagging, to train and
improve model performance [31]. We developed five separate random forests regression
models: one for each of the four overstory estimation methods (LAI1, 2, 3, and 4) plus one
understory estimation method (LAI4).

Like other supervised statistical models or machine learning algorithms, a random
forests model requires specification of a response variable and a set of predictor variables.
For each model, plot-scale LAI served as the response variable. The training dataset
included 1049 plot locations that were measured between 2003 and 2019.

All models included the same set of predictor variables (Table 3).

Table 3. Predictor variables used in all random forests models for predicting LAI.

Description Source Citation

Composite
maximum annual greenness Google Earth Engine (GEE) image collections

GEE image collections:
LANDSAT_LE07_C01_T1_ANNUAL_

GREENEST_TOA (years 1999–2019) and
LANDSAT_LT05_C01_T1_ANNUAL_
GREENEST_TOA (years 1984–1998)

Elevation Digital elevation model (DEM) from The National Map [32]
Slope DEM processed in R package ‘raster’ [33]

Aspect DEM processed in R package ‘raster’ [33]
Topographic

wetness index DEM processed in TauDEM [34,35]

Exposure index DEM processed in ArcGIS [36]
Tree canopy cover National Land Cover Dataset [37]

Mean annual
precipitation PRISM Dataset [38]

Min and max
annual temperature PRISM Dataset [38]

Soils hydrologic group code STATSGO2 Dataset [39]

The rationale for including these variables as predictors in our random forests models
was because they either provide direct evidence of the density of vegetation at a particular
point in time (e.g., NDVI), or are likely to affect the potential vegetation type or density in
the long term (e.g., elevation, precipitation, etc.). Predictor variables included composite
maximum annual greenness quantified using normalized difference vegetation index
(NDVI) from Landsat 5 or Landsat 7 (Table 3), acquired from Google Earth Engine [40].
The maximum annual greenness for each pixel was calculated as the highest recorded
NDVI from the images available for that year. The term “composite” simply means that the
dataset is composed of pixels representing multiple dates, where the date represented by
each pixel represents that pixel location’s maximum greenness for that particular year [32].
For any particular plot, only the composite maximum annual greenness for the year
that plot was measured was included in the training dataset. We did not attempt to
schedule forest inventory plot measurements to coincide with the date of maximum annual
greenness, partly for practical reasons and also because the date of maximum annual
greenness is not known until after it has occurred. Other predictors included elevation
and other topographic variables derived from elevation, including slope and aspect [33],
topographic wetness index [34] calculated using TauDEM [35], and a topographic exposure
index [36]; tree canopy cover from the National Land Cover Dataset [37]; precipitation and
temperature [38]; and soils hydrologic group code [39] as a categorical input variable to
random forests. The value of each predictor variable was extracted at the spatial location of
each plot to create a plot-based training dataset.
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After the models were trained on plot-level observations, each model was then used
with spatially gridded predictor variables as inputs (Table 3) to produce annual gridded LAI
datasets. Note that the plot-level LAI estimates were used only for model calibration and
were not needed for making predictions of LAI based on predictor variables. Thus, we were
able to produce annual maximum LAI estimates for any year for which maximum annual
greenness exists, including years in which no plots were measured (i.e., as early as 1984).
Beyond the plot based out-of-bag random forest validation, we also assessed agreement
between our gridded LAI outputs and Landsat-based LAI [29] for a single year. We selected
the year 2003 for this assessment because the Landsat-based LAI had minimal missing pixel
values for that year. Assessment metrics included Pearson’s correlation coefficient, mean
absolute error, mean bias error, and root mean squared error, which is similar to mean
absolute error in that it ignores the direction of error (i.e., bias) but penalizes for larger
individual errors. We used the Pearson correlation coefficient here because it provides a
more informative assessment of the ability to produce LAI maps for their intended end-use,
which is assessing change over time or using the maps as inputs to hydrologic models.

2.5. Time Series of LAI for Two Large Watersheds

After producing gridded LAI datasets for multiple years (Figure 2, bottom row), we
identified the two plot-level LAI estimation methods that showed the best agreement with
Landsat-based LAI and used those methods to produce a time series of annual LAI gridded
datasets from 1984 to 2019. We examined these time series within two large watersheds,
the South Fork Flathead River and Middle Fork Flathead River, in our modeling domain
(Figure 1). We tested the time series of overstory LAI for monotonic temporal trend using
the Mann–Kendall trend test [41] via R package ‘Kendall’ [42].

We also examined the time series of annual evaporative (ET) ratios, estimated as the
proportion of precipitation that did not result in runoff and calculated as 1 minus the
ratio of annual streamflow to annual precipitation for each year. ET ratio for the Middle
Fork Flathead River watershed was obtained from the CAMELS dataset for US Geological
Survey (USGS) gage 12358500 [43]. For the South Fork Flathead River, daily streamflow
data were obtained for USGS gage 12359800 from R package ‘dataRetrieval’ [44]. Both gage
locations are shown in Figure 1. South Fork precipitation data were compiled from Daymet
gridded data, which is the same source data used to compile the CAMELS dataset [42],
using R package ‘daymetr’ [45]. We assessed the strength of correlations between each
LAI estimation method and ET ratio based on these time series. Although we tested for a
lagged correlation between LAI and ET ratio, there was no significant lag detected and we
therefore did not implement a lag in the correlation analysis.

3. Results
3.1. Estimation of Plot-Level LAI

Correlation coefficients for estimates of plot-scale overstory LAI relative to Landsat-
based total LAI were between 0.703 and 0.710, while for the combination of overstory
and understory based on method LAI4, the correlation was 0.578 (Figure 4a). Plot-based
methods for estimating overstory LAI were strongly correlated with each other (pairwise
r > 0.85 for all pairs), which suggests that the choice of one method over another may
not be tremendously impactful for estimating overstory LAI alone. Scatterplots between
each plot-scale estimation method vs. Landsat reveal that methods LAI2, LAI3, and LAI4
(overstory) underestimate LAI (Figure 4a) relative to Landsat. Violin plots also demonstrate
this pattern (Figure 4b), which is unsurprising given that Landsat-based LAI detects all
vegetation without distinguishing between overstory and understory strata, while our
ground-based overstory LAI methods did not include the understory vegetation component.
This result is somewhat expected because most forests in the region are relatively open and
do not have fully closed canopies. In contrast, the sum of overstory and understory LAI
estimates produced by method LAI4 overestimate LAI relative to Landsat-based estimates
(Figure 4a,b), which may reflect the fact that ground-based estimates of multilayered LAI



Water 2022, 14, 2414 10 of 19

are not subject to the saturation that occurs at a value of about 4 for Landsat-based LAI [29].
The highest estimates produced by method LAI4_total were 16.5, which is higher than
estimates produced by any other method but also within the range observed in a study in
nearby Glacier National Park [46], which found values as high as 20.8. Thus, the ability
of method LAI4 to estimate total LAI represents a contribution in overcoming a known
limitation of total LAI as estimated from spectral remote sensing. Among all methods,
method LAI4 showed the widest dispersion of LAI values (Figure 4b).
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Figure 4. Comparisons of plot-level leaf area index (LAI) at Forest Inventory and Analysis (FIA) plots:
(a) scatterplots and correlations; R = Spearman’s rank correlation coefficient; and (b) violin shapes
show frequency distribution, and boxplots show median (horizontal bar) and interquartile range
(box). Four methods estimate overstory LAI (LAI1, LAI2, LAI3 and LAI4), one method estimates
both overstory and understory LAI (LAI4_total), and Landsat-based estimates represent total LAI
from the method of [29] at plot locations, all using data collected in 2019.

3.2. Interpolation of Gridded LAI Datasets

The assessment above described how well plot-level LAI estimates correspond to
Landsat-based LAI, and, here, we describe machine learning models that used those plot-
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level LAI estimates as calibration data for estimating LAI from gridded biophysical and
remote sensing predictor variables that we extracted at FIA plot locations (Figure 2). For
all LAI estimation methods, the machine learning algorithms had value of model r2 > 0.6
(Table 4). In contrast, understory LAI (method LAI4_under) had a very weak model
(r2 = 0.03), which might reflect that understory vegetation may be undetectable by remote
sensing-based predictor variables (i.e., composite maximum annual greenness and the
NLCD tree canopy cover layer) due to tree canopies obscuring this vegetation on forest
plots. Indeed, we found that climatic variables (precipitation and temperature) were the
most important predictors of understory LAI (method LAI4_under), while both climatic
and remote sensing-based predictor variables were important predictors for all models of
overstory LAI. Among all plot-scale LAI estimation methods, the random forests model
based on method LAI1 had the highest proportion of LAI variability explained by the
model while method LAI2 had the lowest model error (mean squared residual, or MSR,
in Table 4). Method LAI4’s overstory model had the lowest model r2 among overstory
estimation methods, although differences among models were not large. Note that these
metrics of model performance reflect the ability of the predictor variables to explain (via
random forests regression) the plot-to-plot variability in each plot-level LAI estimation
method, and, thus, they do not reflect the accuracy of any particular method.

Table 4. Performance metrics for random forests models of LAI based on four overstory estimation
methods (LAI1, LAI2, LAI3, and LAI4) and one understory method (LAI4_under). Mean of squared
residuals (MSR) and model r2 are based on out-of-bag samples from 500 trees.

Method MSR Model r2

LAI1 0.46 0.77
LAI2 0.17 0.66
LAI3 0.40 0.69
LAI4 0.92 0.64

LAI4_under 5.79 0.03

All four LAI estimation methods produced gridded datasets that are strongly corre-
lated with Landsat-based gridded LAI, which provides evidence of whether our gridded
LAI values are realistic (Table 5). Method LAI4’s total LAI (i.e., overstory plus understory)
was most strongly correlated with Landsat (r = 0.80). Mean absolute error, mean bias error,
and root mean squared error were all lowest for method LAI1, followed closely by method
LAI4, and were all highest for method LAI2. These pixel-based comparisons show a bias
similar to that exhibited by plot-based comparisons: all overstory methods have a positive
mean bias error, and are thus lower than Landsat-based total LAI, while total LAI produced
by method LAI4 is higher than Landsat-based LAI and has a negative mean bias error
(Table 5). As discussed above, it is realistic that overstory LAI alone would be lower than
Landsat-based total LAI and that ground-based total LAI (method LAI4) would be higher
than Landsat-based LAI.

The wider dispersion of total LAI values produced by method LAI4, particularly
when understory vegetation is included, more closely resemble the spatial variability and
dispersion of values demonstrated by Landsat-based total LAI (Figure 5). This pattern is
evident for two different years, 2003 and 2019, which were used to assess not only single-
year LAI estimates (above) but also change in LAI over time. Based on visual comparisons
of change in Landsat-based estimates versus change in our gridded LAI datasets between
2003 and 2019, methods for estimating overstory LAI—particularly LAI2 and LAI3, and
to a lesser extent LAI1 and LAI4 overstory—are missing a lot of change that is captured
by Landsat-based LAI and total LAI as estimated by method LAI4. Notable differences
still exist in the amount of change in LAI observed from Landsat compared to total LAI as
estimated by method LAI4; these differences may be due to inaccuracies in either Landsat-
based LAI or our plot-based method of estimating LAI but resolving the ultimate cause
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of the discrepancy would require ground validation data and was beyond the scope of
this study.

Table 5. Pixel-to-pixel comparisons of multiple gridded LAI datasets relative to Landsat-derived
LAI as estimated for 2003. MAE = mean absolute error; MBE = mean bias error; RMSE = root mean
squared error. LAI1, LAI2, LAI3, and LAI4, represent overstory LAI; LAI4_total represents the sum
of overstory and understory LAI.

2003 Pearson’s r MAE MBE RMSE

LAI1 0.75 0.97 0.83 1.28
LAI2 0.72 1.78 1.77 2.12
LAI3 0.71 1.48 1.44 1.80
LAI4 0.72 1.15 1.04 1.46

LAI4_total 0.80 1.11 −0.99 1.42
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Figure 5. Maps of LAI based on random forests interpolations of empirical plot-based methods (LAI1,
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LAI (LAI_LS) for 2003 and 2019 (top and middle rows, respectively) and for the difference between
2003 and 2019 (bottom row) for the entire modeling domain shown in Figure 1. Negative change
represents decreases in LAI.
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3.3. Time Series of LAI for Two Large Watersheds

Time series of LAI for 1984–2019 yielded a subtle but statistically significant (p < 0.05)
decreasing trend in overstory, understory, and total LAI in the South Fork Flathead River
watershed (Figure 6a). Methods LAI1 and LAI4 both detected a decrease in overstory LAI,
although this decrease was small compared to the decrease in understory and total LAI
detected by method LAI4. In contrast to the South Fork, the Middle Fork watershed did
not exhibit any significant trend in overstory LAI, although method LAI4 did detect a
significant decrease in total LAI from 1984 to 2019 (Figure 6b). There were no significant
trends in ET ratio in either watershed.
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Figure 6. Annual time series of overstory, understory, and total leaf area index (LAI) in: (a) South
Fork Flathead Watershed and (b) Middle Fork Flathead Watershed, for 1984–2019, as produced by
random forests models based on methods LAI1 and LAI4, and ET ratio (1 – ratio of mean annual
streamflow to mean annual precipitation). LAI points represent watershed-scale medians and bars
represent the 1st (lower) and 3rd (upper) quartiles. Values of tau and associated p-values in the
legend represent results of the Mann–Kendall trend test. Note missing observations for some years in
the South Fork Flathead River due to lack of streamflow data.

Annual median LAI for overstory, understory, and total LAI based on methods LAI1
and LAI4 were strongly correlated with one another, with R > 0.8 for all pairwise compar-
isons (Figure 7). Thus, methods LAI1 and LAI4 produce highly correlated watershed-scale
LAI estimates (r = 0.977 for the South Fork, and r = 0.962 for the Middle Fork, for LAI1
vs. LAI4 overstory LAI). Correlations with ET ratio show some minor differences among
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LAI estimation methods. In the South Fork watershed, ET ratio is very weakly correlated
with overstory LAI as estimated by methods LAI1 and LAI4, and slightly more strongly
correlated with understory and total LAI produced by method LAI4 (Figure 7a). In the Mid-
dle Fork watershed, correlations between annual median LAI and ET ratio were stronger,
and as in the South Fork, ET was more strongly correlated with total LAI as estimates by
method LAI4 than with other estimates.
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Figure 7. Comparisons of annual ET ratio and watershed-scale median leaf area index for two
watersheds: (a) South Fork Flathead River and (b) Middle Fork Flathead River, as estimated using
methods LAI1 and LAI4 (overstory), LAI4under (understory) and LAI4total (total LAI) for water
years 1984–2019. ET ratio is defined as 1 minus the ratio of mean annual streamflow to mean annual
precipitation. R represents the Spearman’s rank correlation coefficient.



Water 2022, 14, 2414 15 of 19

4. Discussion
4.1. Summary of Our Comparison of Multiple Methods for Estimating LAI

This study demonstrated development of gridded LAI datasets that are not subject
to the same constraints as remote sensing-based datasets, namely the inability to separate
LAI into overstory vs. understory strata, as well as the saturation that occurs at specific
LAI values and above which remote sensing-based methods cannot distinguish variability
in LAI densities. Although new methods for estimating Landsat-based LAI have become
computationally efficient and publicly available on Google Earth Engine [29], this algorithm
was developed for Landsat 5 and later versions of Landsat and is thus not applicable to
the full Landsat record. In contrast, our machine learning models used only a single
Landsat-based predictor variable that is available beginning in 1984, and it is thus possible
to produce gridded datasets of maximum annual LAI for any year from 1984 to the most
recent growing season.

Among the four alternative methods we tested for estimating plot-scale LAI and
then interpolating gridded LAI datasets, methods LAI1 and LAI4 performed the best
overall in comparison to Landsat-based LAI. Each of these methods has specific strengths
and weaknesses. Method LAI1 has the advantage of requiring only a single ground
measurement—plot-level tree canopy cover—and is thus more parsimonious. Because
method LAI4 uses a clumping index that is specific to forest type, it requires a more
complex crosswalk of FIA’s forest types to the cover types specified for clumping indices
in [27]. However, scripting is provided to accomplish this task, and this method could
more reliably be applied to FIA data anywhere in the USA, unlike method LAI1 which
may require tuning of local maximum LAI based on direct field measurements of LAI.
Method LAI4 has the advantage of producing not only overstory LAI but also understory
and thus total LAI. Total and understory LAI, as produced by method LAI4, demonstrated
the greatest sensitivity to change in LAI over time, as compared to Landsat-based LAI, and
LAI4’s total LAI was more strongly correlated than LAI1 to evaporative fraction.

One outcome of this study is the comparative evaluation of several previously used
and published methods for estimating LAI when direct measurements or remote sensing-
based data are not available. Specifically, methods LAI1, LAI2, and LAI3 have been used
by prior studies to estimate overstory on the basis of tree canopy cover [18–20] or the
combination of species identity and DBH [21]. We found that the simplest of these methods,
LAI1, produced the best agreement with Landsat-based LAI. However, although method
LAI2 did not agree as well with Landsat data, it may be preferable for snow modeling
applications, which was the original purpose of that LAI estimation method [19,20].

The choice of the most appropriate plot-scale LAI estimation method depends largely
on the intended application or question. For consideration of overstory LAI only, linear scal-
ing of tree canopy cover with LAI, i.e., method LAI1, may be sufficient and parsimonious.
For studies investigating processes within overstory vs. understory strata, e.g., carbon
allocation or partitioning of precipitation into various hydrologic pathways, LAI4 would be
most appropriate because it is capable of estimating not only overstory but also understory
and thus total LAI, without the saturation constraint imposed by remote sensing-based
total LAI datasets. Although we used composite maximum annual greenness as a predictor
variable in our machine learning models, and greenness is subject to the same saturation
effect as Landsat-based LAI, the fact that we used machine learning models with additional
biophysical (nonspectral) predictor variables may help to overcome constraints imposed
by spectral remote sensing.

4.2. Benefits and Caveats of Using Forest Inventory Plot Data to Estimate LAI

The need to couple understory and overstory vegetation in models has been previ-
ously recognized due to the interactions between forest vegetation layers [47,48]. Overstory
and understory vegetation have distinct but interacting responses to both disturbance and
postdisturbance recovery [49,50], which may have unknown ramifications for fluxes of
water, energy, and carbon. The ability to estimate LAI for multiple canopy strata could be
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leveraged in models that have distinct representations of separate strata [9,10], and such ap-
plications could enhance our understanding of the process-level responses to disturbances
that alter forest structure or result in type changes from forest to nonforest vegetation.

A unique benefit of using national forest inventory (NFI) data, such as that collected
by FIA which we used to produce plot-based estimates of LAI, is that ground data are
acquired from an ongoing data collection program with a probabilistic sample and methods
that are consistent over time. Although lidar acquisitions such as ICESat-1, ICESat-2, and
GEDI all present promising capabilities to estimate vertically integrated LAI [51], thus far,
such space-based missions are temporally constrained compared to ongoing ground data
collection by NFIs [6,13,14]. Thus, this approach to estimating annual LAI could be applied
in other countries that have ongoing NFIs that include measurements of overstory and
understory canopy cover.

Although this study presents novel methods of estimating LAI both as plot-scale
estimates and as gridded datasets, it does come with caveats. First, the methods tested
here obviously require ground observations and do not provide LAI estimates within a
year or season. In contrast, Landsat-based LAI from radiative transfer models can provide
greater temporal resolution and thus seasonal (intra-annual) LAI, but again with the caveat
that it estimates only total LAI. Second, validating any LAI dataset is challenging, and our
study was limited by having only Landsat-based total LAI to use as a point of reference.
However, the Landsat-based dataset we used was well-calibrated and validated using
widely distributed, intensively studied sites throughout the U.S. [29]. Although we did not
present the results within this paper, we did investigate the use of LAI datasets derived
from MODIS and ICESat-1 as comparison datasets. We found that pairwise correlations
among these datasets were very weak (r < 0.2), possibly due to spatial offsets and scale
discrepancies that are difficult to resolve, and thus they are not included here.

4.3. Recommendations for Future Research and Development

We recommend that future studies conduct validation of both plot-based and gridded
LAI produced using methods LAI1 and LAI4. Plot-based validation could be accomplished
by measuring LAI using light-sensing devices (e.g., LI-COR sensors or analysis of hemi-
spherical photography) on a subsample of FIA plots and then using those LAI values for
calibrating and validating various methods that estimate LAI based on other FIA mea-
surements. Calibration might include improved parameterization of clumping indices
for specific vegetation or forest types in support of method LAI4. Plot-based LAI mea-
surements could also be used to test the assumption inherent in method LAI1, i.e., that a
single maximum LAI value could be implemented across broad regions as the constraining
upper limit for scaling canopy cover against overstory LAI. Gridded LAI datasets could be
further evaluated by comparing the performance of a physically based hydrologic model
using alternative LAI datasets as inputs, specifically, the impact of using strictly remote
sensing-based total LAI, compared to overstory and understory gridded LAI, on the ability
to estimate hydrologic fluxes (e.g., canopy evapotranspiration, soil evaporation, maximum
snow water equivalent, etc.).

Finally, we recommend that broad applicability of our findings will likely require
development of tools that allow others to define an area of interest and produce multistrata
gridded LAI datasets. To facilitate widespread and innovative use of these methods, such
applications would ideally occur within cloud-based computing platforms that consume
FIA plot data as well as the predictor variables used in our random forests models. However,
in the case of the USA, such development will require cooperative agreements between FIA
and cloud-based computing platforms that protect the confidentiality of plot locations as
required by federal law [52]. Such advances could allow scientists in forestry and hydrology
to use overstory and understory LAI datasets, rather than simply total LAI, for multiple
purposes. Incorporation of overstory and understory LAI into physically based ecological
and hydrologic models could enhance future understanding of how forest disturbance,
recovery, and land-cover change affect both forest and water resources.
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5. Conclusions

This study compared four methods for estimating plot-scale leaf area index, and then
used those plot-scale estimates in a machine learning algorithm to produce gridded LAI
datasets on an annual basis. We evaluated these four alternative methods by comparing
both plot-based and gridded LAI estimates against Landsat-based total LAI. We found that
the simplest LAI estimation method performed well at estimating overstory LAI but did not
address our objective of estimating both overstory and understory LAI. The method based
on an inverted gap-fraction model, combined with previously published clumping indices
that are specific to vegetation type, performed best at capturing trends over time and
also produced separate estimates of understory, overstory, and total LAI. Future research
could improve validation and parameterization of plot-based LAI estimates and test the
assumption that gridded LAI datasets that partition LAI into multiple canopy strata will
lead to enhanced performance in hydrologic models.

The separate overstory and understory LAI datasets produced using method LAI4 for
years 1984-2019 are published and available for download from [53].
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are typically within 1 km of the true locations. Interested parties can contact the lead author or FIA’s
Spatial Data Services team (https://fia.fs.usda.gov/tools-data/spatial/index.php) to request true
plot locations.
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