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Abstract: N-nitrosamines have recently attracted attention as a class of disinfection byproducts and
are also a hot spot in environmental studies. Current N-nitrosamine analytical methods typically
involve manual solid phase extraction (SPE) of samples followed by quantitative analysis using
liquid chromatography-mass spectrometry (LCMS), which is time-consuming and may also fail
to eliminate complex matrix effects. Size exclusion chromatography (SEC) is a technique that can
separate compounds according to their molecular size. For the first time, this study developed
an Online-SPE/SEC/LCMS quantitative analysis method to detect and analyze nine common N-
nitrosamine disinfection byproducts in wastewater plant tailwater, including N-dimethylnitrosamine
(NDMA) and N-nitrosodiethylamine (NDEA), etc. The samples of 1.0 mL can be directly injected
after the simple 0.22 µm membrane filtration. This method reports the combination of SPE, SEC,
and RP C18 columns to achieve several functions in a processing time of 20 min, including online
enrichment, desalination, and matrix separation for the first time. The method provides good linearity
(R2 > 0.999), recoveries ranging from 91.67% to 105.88%, relative standard deviation (RSD) lower
than 4.17%, and the limits of detection (LOD) are 0.12–6.60 ng/L. This method alleviates tedious
human labor and can effectively overcome the matrix effect (ME < 20%). This method allows for
the accurate quantitative analysis of N-nitrosamines with high compatibility in wastewater plant
tailwater, rivers, and lakes with a high background matrix. Interested researchers can also use this
method as a reference in the online analysis of other specific pollutants after necessary optimization.
It can also be utilized for non-targeted screening and targeted analysis of contaminants in water with
a wide range of applications, giving valuable information for environmental monitoring.

Keywords: N-nitrosamines; analysis method; online solid-phase extraction (Online-SPE); size
exclusion chromatography (SEC); LCMS; column switching; wastewater plant tailwater

1. Introduction

N-nitrosamines, including N-nitrosodimethylamine (NDMA) and N-nitrosodiethylamine
(NDEA), are a new class of disinfection byproducts [1,2]. They are typically formed in the
chlorination and ozonation units of the water treatment process [3,4]. N-nitrosamines possess
more significant toxicity and carcinogenicity than trihalomethanes and haloacetic acids [5–7].
The carcinogenic risk value for NDMA at a concentration above 0.7 ng/L in drinking water is
10−6 [8,9], which may lead to potential human health problems [10]. The high detection rate
of N-nitrosamines in the aqueous environment has caused widespread concern due to their
high toxicity and water solubility [11–13]. The average concentration of NDMA in tap water in
China’s Yangtze River Delta region was 28.5 ng/L [14]. The maximum NDMA concentration
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detected in a drinking water plant in Spain was 20 ng/L [15]. In the United States, the median
concentration of N-nitrosamines in drinking water systems is 4 ng/L [16]. NDMA has also been
detected in wastewater, surface water, and groundwater [17–19], with the highest concentration
of 537 ng/L in ozone-treated wastewater [20].

N-nitrosamines are frequently present in the environment at the ppt (ng/L) level [21],
posing a challenge for accurate quantitative analysis. Therefore, it is necessary to develop
an accurate and sensitive analytical detection method. Gas chromatography, liquid chro-
matography, and combined methods with mass spectrometry are currently used to detect
N-nitrosamines [22–24]. Among them, liquid chromatography–mass spectrometry (LCMS)
has been extensively used to detect the N-nitrosamines in water with high sensitivity [25].
For example, Malihi et al. [26] successfully developed an HPLC/MS/MS analytical method
to determine N-nitrosamines with NDMA detection and quantification limits of 20 ng/L
and 60 ng/L, respectively. Electrospray ionization, often known as ESI, is a “soft” ioniza-
tion method that is utilized frequently in LCMS for the purpose of analyzing analytes [27].
N-nitrosamines can be ionized in positive and negative ion modes, but ionization behavior
is better in positive ion modes. The presence of isolated electrons in the nitrogen atom of
the N-nitrosamine structure forms protonated [M + H]+ ions [28].

The pretreatment technique prior to analyzing samples is significant for lowering the
target detection limit and extending the service life of the instrument and column [29].
Solid-phase extraction (SPE) is a popular pretreatment strategy for sample concentration
and purification [30,31]. Qian et al. [32] demonstrated that the sensitivity of N-nitrosamine
analysis was significantly improved after SPE enrichment, with detection limits as low as
0.01–2.7 ng/L.

Traditional SPE methods entail time-consuming manual operations that not only prolong
the analysis time but are also prone to analytical errors and cross-contamination [33,34].
With the advances in instrumental analysis technology, the online-SPE technique enables
automatic enrichment of target substances on the SPE column through automatic column
switching, simplifying the pretreatment procedure, further improving detection efficiency,
and reducing errors caused by manual operation [35,36]. The combination of online SPE and
mass spectrometry has been successfully utilized to detect pharmaceutical and perfluorinated
pollutants in water, with typical analysis times ranging from 15 to 30 min [37,38]. However,
during LCMS analysis, background matter in water can affect the ionization efficiency in the
ESI source of the mass spectrometer, resulting in significant enhancement or weakening of the
target’s mass spectral signal, known as the matrix effects [39]. When analyzing samples with
high background matrix concentrations, SPE usually fails to eliminate matrix effects that can
cause analytical errors. For example, Amelin et al. [38] investigated N-nitrosamines in foods.
They discovered that even through SPE pretreatment, the analysis of several N-nitrosamines
was still inhibited by background matter with a matrix effect value of over 20%.

Size exclusion chromatography (SEC), as a branch of chromatographic technique,
separates compounds in solution according to their molecular size or weight. [40–42].
Separation occurs when molecules of different sizes enter the pore space [41,43]. The
smaller the molecule, the easier it is to diffuse into the pores and be retained. However, the
background matter, which is typically composed of large molecules, is unable to enter the
pores and is instead eluted along with the mobile phase [44]. Therefore, the SEC technique
can separate the target compounds from the background matrix and reduce matrix effects
on detection. Currently, the combination of SEC and mass spectrometry has been proven to
be an effective method for sample purification, biomolecule separation, and compound
determination and has evolved into a rapid and high-throughput technical strategy for
proteomics and metabolomics analysis [45–47].

This study overcomes the shortage of current analysis methods by developing an
Online-SPE/SEC/LCMS quantitative method for large volume samples that can detect nine
common N-nitrosamine disinfection byproducts in wastewater plants’ tailwater. Before the
analysis, the samples need to be pretreated with a 0.22 µm filter membrane to remove parti-
cles from the water. Enrichment, desalination, and matrix separation were accomplished
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online using SPE, SEC, and conventional columns to implement four-stage separation
and purification and were then sent to a triple quadrupole (QQQ) mass spectrometer for
quantitative analysis. This method has the advantages of simple pretreatment and a highly
automated analysis process. It can perform accurate quantitative analysis on samples with
a high background matrix, such as wastewater plant tailwater and contaminated water
bodies, while also providing technical support for the online detection of N-nitrosamine
disinfection byproducts.

2. Materials and Methods
2.1. Apparatus

The Online-SPE/SEC/LCMS system was developed for sample enrichment, chromato-
graphic separation, and mass spectrometry analysis. The system consists of three modules:
an Ultimate 3000 dual ternary HPLC, an autosampler WPS3000TSL with a 2.5 mL large
volume injection kit, and a TSQ Quantum Access Max mass spectrometer (Thermo Fisher,
Waltham, MA, USA). The data were analyzed using Xcalibur 4.6 software.

2.2. Setup of the Online-SPE/SEC/LCMS System

The SPE, SEC, and RP (Reversed-phase) C18 columns were selectively connected via
two six-port valves to implement enrichment, purification, and separation functions in the
Online-SPE/SEC/LCMS system. The schematic diagram of the system (Figure 1) depicts
four stages during the whole analytical process. Stage 1: The SPE and RP C18 columns were
connected in series. Water samples (1.0 mL) were injected by an autosampler into the SPE
column for sample enrichment and removal of inorganic salts. Stage 2: The SPE column
and the SEC column were connected in series. The target compounds were transferred from
the SPE column to the SEC column for separation with the background matrix. Stage 3:
The SEC column and the RP C18 column were linked together. The target compounds were
transferred to the RP C18 column. Stage 4: The system was reset to its original settings. The
target compounds were sent into the mass spectrometer for quantitative analysis.
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2.3. Chemical Reagents and Standard Solution Preparation

Nine N-nitrosamine mixed standards were purchased from Alta Scientific (Tianjin,
China), including N-nitrosodimethylamine (NDMA), N-nitrosoethylmethylamine (NEMA),
N-nitrosopyrrolidine (NPyr), N-nitrosopiperidine (NPip), N-nitrosomorpholine (NMor), N-
nitrosodiethylamine (NDEA), N-nitrosodinpropylamine (NDPA), N-nitrosodibutylamine
(NDBA), and N-nitrosodiphenylamine (NDPhA). Methanol and acetonitrile (LC grade)
were bought from Sigma Aldrich Chemicals (St. Louis, MO, USA). Formic acid and
ammonia (MS grade) were purchased from Aladdin (Shanghai, China). PTFE membrane
filters (0.22 µm) were purchased from Anpel Laboratory (Shanghai, China). Ultrapure
water was prepared by a UPR-II-10T ultrapure water machine (Ulupure, Sichuan, China).

The mixed standards were diluted with methanol into a 100 mg/L stock solution and
kept refrigerated at −18 ◦C. The stock solution was further diluted into standard solutions
with concentrations ranging from 0.100 to 200 ng/L using ultrapure water, and the standard
solutions were prepared on-site.

2.4. Standard Addition Method for Calibration

The standard addition method, as a robust strategy for correcting interference from the
matrix effect, was used to aid in the quantitative analysis. This method does not require the
addition of a costly internal standard and eliminates matrix interference by aligning the standard
solution with the sample solution’s matrix [48,49]. Standard solutions at various concentration
levels were added to the samples to form spiked samples of 10, 20, and 50 ng/L.

2.5. Chromatography Conditions Optimization

Selection of the chromatographic column: Five columns, including Waters T3, Thermo
PFP, Thermo RSLC, Waters Oasis Wax, and Waters Oasis HLB columns, were chosen to
evaluate their retention performance for N-nitrosamines to choose the appropriate SPE
column. The retention ability of the column for the target is reflected by the capacity factor,
which means a higher capacity factor indicates a longer retention time [50,51].

Determination of mobile phase: The system has two ternary pumps (left and right), which
can use five mobile phases by switching valves. Water/methanol and water/acetonitrile were
selected to evaluate the mobile phases. Chromatography parameters were further optimized
to improve ionization efficiency by adding organic acids or buffers to the mobile phases. The
effects of ammonium formate, formic acid, and ammonia on the signal intensity and peak shape
were also compared.

2.6. Mass Spectrometry Conditions Optimization

The mass spectrometer was operated in an ESI positive mode, and the ions were
detected by a multiple reaction-monitoring (MRM) scan. Other MS parameters included
ion spray voltage of 3.5 kV, heater temperature of 300 ◦C, nitrogen collision gas, sheath gas
pressure of 40 arb, and auxiliary gas pressure of 15 arb. Parameters such as parent/product
ions, collision energy, and lens shift for the nine N-nitrosamines were manually optimized.

2.7. Method Validation

The method’s validation parameters were evaluated, including linearity, accuracy,
precision, limits of detection (LOD), and limits of quantification (LOQ). Each test was
performed three times and the results were averaged. Standard solutions were prepared in
the concentration range of 0.100–200 ng/L. Standard curves were plotted by linear fitting
the target substances’ peak areas to their mass concentrations. The accuracy and precision
of the method were validated using the recovery (r, %) and relative standard deviation
(RSD, %). Concentration levels with S/N of 3 and 10 were chosen as the method’s LOD
and LOQ. The impacts of matrix effects on target substance analysis were expressed using
matrix effect values (ME, %) as follows [52]:

ME (%) = (k2/k1 − 1)× 100 (1)
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k1 and k2 are the slopes of the standard curve of nine N-nitrosamines in pure water and the
sample matrix, respectively.

2.8. Usability of the Method

Nine N-nitrosamines were determined in a wastewater plant’s tailwater to verify the
method’s practicality. The tailwater of the wastewater plant is discharged after the biochemical
treatment in the wastewater plant. Before discharge, wastewater plant tailwater is typically
disinfected using chlorine-containing disinfectants. These disinfectants could react with the
nitrogenous organic matter in the tailwater to produce N-nitrosamine disinfection byproducts.
The actual water samples were taken from the tailwater of a municipal wastewater plant in
Changzhou city. The collected water samples were filtered through a 0.22 µm PTFE filter
membrane and refrigerated at 4 ◦C in the dark for subsequent analysis.

3. Results and Discussion
3.1. Selection of Chromatographic Column

The retention capacity of five columns was tested in 100% pure aqueous phase with iso-
cratic elution conditions. NDMA polarity was the strongest among the nine N-nitrosamines.
Therefore, the retention behavior of the five columns on NDMA was compared based on the
capacity factor and signal intensity, as shown in Table 1 and Figure A1. A Waters T3 column
was generally regarded to have high retention and loading for neutral, weakly polar, and
polar compounds. However, in this test, the Waters T3 column has poor retention for
NDMA, with a capacity factor of only 0.3. The Waters Oasis HLB column had the highest
capacity factor of 6.0 among the five columns, indicating that the HLB column had the
best retention for NDMA. As a result, the Waters Oasis HLB column was chosen as the
SPE column to enrich the target compounds. Remarkably, the limited number of injections
of the Waters Oasis HLB column was only 200, which is significantly less than that of a
common column. In addition, a Waters BEH SEC column (4.6 mm × 30 mm × 1.7 µm) was
selected for SEC separation of N-nitrosamines with the background matrix. The RP C18
column in stage 4 was a TOSOH C18 column (2.0 mm × 20 mm × 5 µm).

Table 1. Types and characteristics of five test columns for online SPE of N-nitrosamines.

Type Specifications Pore Size
(Å)

Surface Area
(m2/g) pH Range Capacity Factor a

Waters Atlantis T3 4.6 mm × 20 mm × 5.0 µm 100 330 2.0–8.0 0.3

Thermo RSLC 3.0 mm × 33 mm × 3.0 µm 120 300 1.5–10.0 0.4

Waters Oasis Wax 3.9 mm × 20 mm × 30 µm 80 100 0–14.0 3.7

Thermo PFP 3.0 mm × 30 mm × 2.5 µm 100 230 2.0–8.0 1.7

Waters Oasis HLB 3.9 mm × 20 mm × 5.0 µm 80 786 0–14.0 6.0

Note: a Capacity factor is the ratio of a component’s retention time in the stationary phase to its retention time in
the mobile phase.

3.2. Selection of Mobile Phase

This system has two ternary pumps, the left and right pumps. The left pump is
primarily used for sample enrichment and target analysis. Water/methanol and wa-
ter/acetonitrile mobile phases were chosen and compared. The peak shapes and intensities
of N-nitrosamines were essentially similar. Thus, water/methanol was selected as the left
pump mobile phase since methanol is more economical and less toxic than acetonitrile.
The chromatographic conditions were further improved by adding organic acids or buffer
salts. The signal intensities of nine substances increased by more than 10% when 5 mmol/L
ammonium formate was added (Figure A2). The water/methanol system with 5 mmol/L
ammonium formate was finally selected as the left pump mobile phase.

The right pump was primarily used to separate the target from the background
matrix. Two mobile phases, water/methanol (80%:20%) and water/acetonitrile (80%:20%),
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were chosen and compared. In the water/acetonitrile system, the peaks of all nine N-
nitrosamines showed great shapes without bifurcation or trailing, and the peak intensity
was increased by 25% (Figure 2). Therefore, water/acetonitrile was selected as the mobile
phase for the right pump. In this system, the final mobile phases were A: 5 mmol/L
ammonium formate in aqueous solution, B: methanol, C: pure water, and D: acetonitrile.
Table 2 shows the optimized chromatographic conditions in detail.
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Table 2. Elution procedure for left and right pumps and six-way valve switching time.

Left Pump Right Pump Valve Switch

Time
(min)

Flow Rate
(mL/min)

Methanol
(%)

Flow Rate
(mL/min)

Acetonitrile
(%)

Time
(min)

Left Valve
Position

Right Valve
Position

0 1.00 0

0.35 20

0 1–2 1–2
1.4 1.00 0 1.4 1–2 6–1
1.5 1.00 20 2.7 6–1 1–2
2.5 1.00 20 3.6 1–2 1–2
5.0 0.35 95

12.5 0.35 95
13.0 0.35 95
17.0 1.00 0
20.0 1.00 0
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3.3. Mass Spectrometry Parameter Optimization

The analysis was performed in ESI+ mode. The [M + H]+ ion is taken as the precursor
ion, and the two highest-intensity product ions are the quantitative and qualitative ions.
The optimized mass spectrometry conditions are shown in Table 3.

Table 3. Molecular structure and optimized MRM parameters for 9 N-nitrosamines.

Compounds Molecular Formula Molecular Structure Precursor
m/z a

Quantifier
m/z

Qualifier
m/z

Collision Energy
(eV) Lens Offset

NDMA C2H6N2O
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3.4. Method Validation

The linear regression equations for the nine N-nitrosamines were further calculated
and summarized in Table 4. QC samples, prepared at three levels (10, 50, and 10 ng/mL),
were analyzed for six replicates. The results of precision and accuracy were also listed in
Table 4.

The results revealed that the method has good linearity over a range of concentrations,
with correlation coefficients (R2) greater than 0.9993. The accuracy (RSD) was within 4.17%
for all the QC concentration levels. The present method obtained good recovery, ranging
between 91.67% and 105.88%, while RSDs were 0.68–3.06%. The LOD and LOQ for the nine
N-nitrosamines ranged from 0.12 ng/L to 6.60 ng/L and from 0.40 ng/L to 21.99 ng/L,
respectively. The current SPE column for this method has a limited volume of 0.15 mL with
an injection of 1.0 mL. An SPE column with a higher volume could be used in the future to
increase the injection volume and reduce the LOD and LOQ.

The newly developed method was compared to other methods that had already been
published for the determination of N-nitrosamines. Malihi et al. [26] set up an LCMS
method for determining N-nitrosamines with an injection volume of 25 µL and a LOD
of 20–60 ng/L. The present method significantly reduced the detection limit with a large
injection of samples (1.0 mL). Ngongang et al. [25] analyzed N-nitrosamines based on
HRMS (Orbitrap) with a lower LOD of 0.4–9.1 ng/L, comparable to the present method
based on a QQQ mass spectrometer. Furthermore, the method is much more automated and
easy to operate due to the incorporation of the online-SPE technique. Till now, no reports
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have been published on N-nitrosamine analysis using the combination of online-SPE, SEC,
and RP C18 separation.

Table 4. Performance characteristics and linearity equation for nine N-nitrosamines determination in
pure water.

Analyte Linearity Equation
Correlation
coefficient

(R2)

QC1
(10 ng/mL)

QC2
(50 ng/mL)

QC3
(100 ng/mL)

LOD b

(ng/L)
LOQ c

(ng/L)Recovery
(%) RSD a(%) Recovery

(%)
RSD
(%)

Recovery
(%)

RSD
(%)

NDMA y = 7345 x + 13,183 0.9999 91.67 4.17 95.49 3.89 99.37 3.06 6.60 21.99
NMEA y = 108,885 x − 258,800 0.9998 97.78 3.55 98.02 1.93 100.7 1.63 6.14 20.46
NPyr y = 393,491 x − 1,238,308 0.9993 104.90 0.99 100.36 0.97 98.54 0.74 1.72 5.74

NDEA y = 256,265 x + 437,747 0.9998 93.48 2.67 105.88 2.50 96.36 1.87 0.86 2.87
NPip y = 732,010 x + 2,070,603 0.9994 95.37 2.79 96.54 3.85 101.0 1.30 2.70 8.99
NMor y = 46,808 x + 133,910 0.9994 99.43 3.80 98.07 2.99 100.2 2.18 2.14 7.12
NDPA y = 74,461 x + 164,445 0.9997 103.79 0.87 101.62 2.87 99.38 0.97 2.11 7.04
NDBA y = 20,982 x + 36,659 0.9998 96.85 1.24 103.87 3.48 98.73 2.68 3.29 10.98

NDPhA y = 816,649 x + 2,207,072 0.9995 100.86 1.01 99.45 0.76 98.95 0.68 0.12 0.40

Note: a RSD, relative standard deviation. b LOD, limits of detection, the concentration level at S/N = 3. c LOQ,
limits of quantification, the concentration level at S/N = 10.

3.5. Matrix Effect Evaluation

The background matrix in the sample could compete with the target compound
for ionization in the ESI source of the mass spectrometer, which significantly affects the
ionization efficiency and the accuracy of the target compound [53]. Ultrapure water and
tailwater were used as background matrix for direct-injection mass spectrometry to evaluate
the background matrix’s influence. The results demonstrated that the signal intensity of N-
nitrosamines in samples containing the background matrix in tailwater was only 4.2–9.8%
of that in pure water, indicating that the tailwater matrix significantly interfered with the
accurate quantitative analysis of N-nitrosamines.

To assess the matrix effect, the Online-SPE/SEC/LCMS method was used to determine
and compare the response signal in pure water and tailwater. The results show that the
ME values for the nine N-nitrosamines were −13.99% (NDMA), −0.18% % (NMEA), 8.59%
(NPyr), 17.39% (NDEA), −7.21% (NPip), 12.32% (NMor), −2.73% (NDPA), −4.54% (NDBA),
and 0.65% (NDPhA). When ME values are less than 20%, it is generally assumed that matrix
effects can be ignored [53]. The ME values of the nine N-nitrosamines in this method were
all less than 20%, demonstrating that this method can effectively overcome matrix effects.

SEC columns are commonly used for sample cleanup in application practice. The
porous gel in the SEC column effectively separates the matrix and the target compounds
based on their molecular sizes. Therefore, the SEC technique has a significant advantage in
removing the interference of proteins, phospholipids, and humus [54].

Inorganic ions and dissolved organic matter (DOM) are the two types of matrix back-
ground. Inorganic ions are removed directly in the enrichment stage (stage 1) due to their
inability to be retained by the SPE column. However, due to their similar physicochem-
ical properties, DOM is concentrated as well as the target contaminants. Thereby, DOM
could strongly affect the ionization of the target contaminants (mainly by inhibition) when
co-flowing into the mass spectrometer.

Current reports indicate that most DOM in the tailwater and environmental samples
are large molecules with an average molecular weight of 1000–3000 D [55–57]. Protein and
other substances in DOM typically have molecular weights greater than 10 kD. Since the
molecular weights of N-nitrosamines are less than 500 D, this provides a theoretical basis
for separating target contaminants and matrix using the SEC column.

So far, the combination of SEC and RP for separating complex samples, commonly
known as two-dimensional liquid chromatography (2D-LC), has been a trend. By accessing
SEC in the first dimension and RP in the second dimension, researchers have successfully
analyzed the protein aggregates [58], monoclonal antibodies [59], and pharmaceutical
drug oligomers [60]. The separation mechanism of SEC is mainly based on molecular
size, while RP is based on hydrophobicity. Therefore, the combination of SEC and RP
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gives strong orthogonality with a 300% increase in separation efficiency [61]. The ME
values in this study ranged from −13.99% to 17.39%, all of which were less than 20%,
indicating that incorporation of the SEC technique into the Online-SPE/SEC/LCMS system
effectively separated the enriched target contaminants from DOM. This study further
demonstrates the success and application potential of a multidimensional separation of the
Online-SPE/SEC/LCMS system.

In addition, this study used the standard addition to correct the matrix effects. Both
the internal standard calibration and the standard addition method are commonly accepted
techniques in LCMS analysis. Reports illustrate that the optimized standard addition
method yields more accurate results than the internal standard calibration using stable iso-
tope labeled analogues [48,62]. The following analytical methods can further be optimized
using the internal standard calibration based on the setup of Online-SPE/SEC/LCMS.

3.6. Method Application

The developed method was used to determine the occurrence of nine N-nitrosamines
in the wastewater plant’s tailwater. The analysis was performed three times, and the
results were averaged. The results indicated the presence of NMEA, NDPhA, and NPyr
at concentrations of 10.46, 2.66, and 2.08 ng/L, respectively. Other compounds have not
been detected as of yet. It has been discovered that NDMA is present in drinking water
on a widespread scale, where an average concentration is 11 ng/L in 33% of 156 water
samples from the drinking water plant in China [63]. The largest concentration of NDMA
was a high of 320 ng/L in tailwater for water reuse from five wastewater treatment plants
in the USA [64], which has exceeded the limit of 100 ng/L of NDMA set by the World
Health Organization [65]. The risks associated with high NDMA concentrations from
tailwater discharge cannot be ignored. Therefore, the regular monitoring for N-nitrosamine
in tailwater must be strengthened in the daily management of wastewater plants.

4. Conclusions

N-nitrosamine disinfection byproducts are widely present in tailwater discharged
from wastewater treatment plants after chlorination. Tailwater entering a drinking water
source poses a potential threat to water quality safety. Therefore, regular monitoring for
N-nitrosamine in the tailwater and receiving water downstream is critical.

The developed Online-SPE/SEC/LCMS method can detect and analyze nine N-
nitrosamines in wastewater plant tailwater. The method has the advantages of simple
pretreatment, high sensitivity, and good selectivity. The sample can be directly injected in a
large volume (1.0 mL) after filtration by a 0.22 µm PTFE membrane, significantly improving
the analysis efficiency. The method’s validation parameters were also satisfactory, with
good linearity (R2 > 0.999), accuracy (recovery between 91.67% and 105.88%), and precision
(RSD < 4.17%). The LOD and LOQ values were 0.12–6.60 ng/L and 0.40–21.99 ng/L.

This method reports the combination of SPE, SEC, and RP C18 columns to achieve
several functions, such as online enrichment, desalination, and matrix separation, for the
first time. This method incorporates SEC technique, effectively reducing matrix effects,
and is beneficial for analyzing water samples with complex background matrix, such as
tailwater, river, lake, and ocean samples, etc. The practical utility of this approach is high,
allowing for the accurate quantitative analysis of N-nitrosamines with high compatibility.

Matrix effects are a dark cloud that hovers over LCMS analysis. The co-flux of target
substances and background matrix inhibits the detection of target substances. Together with
Online-SPE and SEC, target contaminant enrichment and matrix separation were achieved.
The combination of multiple separation methods, such as SEC, RP C18, and HILIC, to form
multi-dimensional chromatography (2DLC or 3DLC) with strong orthogonality will be
the future of chromatographic separation techniques. Multi-dimensional chromatography
followed by mass spectrometry (QQQ, Orbitrap, Q-TOF, FTICRMS) could significantly
improve the detection of known and unknown pollutants in the aqueous samples. This
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concept is expected to become the optional procedure for non-targeted screening and
targeted quantitative analysis of pollutants in the future.
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