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Abstract: The evaluation and quantification of water consumption based on water footprint (WF)
is important for sustainable utilization of water resources and is becoming one of the key bases for
formulating water resources management policies. However, there are few systematic assessments
of both temporal changes and spatial patterns of WF in China, and the driving of water footprint
intensity (WFI) is rarely reported. Based on the research background, this paper takes China, the
world’s largest developing country, as an example to analyze the spatiotemporal evolution of WF
through the input–output model. The total WF in China increased by 11.76% from 2002 to 2017.
National WFI decreased from 550 m3/104 yuan (2002) to 152 m3/104 yuan (2017). The regions found
to have the highest WF in China include Shandong, Henan, and Hebei, and regions with higher WFI
are distributed in East China. From 2002 to 2017, the total WF of each province in China changed
significantly. Guangdong, Fujian, and Zhejiang provinces’ total WF decreased markedly during the
study period. The results show that the grain output per capita and GDP per capita have a significant
driving effect on WFI. By adjusting the agricultural structure and improving the comprehensive
ability of scientific and technological innovation, it is possible to reduce the WFI in China.

Keywords: water footprint; input-output analysis; driving mechanism; China

1. Introduction

Water scarcity has been a key environmental issue globally [1], which is a limitation to
the realization of the Sustainable Development Goals (SDGs) by 2030 [2]. Human activities
consume a lot of water while producing various products and services. China, as the
world’s largest developing country, is an area with one of the most serious water shortages
in the world [3,4]. Thus, the sustainable utilization of water resources is key to China’s
sustainable development. The assessment of water consumption and the understanding
of underlying mechanisms in China are the prerequisites for solving water problems and
proposing water-related policies.

Water footprint (WF) is considered to be a reasonable indicator of water consumption
in each sector [5], referring to the amount of water consumed in the production of goods
or services throughout the supply chain [6]. The wider applications of WF demonstrate
its increasingly recognized relevance to policy [7]. Many scholars and institutions have
conducted studies on global WF accounting. Hoekstra conducted the first research study
on crop WF in 2002 [8] and produced a water footprint calculation manual [9], which
proposed WF calculation methods for several products. In the context of China, Zhao
et al. [10] calculated China’s national water footprint in 2002 and evaluated intersectoral
trade, suggesting sectors with high net virtual water exports as a focus for future water
conservation in China. Some scholars have calculated WF in specific sectors, mainly in
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agricultural chains, industry, and food processing [11]. There are two widely accepted
methods to assess the regional WF. One is to multiply the water consumption per unit of
the production process by the trade volume of the commodity (bottom-up method) [12,13].
The bottom-up method (B-U) is complex when dealing with water consumption in the
industrial and service sectors, and is incapable of distinguishing between intermediate and
final demand [14]. Hoekstra et al. [14] used the B-U method to assess only direct water
consumption during production in 2017.

Another is the top-down (T-D) method [10,15], which calculates WF by tracking
the supply chain of the Chinese provincial economy through a monetary transaction
matrix. Using an input–output analysis (IOA) to calculate WF is an example of the T-D
approach which some scholars have used to measure and assess water resources. By
performing a multi-regional input–output (MRIO) analysis, Wang et al. [16] found that
90% of China’s WF is reflected in trade, and pointed out that China is subject to both
increasing environmental pollution and resource pressure in the global supply chain. Liu
et al. [17] tracked trade in three specific regions through MRIO, and confirmed that the
growth of value in chain-related trade is a vital factor in the increase of water use. Some
scholars have attempted to identify the driving factors behind the increased WF of specific
sectors. Zhao et al. [18] explored impacts on WF associated with agricultural products,
including population, through an extended Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) model. Yang et al. [19] studied water use from 1997
to 2007 through WFs in China and derived the determinants of increased water use through
the structural decomposition analysis (SDA) method. Zhang et al. [20] assessed virtual
water trade between the Yellow River Delta and other provinces through an MRIO analysis,
and showed that virtual water (VW) trade exacerbates local water scarcity. There are few
reports on the spatiotemporal evolution of various sectors and total WF, as well as the
impact of different social and economic factors on the WF of different sectors.

Accordingly, the present study calculated the volume of WF in China and defined the
following goals: (1) to analyze the spatiotemporal evolution of WF at the provincial level in
China from 2002–2017 and identify the key thermal zones and sectors; and (2) to explore
and analyze the driving factors of WFI in different sectors in China. This paper aims to
provide a theoretical reference for the sustainable management of water resources in China
and other developing countries worldwide.

2. Materials and Methods
2.1. IO Table-Based WF Calculation

The calculation of WF based on IO consists of three parts. Firstly, we accounted for the
direct water consumption of each sector across 16 categories. Secondly, the IO tables were
processed to fit them into the appropriate form. Finally, we calculated the sectoral WF and
WFI, as shown in Figure 1.

First, we consolidated IO table data for each province from 2002 to 2017 into 16 different
sectors. Sector abbreviations are shown in Table 1.

Table 1. Sector Abbreviations.

Sector Abbreviation Sector Abbreviation

Agriculture AGR Transportation Equipment TRE
Mining Industry MIN Other Sanufacturing OMA

Food and Beverage FAB Water, Electricity and Gas WEG
Textile TEX Construction CON

Wood and Paper WAP Transport, Post and
Communications TPC

Petroleum, Chemical and
Non-Metallic Products PCN Sale SAL

Metal Products MET Hotels and Restaurants HRA
Electronics and Machinery EAM Other Services OSE
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Figure 1. Model and calculation methods.

We then reset IO tables, at which point the effects of imports were eliminated and the
outputs were corrected for calculation (as shown in Supplementary Material 1).

Based on the equilibrium relationship and contents of each quadrant, we entered the
Water Resources Satellite Account Matrix U. We could then obtain the Technical Coefficient
Matrix A, i.e., as shown in Equation (1), where Z is n G n Intermediate Demand Matrix and
X is n G 1 Total Output Column Matrix in Equation (2).

A =

a11 · · · a1n
...

. . .
...

an1 · · · ann

 =

Z11 · · · Z1n
...

. . .
...

Zn1 · · · Znn

·[(x1 · · · xr · · · xn)
T ]

−1
(1)

(x1 · · · xr · · · xn)
T = X,

Z11 · · · Z1n
...

. . .
...

Zn1 · · · Znn

 = Z (2)

The Leontief inverse Matrix L is obtained by matrix operations, i.e., as shown in
Equation (3), where In is n G n identity matrix.

L =

l11 · · · l1n
...

. . .
...

ln1 · · · lnn

 =




1 0
0 1

· · · 0
0

...
. . .

...
0 0 · · · 1

−

a11 · · · a1n
...

. . .
...

an1 · · · ann




−1

(3)

Before entering Water Resources Satellite Account, we calculated sectoral water con-
sumption, which consists of three components, including agricultural production, manu-
facturing, and services.

Agricultural production is composed of crop and animal production. The water con-
sumption of crop production CWUtotal includes blue water consumption CWUblue and green
water consumption CWUgreen. CWUblue and CWUgreen are equal to the daily evapotranspi-
ration of crops from planting date to harvest date. Blue water evapotranspiration ETblue
is the difference between the total evapotranspiration ETC and the effective precipitation
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Peff (when (ETc-Peff) was less than zero, it was set as 0). Green water evapotranspiration
ETgreen is a smaller value between total evapotranspiration ETC and effective precipitation
Peff. Total evapotranspiration ETC is obtained by multiplying the crop coefficient KC with
the reference crop evapotranspiration ET0.

The animal production water consumption consists of two main parts: water con-
sumption during the entire life cycle, from birth to slaughter; and water consumption
during manufacturing. The water consumed during the life cycle consists of three parts:
water for processing feed, drinking, and cleaning services. The water consumption in fresh
water farming mainly takes the amount of water used for evaporation and cleaning of the
water body into account. The data on livestock production used in the calculations were
obtained from the China Statistical Yearbook and the compilation of national agricultural
product income data.

The water consumption of the industrial and service sectors are much smaller than
agriculture in terms of processing primary products, which accounts for approximately a
quarter of agricultural water consumption. Therefore, for calculation for WF we mainly
considered the blue water volume consumed in the process, which is based on the Water
Resources Bulletin from every province.

We entered the calculated water consumption by sector to obtain the Satellite Account
Matrix Û and Water Utilization Rate Matrix Ŵ in Equation (4), where wi =

ui
xi

.
u1 0
0 u2

· · · 0
0

...
. . .

...
0 0 · · · un

 = Û,


w1 0
0 w2

· · · 0
0

...
. . .

...
0 0 · · · wn

 = Ŵ (4)

According to the Leontief model, we combine Ŵ, L, and Final Demand Matrix Y to
find WF in production of the sector Fi in billions of m3, as shown in Equation (5):

Fi = (F1 · · · Fr · · · Fn)
T = ŴLŶ (5)

The provincial total WF of each sector can be summed to obtain the total WF F in a
given year in billions of m3, as shown in Equation (6):

F =
n

∑
i=1

Fi (6)

By combining the sectoral WF Fi and total WF F, we correspondingly divided by
the value added of each sector with the province’s gross regional product to obtain the
provincial WFI FI in m3/104 yuan, as shown in Equation (7).

FI =
Fi

pro

v
(7)

Here, v is the added value of a sector in 104 yuan. When it comes to provincial WFI,
the v represents the regional GDP of each province in that year in 104 yuan.

The IO table is a macroeconomic analysis tool proposed by Leontief [21,22]. The
original IO tables used in this paper were obtained from the China National Bureau of
Statistics.

2.2. Driving Factors and Mechanisms

In this paper, 12 economic and social factors were selected [14,23–25] as independent
variables, and analysis of the impact of these factors on WFI across sectors was performed
using Spearman’s correlation analysis method. Factors were selected based on economic
conditions (F1 et al.), social situation (F2 et al.), living standards (F4 et al.), and scientific
level (F11 and F12). The driver data were obtained from the China Statistical Yearbook,
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China Environmental Statistical Yearbook, etc. The data resources are displayed in Table 2.
The codes and abbreviations are shown in Table 3.

Table 2. Data Resources.

Main Data Data Resources

Agricultural Water Consumption
China Statistical Yearbook

Compilation of National Agricultural Product
Income

China Meteorological Administration

Manufacturing Water Consumption China Statistical Yearbook
China Statistical Yearbook on Environment

Service Water Consumption China Statistical Yearbook
China Statistical Yearbook of the Tertiary Industry

IO Tables National Bureau of Statistics

Driving Factors China Statistical Yearbook
China Environmental Statistical Yearbook

Table 3. Driving factors and codes.

Code Driving Factor Code Driving Factor

F1 GDP per Capita F7 Proportion of Agricultural
Output

F2 Urban Population Density F8 Industrial Output per Capita
F3 Groundwater Supply Ratio F9 Urbanization Ratio
F4 Urban Engel’s Coefficient F10 Grain Yield per Capita
F5 Rural Engel’s Coefficient F11 Technical Innovation Index

F6 Proportion of Industrial
Output F12 Education Level

3. Results and Analysis
3.1. Changes in China’s Water Footprint Volume and Intensity

WF and WFI in China were calculated, and the total national WF showed an increasing
trend during the study period (Figure 2a). At the national level, the volume of WF increased
from 982.67 billion m3 in 2002 to 1098.19 billion m3 in 2017. The largest component among
the sectors was agriculture, for which the WF proportion decreased from 55.79% to 52.2%.
Food and Beverage was the sector with the second largest share of the WF volume, which
raised from 18.15% (2002) to 27.24% (2017). The Petroleum, Chemical and Non-Metallic
Products and Textile manufacturing industries had the largest share, changing from 1.4% and
5.84% (2002), respectively, to 2.2% and 3.84% (2017). The composition of the tertiary sector
decreased from 13.6% (2002) to 12% (2017), where Hotel and Restaurants was responsible for
the vast majority of the 0.51% improvement during the study period.

The national WFI had a declining trend from 550 m3/104 yuan to 152 m3/104 yuan
in 2017, a decrease of 72.36% during the study period. The Agriculture and Food and
Beverage sectors had the largest WFIs in 2002, with 435 m3/104 yuan and 487 m3/104 yuan,
respectively, which decreased by 76% and 78% from 2002 to 2017. The sector with the
smallest WFI during the study period was the Hydropower and Gas sector, which decreased
from 1.32 m3/104 yuan (2002) to 0.65 m3/104 yuan (2017).
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Figure 2. The water footprint and water footprint intensity from 2002–2017. Here, (a) shows the
water footprint in 2002, 2007, 2012, and 2017 across all sectors, and (b) is water footprint intensity of
each sector from 2002 to 2017.

3.2. Spatial Distribution and Evolvement of WF and WFI at Provincial Level in China

As shown in Figure 3. The volume of WF and WFI of human activities at the provincial
level in China was also calculated and the spatiotemporal evolution was analyzed. In terms
of spatial distribution, the regions with higher WF volume in China are located in North
China. In 2002, Shandong, Henan, and Hebei had the highest WF volumes with 104.49,
15.79, and 84.566 billion m3, respectively, which account for nearly 30% of the national WF.
The regions with lower WF volumes are mainly distributed in the south of China, among
which Shanghai, Beijing, and Qinghai have the lowest WFs with 3.6 (0.37%), 4.3 (0.44%),
and 4.52 (0.46%) billion m3. By 2017, Shandong, Henan, and Heilongjiang had the highest
WF volumes with 107.9 (9.83%), 104.18 (9.49%), and 93.16 (8.48%) billion m3.

As for WFI, volumes were higher in the northwest of China. In 2002, the highest
WFIs were 2042.85, 1600.53, and 1425.17 m3/104 yuan in Ningxia, Gansu, and Xinjiang,
respectively. The lower WFIs were mainly in southern regions, among which Shanghai and
Zhejiang had the lowest, with only 7.97% and 20.74% of the national average WFI. In 2017,
the WFIs of Xinjiang, Inner Mongolia, and Heilongjiang rose to the top, with 824.01, 739.46,
and 719.67 m3/104 yuan, respectively.

3.3. Evolvement of Provincial and Sectoral WF Volume in China

As seen in Figure 4, Inner Mongolia, Xinjiang, and Heilongjiang had the largest WF
volume change of 174.6%, 100.3%, and 42.3%, respectively, from 2002 to 2017. Beijing,
Shanghai, and Fujian saw the largest decreases in WF volume, by 39.75%, 34.62%, and
38.85%, respectively, as the WFs decreased by 1.71, 1.24, and 3.89 billion m3.

From 2002 to 2017, the WFI decreased by more than 60% in the Agriculture sector, except
in Inner Mongolia, where it increased by 80%. The WFI decreased by 9.7%, 10.5%, and
17.6% in the Food and Beverage sector in Hainan, Liaoning, and Inner Mongolia, respectively,
and exceeded 50% in all other provinces. The Wood and Paper and Petroleum, Chemical and
Non-Metallic Products sectors in Heilongjiang as well as the Hotel and Restaurants sector
in Hebei increased significantly, reaching 80.4%, 78.4%, and 63.2%, respectively. Eight
provinces, including Beijing and Fujian, witnessed their WFI decrease by more than 80%.
More than half of the provinces and municipalities directly under the central government
saw their WFI decrease by somewhere between 60% and 80%, while for four provinces,
including Heilongjiang, WFIs dropped below 60%.
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Figure 4. Evolvement on water footprint and changes in water footprint for 16 sectors from 2002
to 2017. In (a), the area of each circle represents the WF change, and (b) shows changes in water
footprint for 16 the sectors. The depth of color represents the degree of change in WFI from 2002
to 2017, with Tibet and Tianjin in grey due to missing IO tables or no outputs of the corresponding
sector in 2002.

3.4. Analysis of WF Driving Factors by Sector

As shown in Figure 5.The relationship between driving factors and sectoral WFI is
reflected in the heat map (a), the red and blue represents positive and negative correlation
respectively and the area of each circle represents the value of Spearman correlation
coefficient. The relationship between driving factors and provincial WFI is reflected in
the scatter plot (b to m). The “**” and “*” represent P value is less than 0.01 and 0.05,
respectively. From the figure, we found that F10 (grain yield per capita) is significantly
correlated with most sectors. There is a significant negative correlation between F5 (rural
Engel’s coefficient), F4 (urban Engel’s coefficient), and most sectors. There are positive
correlations between F1 (GDP per capita) and multiple sectors. We also found that AGR
has a significant positive correlation with F12 (education level) and F10 (grain yield per
capita). With FAB, F3 (groundwater supply ratio) has a significant positive correlation.
For PCN, F11 (technical innovation index) is the factor with the most significant negative
correlation, while F8 (output per capita) and F1 (GDP per capita) have positive correlations
with CON and HRA, respectively.
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4. Discussion
4.1. Differences in WF at the Provincial Level in China

By comparing the distribution of total WF, it can be seen that the regions with high WF
are mainly located in Shandong, Henan, and Hebei, which are the main regions for water-
intensive forms of production, and are regions with relatively high population densities [23].
The water consumption ratio of the grain production and metal product sectors, as well
as the total population share of three provinces, reached 23.77%, 43.68%, and 19.94% of
the national average, respectively, and the per capita WF are all approximately 135% of
the national average (2017), making the WF of the three regions more prominent. In our
study, the proportion of agricultural water consumption reached 51% in 2017, which is
close to the 50% pointed out in Deng’s research [26], but different from the 60% concluded
in Xu’s research [27]. Differing methods of agricultural and industrial water consumption
can explain this discrepancy. The regions with larger variations in WF are Inner Mongolia,
Xinjiang, and Heilongjiang, which may be due to the restructuring of local production
and the development of water-saving irrigation agriculture, as the government pays more
attention to water conservation and limits the development of high-water-consuming and
inefficient industries. The WF of agricultural production obtained in this study is similar to
the 624 billion m3 [28] estimated by Hoekstra and Makonnen.

After comparing the distribution of WFI, it can be seen that the provinces with larger
WFIs are mainly located in Heilongjiang, Inner Mongolia, and Xinjiang, which are also the
bases of China’s commercial grain and animal husbandry industries, and the proportion
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of high-water-consuming sectors shows a negative effect on industrial water efficiency
improvement [29]. In contrast, some economically developed provinces like Shanghai
and Beijing are not bases for water-intensive enterprises, but rather for industries such as
service and maintenance [1], making these the regions with the smallest WFs in China. The
difference in economic structure and sectoral water-consumption efficiency will likely be the
primary cause of the difference in WFI [15]. Additionally, affected by severe water shortage,
the share of high-water-consuming industries represented by agriculture is relatively small
in the local area [30], which may be another reason for the difference.

4.2. Driving Factors Have Effects on WFI

National WF is rising in the face of a continuous decline in WFI, which, to some extent,
reflects the rapid development of China’s economy and the increased productive capacity
of society [31]. The driving factors of WFI are ultimately determined by gross economic
structure, social development, and technology, which accords with Wang’s research [32].
The sectoral water efficiency of production is increasing in the context of technological
innovation [33,34]. One of the most important factors influencing WFI is GDP per capita,
probably because regions with a higher GDP per capita generally have higher economic
security, more efficient water use, and stricter water management policies [23]. However,
the relatively poorer areas are more inclined towards water-intensive enterprises [1] and
lower standards for water resource management, which may lead to a more positive
correlation between GDP per capita and WFI. Wang et al. [35] concluded that service and
construction sectors consumed the largest portion of water in Beijing (2013), which is
similar to our findings.

As for manufacturing sectors like petroleum and metal, production entails a degree
of water pollution [36,37]. Technological innovation may have an impact on WFI in the
following manner: water-saving technologies, techniques such as new water-saving pro-
cesses, and development of unconventional water resources, such as salt and brackish
water, require a model of integrated innovation across sector production. Additionally,
undertaking advanced water-saving processes can offers producers an opportunity to
enhance their wastewater-treatment capabilities. In regards to hotels and restaurants along
with other services, population density and urbanization rates may be key factors that
significantly influence WFI. It is widely believed that more-urbanized provinces tend to
have a higher demand for products and services, which lessens WFI to some extent.

4.3. Policy Recommendations

The results show that the agricultural and food and beverage sectors account for
over 70% of the WF. The WF of the agricultural sector results from the irrigation of farm
crops, and the WFI of the food and beverage sector mainly stems from a large number of
intermediate inputs of agricultural production. Given the large room for improvement in
water-saving, measures including optimizing agricultural production structures, develop-
ing drought-resistant varieties, and promoting water-conserving food consumption should
be taken. In 2006, China’s government proposed “The National Outline for Medium and
Long Term S&T Development”, which encourages companies to introduce water-saving
technologies for foreign countries. Adopting effective agricultural biotechnologies as well
as promoting a healthy food-consumption structure [23], Long et al.’s research [38] indi-
cated that the dietary restructuring would lead to a more than 50% reduction in WF. At the
same time, the northern and northeastern China should adjust the current planting struc-
ture by introducing or developing water-saving crops [39,40]. As an example, Shandong
increased the water-saving index to 1.348 by using new rice varieties in 2022.

Encouraging water-saving technological innovation in the production process is con-
ducive to cutting sectoral WF at a reduced cost. In the hotel and restaurant sector, the
level of local economic development and standard of living largely determine its water
consumption and water-saving potential [41]. As fixed capital formation in the construc-
tion sector has high WFI [26,27], adjustments should be focused on architectural planning
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without affecting people’s basic housing needs, as this will significantly reduce the water
consumption simultaneously.

4.4. Limitations and Uncertainties

The uncertainties in our study come from consolidation of 16 sectors from IO tables.
In calculation of agricultural water consumption, the crop coefficients referred are adopted
from FAO-56 report, which may cause deviation in blue and green water calculation.
At the same time, the water consumption data in the China Statistical Yearbook and
Water Resources Bulletin is not divided by each sector. Therefore, we assume that water
consumption intensity is the same in both manufacturing and service, which may result
in bias results of their direct water consumption. However, this part of direct water
consumption accounts for a small proportion of the total, having little influence on sectoral
water footprint [28]. When calculating the direct water consumption of each province, we
adopted the method of close-province substitution. In the end, gray WF was not included
in this study as it is not a real water-consumption indicator [42].

5. Conclusions

This paper accounts for the spatial-temporal distribution of WF and WFI in China
from 2002 to 2017 under the water-IOA model. This study utilizes the full life-cycle
approach to account for water consumption in the agriculture sector and investigates the
driving mechanisms of changes in WF and WFI through correlation analyses leading to the
following conclusions:

(1) The average total WF in China from 2002 to 2017 was 1031.9 billion m3, of which the
production of agricultural and related products accounted for the majority, and its
share has been decreasing since then.

(2) North China is the region with the largest WF and WFI, which is related to the
local industrial structure and production efficiency. Inner Mongolia, Xinjiang, and
Heilongjiang are the regions with the largest changes in China’s WF, which are closely
related to the improvement of agricultural water-use efficiency and restructuring of
local production.

(3) The driving factors affecting China’s WFI are mainly GDP per capita, urban and rural
Engel’s coefficients, and per capita grain production, as well as technical innovation
index, etc. It will be possible to achieve a reduction in WFI by adjusting agricultural
structure, optimizing the regional industrial layout, and improving the combined
strength of science and technological innovation. For example, in Shandong, the
water-saving index was increased to 1.348 by implementing new rice varieties in 2022.
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water consumption calculation methods; Comparison of WF and WFI in each province (the figure
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