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Abstract: Lake eutrophication is a global water environmental problem and has become a research
focus nowadays. Chlorophyll a concentration is an important index in terms of evaluating lake
eutrophication. The aim of this study was to build an effective and universal empirical model
for simulation of chlorophyll a concentration in Donghu Lake. On the basis of the relationship
between chlorophyll a concentration and dissolved oxygen (DO), water temperature (T), total nitrogen
(TN), and total phosphorus (TP), models for simulating chlorophyll a concentration were built by
using simulated annealing (SA), genetic algorithm (GA), artificial bee colony (ABC), and particle
swarm optimization (PSO) to optimize parameters of support vector machine (SVM). Moreover, a
collaborative mode (Col-SVM model) was built by introducing data assimilation, and meanwhile,
accuracy and universality of the model were studied. Modeling results showed that the application of
optimization algorithms and data assimilation improved the performance of modeling based on SVM.
Model simulation results demonstrated that the Col-SVM model has high accuracy, decent stability,
and good simulation effect; the root mean square error (RMSE), mean absolute percentage error
(MAPE), Nash–Sutcliffe efficiency coefficient (NSE), bias, and mean relative error (MRE) between
simulated values and observed values were 10.07 µg/L, 0.31, 0.96, −0.050, and 0.15, respectively. In
addition, model universality analysis results revealed that the Col-SVM model has good universality
and can be used to simulate the chlorophyll a concentration of Donghu Lake at different times.
Overall, we have built an effective and universal simulation model of chlorophyll a concentration
that provides a new idea and method for chlorophyll a concentration modeling.

Keywords: chlorophyll a concentration; support vector machine; optimization algorithm; data
assimilation; Donghu Lake

1. Introduction

Lake eutrophication is a global water environmental problem [1,2]. Chlorophyll a
concentration, as an important index of phytoplankton biomass as well as eutrophication,
is of great significance for the study of primary productivity, eutrophication, and algal
bloom [3,4]. Therefore, it is necessary to explore rapid and accurate methods to monitor
chlorophyll a concentration [5].

The traditional in situ monitoring method is usually used as a method to acquire
data as it is time-consuming, cumbersome, and of great space-time limitation [6]. Another
category of chlorophyll a monitoring is modeling and simulation, which includes remote
sensing inversion based on the special optical properties of chlorophyll a and water quality
numerical modeling based on the formation mechanism of eutrophication. With the rapid
development and wide application of remote sensing technology, remote sensing inversion
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has gradually developed into an indispensable method for chlorophyll a monitoring be-
cause it is timely, widely covered, and costs relatively little [7,8]. Using in situ chlorophyll
a concentration data and various satellite images such as Landsat 8 [9], MODIS [10], and
Sentinel-2A [11], remote sensing inversion models have been built that are based on back
propagation neural network (BPNN) [12], support vector machine (SVM) [13], extreme
learning machine (ELM) [14], and artificial neural network (ANN) [15], and these models
have good performance and high accuracy in simulating chlorophyll a concentration of
inland water. However, remote sensing inversion has some limitations in monitoring
chlorophyll a in lakes. Bad weather and a longer revisit cycle limit the images acquisition
and application in time series analysis [16,17]. In addition, remote sensing of medium
to small lakes requires moderate (≈300 m) to high (10–30 m) spatial resolution sensors,
and the resolution of commonly used and easily available satellite images usually cannot
meet the requirements for water quality inversion of a small lake [18,19]. In addition,
the inversion model has poor universality and it is only applicable to a specific area as
the inland water body has different characteristics of regionality and seasonality [20,21].
Consequently, although there are many studies on the inversion of chlorophyll a concen-
tration in Donghu Lake, there is no universally applicable model so far. Eutrophication
is a water pollution phenomenon wherein large quantities of nutrition material such as
nitrogen and phosphorus enter the water body, causing the rapid reproduction of algae and
other phytoplankton, the decline of dissolved oxygen, the deterioration of water quality,
and the destruction of the water ecosystem [22–24]. Water quality numerical modeling
takes into consideration the complex physical, chemical, and ecological changes of water
quality components during the formation of eutrophication, and therefore it can compre-
hensively and dynamically simulate the migration and transformation of water quality
components as well as predict the change rule and development trend [25–27]. At present,
the worldwide used water quality numerical models include WASP [28,29], EFDC [30,31],
Delft3D [32,33], FVCOM [34,35], and MIKE [36,37]. However, adequate data and essential
information needs to be collected to realize water quality numerical modeling and simu-
lation of chlorophyll a concentration in lakes. In addition, the modeling process needs to
input adequate files and appropriate parameters; the calibration of model parameters is
cumbersome, and the operation of model system is complex. When lacking high-resolution
satellite images and adequate data, we need to explore a new and effective method to
monitor the concentration of chlorophyll a in lakes.

The factors leading to eutrophication differ from one lake to another as a variable
environment [38]. However, lake eutrophication is mainly caused by excessive nutrient
runoff to the lake [39]. There are many factors affecting the growth and reproduction of
algae, such as light, temperature, pH, transparency, and nutrients [40,41]. At the same
time, the rapid growth of algae will lead to some changes in lake water quality, such as
the increase in chlorophyll a concentration and the decrease in transparency and dissolved
oxygen (DO) [42]. Therefore, chlorophyll a concentration in water has a specific biochemical
relationship with light, water temperature (T), total nitrogen (TN), total phosphorus (TP),
and other physical or chemical environmental factors [43]. Nevertheless, the relationship
has rarely been used to establish empirical models to simulate chlorophyll a concentration
in lakes. Different from water quality numerical models, empirical models do not need
to consider the complex formation mechanism of eutrophication, while it constructs the
numerical relationship to realize simulation and prediction based on observed data and the
machine learning algorithm.

SVM is a widely used machine learning algorithm that has advantages in solving
nonlinear fitting and small sample learning problems [44,45]. Thus, it can be chosen
as the method to explore the modeling of chlorophyll a concentration in Donghu Lake.
Zhang et al. developed an SVM model for the chlorophyll a estimation of Donghu Lake
using in situ chlorophyll a concentration data and synchronous Landsat 8 Operational
Land Imager (OLI) images [46]. However, kernel function, kernel function parameters, and
penalty factor have a great impact on the fitting effect of a SVM model [47]. Therefore, it is
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necessary to select the appropriate kernel function and to use the optimization algorithm
to optimize the parameters in a SVM model. Furthermore, due to the observation error
of observed data and the systematic error of an empirical model, there are uncertainties
in the modeling process and error between simulated values of the model and the actual
value [48]. Data assimilation is an effective method for dynamic modeling that fuses
different observation data into a model to modify the initial conditions, model parameters,
and state variables, so as to improve the model prediction value, make it closer to the
objective truth value, and reduce the uncertainty of model [49,50]. The introduction of
data assimilation can integrate the advantages of different models and data, avoid the
uncertainty of single model, and improve model accuracy.

The main objective in this study is to build an effective and universal empirical model
based on the relationship between chlorophyll a concentration and environmental factors
and use it to simulate the chlorophyll a concentration in Donghu Lake. To improve the
accuracy of the model, a variety of optimization algorithms and data assimilation are
introduced into the modeling process. The contributions of this work are presented as
follows: (a) multiple optimization algorithms are used to optimize parameters of the
SVM, and empirical models for chlorophyll a concentration simulation are built on the
basis of the relationship between chlorophyll a concentration and environmental factors
(DO, T, TN, TP); (b) a collaborative model (Col-SVM model) is constructed to simulate
chlorophyll a concentration that is based on SVM models and data assimilation; (c) the
accuracy and universality of the Col-SVM model are analyzed and verified, proving that
the Col-SVM model has high accuracy as well as good stability and can be used to simulate
the chlorophyll a concentration of Donghu Lake at different times.

2. Materials and Methods
2.1. Study Area

Donghu Lake (30◦22′–30◦40′ N, 114◦09′–114◦39′ E) is located in the northeast of
Wuhan, Hubei Province. It is a typical shallow lake in the middle reaches of the Yangtze
River, covering an area of 32 km2 and having a mean depth of 2.16 m with a maximum
depth of 4.66 m [51]. Donghu Lake is one of the largest urban lakes in China, being
mainly composed of Guozheng Lake, Tangling Lake, Miaohu Lake, Tuanhu Lake, Houhu
Lake, and Shuiguo Lake. The average annual water temperature is 16.7 ◦C, the annual
potential evaporation is 1269.6 mm, and the average annual precipitation is 1180 mm. The
precipitation is concentrated from April to July, accounting for about 60% of the annual
precipitation [52].

Sampling points were set up in Donghu Lake on 15 November 2017 (20171115), 17
December 2017 (20171217), 26 March 2018 (20180326), and 26 October 2018 (20181026). The
sampling points were presented in Figure 1, and the water samples were taken from 0.5 m
underwater at every sampling point. DO and T of each water sample were measured on site
by a portable water quality detector, and TN and TP were detected by spectrophotometry
with water samples sent to a laboratory.
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Figure 1. Distribution of sampling points in Donghu Lake.

2.2. Support Vector Machine and Optimization Algorithms
2.2.1. Support Vector Machine (SVM)

SVM was proposed by Cortes and Vapnik in 1995 [53]. It can be used for classifi-
cation [54,55], as well as regression [56,57]. When used for regression modeling, it has
advantages in establishing models to solve small-sample, nonlinear, and multidimen-
sional problems [58,59]. In addition, the selection of kernel function, the optimization of
penalty parameter, and the kernel parameter determine the applicability and accuracy of
the algorithm. The principle of SVM is discussed as follows [60,61]:

Suppose there is a training sample D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the regres-
sion model f (x) = ωTx + b can meet the condition that the maximum deviation between
f (x) and y is below ε for any x, whereω and b are the model parameters to be determined,
and ε is the tolerable deviation. Then, the optimization target of SVM can be formalized as

min
ω, b

1
2
||ω||2 + C

m

∑
i=1

lε( f (xi)− yi) (1)

where 1
2

∣∣∣∣∣∣ω∣∣∣∣∣∣ refers to the measurement of function flatness, C is the regularization constant,
lε is ε-insensitive loss function, and lε can be expessed as

lε(z) =
{

0, i f |z| ≤ ε
|z| − ε, otherwise

(2)
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By introducing relaxation variables ξi and ξ̂i, Formula (1) is transformed into

min
ω, b,ξi ,ξ̂i

1
2 ||ω||

2 + C
m
∑

i=1

(
ξi + ξ̂i

)
s.t. f (xi)− yi ≤ ε + ξi

yi − f (xi) ≤ ε + ξ̂i
ξi ≥ 0, ξ̂i ≥ 0, i = 1, 2, . . . , m

(3)

By introducing Lagrange multiplier µi ≥ 0, µ̂i ≥ 0, α ≥ 0, α̂ ≥ 0, Lagrange function
is obtained:

L
(
ω, b, α, α̂, ξ, ξ̂, µ, µ̂

)
= 1

2 ||ω||
2 + C

m
∑

i=1

(
ξi + ξ̂i

)
−

m
∑

i=1
µiξi −

m
∑

i=1
µ̂i ξ̂i

+
m
∑

i=1
αi( f (xi)− yi − ε− ξi) +

m
∑

i=1
α̂i
(
yi − f (xi)− ε− ξ̂i

) (4)

At the same time, satisfying the Karush–Kuhn–Tucker (KKT) conditions, the regression
model of SVM can be obtained as

f (x) =
m

∑
i=1

(α̂i − ai)κ
(

xi
Tx

)
+ b (5)

where κ
(

xi
Tx

)
= Φ(xi)

TΦ(xi) is the kernel function. The sample that can meet the formula
α̂i − ai 6= 0 is the support vector of SVM. The selection of kernel function and related pa-
rameters in the support vector machine has a great influence on the accuracy of the model.

2.2.2. Simulated Annealing (SA)

SA is a random optimization algorithm based on Monte Carlo iterative solution
strategy. It was first proposed by N. Metropolis in 1953 [62], and it was successfully
introduced into the field of combinatorial optimization by S. Kirkpatrick in 1983 [63]. It
has few dependences on problem information, strong universality, and flexibility, and can
effectively solve the problem of local optimal solution [64].

2.2.3. Genetic Algorithm (GA)

GA is an algorithm for searching the optimal solution by simulating the genetic
mechanism and biological evolution. It was first proposed by John Holland in the 1970s [65].
R. H. Hollstien first used the genetic algorithm for function optimization [66]. It encodes
the individuals of practical problems and obtains the optimal solution through a series of
operations such as selection, crossover, and mutation. GA has high optimization efficiency,
being able to prevent the optimization result from falling into the local optimal solution; at
the same time, it has good stability.

2.2.4. Artificial Bee Colony (ABC)

ABC is a swarm intelligence optimization algorithm that was proposed by Karaboga
in 2005 [67], being a global optimization algorithm based on swarm intelligence inspired
by bees’ behavior of searching for food sources [68]. It has the ability to get out of a local
minimum and can be efficiently used for multivariable, multimodal function optimiza-
tion [69]. In addition, it has fewer control parameters compared to other algorithms and
has been successfully implemented for solving complex nonlinear optimization problems
and engineering problems with high dimensionality [70].

2.2.5. Particle Swarm Optimization (PSO)

PSO is a swarm intelligence optimization algorithm based on bird feeding behavior. It
was proposed by Eberhart and Kennedy in 1995 [71]. As a parallel global optimization algo-
rithm, PSO has the advantages of simple structure, easy implementation, few parameters,
and strong global ability [72].
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2.3. Modeling and Simulation
2.3.1. Data Pre-Processing

The observed data obtained from four batches of water samples were processed
to construct datasets named 20171115, 20171217, 20180326, and 20181026. The data of
43 sampling points on 26 March 2018 were randomly divided into two parts: the data of
28 sampling points were used to build the training dataset, and the data of 15 sampling
points were used to build the testing dataset. Chlorophyll a was determined as the output
layer and other water quality indexes as the input layer of the model. Mapminmax function
was used in MATLAB software to normalize the training dataset and testing dataset.

2.3.2. Modeling

Radial basis function (RBF) was selected as the kernel function, and the chlorophyll a
concentration simulation model was built on the basis of the training dataset and SVM. In
addition, the model for which the penalty coefficient C and kernel parameter γ were not
optimized in the modeling process was named as the SVM model, and it was used as the
control group. At the same time, SA, GA, ABC, and PSO were used to optimize the SVM
parameters (the penalty coefficient C and kernel parameter γ). The optimal parameters of
the SVM model were obtained through multiple training, and then the SA-SVM model,
GA-SVM model, ABC-SVM model, and PSO-SVM model were built. In addition, the error
between the simulated and observed values of chlorophyll a concentration in the training
process was calculated and analyzed. According to the environmental factor data of the
testing dataset, the SVM model, SA-SVM model, GA-SVM model, ABC-SVM model, and
PSO-SVM model were used to simulate chlorophyll a concentration. Simulated values
were compared with observed values to analyze the accuracy of each model.

The idea of classical data assimilation was to generate an optimal analysis value
through the optimization algorithm under the condition of considering the background
error and observation error, so that it can more accurately express and describe the real
state variable. Model operator, observation operator, error estimation operator, and optimal
algorithm are the constituent elements of data assimilation. The goal of data assimilation is
to produce the optimal analysis value by optimizing the objective function. The objective
function can be expressed as

J(xa) = [H(xa)− yo]
T R−1[H(xa)− yo] + (xa − xb)

T B−1(xa − xb) (6)

where J is the objective function; xa is analysis value; H is observation operator, its function
is to transform state variables into observation variables; yo is the observed value; R is the
observed error covariance matrix; B is the background error covariance matrix; and xb is
the background value. On the basis of the idea of data assimilation, the objective function
of multi model collaborative simulation can be transformed into

J(xa) =
n

∑
i=1

(xa − xi)
T Ri
−1(xa − xi) (7)

where J( ) is the objective function, xa is analysis values, n is the number of models, xi is
simulated values of different models, and Ri is the simulated error of different models. By
calculating the gradient of Equation (7) and making it equal to 0, the optimal analysis value
xa can be obtained. The expression is

xa =
n

∑
i=1

Kixi (8)

Ki =
Ri
−1

∑n
i=1 Ri

−1 (9)
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where Ki is the weight of simulated values of different models, and Ri is the simulated
error of different models. In this study, the root mean square error (RMSE) was used to
describe the simulated error of different models.

According to simulated values and error of each model, the data assimilation method
was introduced to construct the collaborative model and it was named the Col-SVM model.

2.3.3. Simulation and Model Analysis

Relative error (RE), absolute relative error (ARE), mean relative error (MRE), root mean
square error (RMSE), mean absolute percentage error (MAPE), determination coefficient
(R), Nash–Sutcliffe efficiency coefficient (NSE), and bias between simulated values and the
true values were chosen as evaluation criteria to analyze the performance of the model.
Generally, the observed value is used to represent the real value.

RE and ARE measure the error between simulated value and observed value from
single group data, while MRE, RMSE, and MAPE measure the overall error between
simulated values and observed values from the whole dataset. The smaller the values of
RE, ARE, MRE, RMSE, and MAPE, the higher the model accuracy. R measures the linear
relationship between the two variables; the absolute value of R is less than or equal to 1,
where R < 0 represents negative correlation and R > 0 represents positive correlation. The
larger the absolute value of R, the greater the correlation. NSE evaluates the accuracy of the
model by comparing simulated values with the mean value of observed values. The closer
the NSE value is to 0, the closer simulated value is to the mean value of observed values,
and the model accuracy is poor. The closer the NSE value is to 1, the better the accuracy
of the model. Bias reflects the error between the output of the model on the sample and
the real value, that is, the smaller the bias, the smaller the deviation between the predicted
value and the real value, and the higher the fitting degree of the model.

To analyze and evaluate the accuracy of the Col-SVM model, environmental factor
data in the dataset 20180326 was used for the Col-SVM model to simulate the chlorophyll
a concentration in Donghu Lake, and the error between simulated values and observed
values was calculated. Furthermore, simulated values and observed values of chlorophyll a
concentration were interpolated by Kriging interpolation method in ArcMap 10.2 software
to obtain the chlorophyll a concentration distribution map of the whole Donghu Lake, and
the differences between two distribution maps were compared to analyze the accuracy of
the Col-SVM model.

The Col-SVM model was used to simulate the chlorophyll a concentration in Donghu
Lake at four different times; the simulation results were analyzed, and the error be-
tween simulated values and observed values were compared to study the universality at
different times.

3. Results and Discussion
3.1. Data and Datasets

Due to the vast water area of Donghu Lake and the limited sampling conditions, the
amount of effective water sample data for the four times was different after excluding
invalid data. In addition, the valid data constructed four datasets. Each dataset included
five indexes: DO, T, TN, TP, and chlorophyll a concentration. The comparison of chlorophyll
a concentration in the four datasets is shown in Table 1.

Table 1. The comparation of chlorophyll a concentration in four datasets.

Dataset Number of
Sampling Points

Minimum
(µg/L)

Maximum
(µg/L)

Average
Value (µg/L)

20171115 29 6.91 50.65 23.00
20171217 42 5.25 157.72 49.00
20180326 43 3.57 162.29 44.77
20181026 43 17.46 140.93 57.25



Water 2022, 14, 2353 8 of 20

Although the sampling time and sampling point location of the four sampling were
different, the chlorophyll a concentration in Donghu Lake had an increasing trend only
from the analysis of the chlorophyll a concentration average value.

The dataset of 20180326 was selected for modeling, being randomly divided into the
training dataset and testing dataset. The comparison of chlorophyll a concentration in the
two datasets is shown in Table 2.

Table 2. The comparation of chlorophyll a concentration in datasets for modeling.

Dataset Number of
Sampling Points Minimum (µg/L) Maximum (µg/L) Average Value (µg/L)

Training dataset 28 3.71 159.49 48.37
Testing dataset 15 3.57 162.29 38.06

3.2. Parameter Optimization and Modeling

Using the 20180326 dataset, empirical models for chlorophyll a concentration simula-
tion assisted by environmental factors was built on the basis of SVM. When modeling, RBF
was selected as the kernel function, and RMSE between simulated values and observed val-
ues was selected as the fitness function. To improve the performance of empirical models,
the penalty coefficient C and kernel parameter γ of SVM were optimized by SA, GA, ABC,
and PSO. The optimized C and γ were obtained by optimization; then, the SA-SVM model,
GA-SVM model, ABC-SVM model, and PSO-SVM model were built. At the same time, an
empirical model named SVM model was built as the control group. The C and γ of each
model are shown in Table 3.

Table 3. The comparison of model parameters.

Model C γ

SVM model 55.82 0.02047
SA-SVM model 15.27 0.5561
GA-SVM model 14.67 0.5959

ABC-SVM model 11.29 0.5316
PSO-SVM model 0.84 0.1890

As we can see from Table 3, the optimization of these optimization algorithms changed
the parameters of SVM greatly in comparison with the control group. After optimization,
the parameters of the SA-SVM model, GA-SVM model, and ABC-SVM model were close,
while the parameters of the PSO-SVM model varied greatly compared with the SVM model;
at the same time, they also had a large difference from the parameters of the other three
optimized models.

The SA-SVM model, GA-SVM model, ABC-SVM model, and PSO-SVM model were
used to simulate the chlorophyll a concentration. The RMSE, MAPE, NSE, and bias between
simulated values and observed values of chlorophyll a concentration were calculated to
compare and analyze the modeling performance of each model both in the training process
and testing process. The error comparison of each model in the modeling process is shown
in Table 4.

Table 4. The modeling error comparison of each model.

Model RMSE (µg/L) MAPE NSE Bias

SVM model 20.64 0.5180 0.8397 −0.06823
SA-SVM model 11.11 0.1702 0.9536 −0.02846
GA-SVM model 10.88 0.1673 0.9555 −0.02978

ABC-SVM
model 11.93 0.1714 0.9465 −0.02605

PSO-SVM model 20.52 0.4727 0.8413 −0.06613
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Through the modeling error comparison in Table 4, we see that RMSE and MAPE
of four optimized models were all smaller than the SVM model, both in the training and
testing process; in other words, the accuracy of empirical models is improved after the
SVM parameters have been optimized. Among these models, the RMSE and MAPE of
the GA-SVM model both in the training and testing processes were the smallest, which
indicates that the GA-SVM model had the highest accuracy and the most stable performance.
Furthermore, RMSE and MAPE of four optimized models were reduced in both training
and testing processes compared with the SVM model, but those of the PSO-SVM model
were not reduced by much. Combined with the result in that the parameters of the PSO-
SVM model had a large difference from those of the other three optimized models, it
illustrates that optimization of SVM parameters by PSO fell into local optimal value and
that the optimized C and γ of the PSO-SVM model were not optimal.

The RMSE in the training process was selected to describe the simulated error of each
model. Chlorophyll a concentration simulated values can be obtained by the simulation
of the SVM model, SA-SVM model, GA-SVM model, ABC-SVM model, and PSO-SVM
model on the basis of the environmental factor data in the testing dataset. According
to the simulated error and simulated values of each model, the Col-SVM model can be
built by introducing the data assimilation method. Six models were used to simulate the
chlorophyll a concentration on the basis of the data of environmental factors in the testing
dataset. The testing result comparison of each model is shown in Figure 2.
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Figure 2. The testing results comparison of each model.

The results of linear regression analysis between simulated and observed values
of chlorophyll a concentration in Figure 2 show that the Rs of each model were 0.9210,
0.9849, 0.9848, 0.9852, 0.9527, and 0.9806. All the Rs were larger than 0.92 in the analysis
results of the five models, proving that it is feasible and effective to establish an empirical
model based on SVM assisted by environmental factors for chlorophyll a concentration
simulation. With the use of optimization algorithms, R of linear regression analysis was
improved, and the coincidence degree between regression fitting line (Fit) and reference
line (Y = T) was enhanced. At the same time, ARE of sampling points was reduced, and
sampling points were relatively closer to the regression fitting line compared with the
control group. Furthermore, the analysis results of the Col-SVM model showed that the
coincidence degree between Fit and Y = T was high, and the R can reach 0.9806, which
was increased by 0.0596 compared with the SVM model. In addition, only a few sampling
points deviated from the regression fitting line, and the ARE of all points did not exceed
1.8, except one point with a small observed value. Given all of this, the application of
optimization algorithms and data assimilation improved the performance of empirical
modeling, and the Col-SVM model showed a good effect on the simulation of chlorophyll a
concentration in the testing process.

3.3. Simulation and Accuracy Comparison

On the basis of the environmental factors data in the 20180326 dataset, the SVM model,
SA-SVM model, GA-SVM model, ABC-SVM model, PSO-SVM model, and Col-SVM model
were used to simulate the chlorophyll a concentration, and the error between simulated
values of each model and observed values was analyzed to compare the simulation per-
formance of each model. RMSE, MAPE, NSE, and bias between simulated values and
observed values were chosen as evaluation criteria to analyze the simulation effect and
accuracy of each model. The simulation error comparison of each model is shown in
Table 5.

Table 5. The simulation error comparison of each model.

Model RMSE (µg/L) MAPE NSE Bias

SVM model 19.09 0.8477 0.7725 −0.02226
SA-SVM model 9.78 0.9600 0.2878 −0.01188
GA-SVM model 9.61 0.9614 0.2885 −0.01275

ABC-SVM model 10.40 0.9548 0.2913 −0.01101
PSO-SVM model 18.11 0.8630 0.6271 −0.00221
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Table 5 shows that when the SVM model was directly used to simulate chlorophyll a
concentration, there was an obvious error between simulated values and observed values,
and the RMSE of SVM model reached 19.09 µg/L. Due to the application of optimization
algorithms and data assimilation in the SVM model, the RMSE between observed and
simulated values of the empirical models was all reduced, showing that the simulation
effect of the model on chlorophyll a concentration was improved with the application of
optimization algorithms and data assimilation. Among all the optimized models, the RMSE
reduction of GA-SVM model was the most, which was decreased by 9.48 µg/L, and that
of PSO-SVM model was the least, which was decreased by 0.98 µg/L compared with the
SVM model. For the Col-SVM model, its RMSE, MAPE, NSE, and bias were 10.07 µg/L,
0.3132, 0.9577, and −0.0502, respectively, and its RMSE decreased by 9.02 µg/L and MAPE
decreased by 0.5345 compared with the SVM model. What is more, the Col-SVM model
had the smallest MAPE and the largest NSE, and its NSE was closest to 1 among all the
models. In other words, the error between simulated values and observed values was
small, the Col-SVM model simulation accuracy was high, and the stability was good. This
was because the Col-SVM model integrates the advantages of each SVM model through
data assimilation, which ensures the stability of the model output. Taken together, the
simulation error analysis result indicates that the application of optimization algorithms
is useful in improving the performance of modeling based on SVM and environmental
factors; in addition, GA has the best improvement effect. Moreover, data assimilation can
not only improve the simulation effect, but also enhance the stability of the model.

3.4. The Performance Analysis of the Col-SVM Model

To intuitively show the simulation accuracy of the Col-SVM model, comparison
between the chlorophyll a concentration simulated values of the Col-SVM model and
observed values at each sampling point was made; moreover, the error at each sampling
point was analyzed by means of a chart. The comparison and analysis between simulated
values of the Col-SVM model and observed values at each sampling point is shown in
Figure 3.
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Figure 3. The performance comparison and analysis of the Col-SVM model at each sampling point.

As shown in Figure 3a, simulated values of the Col-SVM model generally coincided
with observed values, and simulated values of very few sampling points had obvious
deviation from observed values. Figure 3b shows that relative error between simulated
values and observed values at sampling points was mainly between −1 and 1, and most of
them were between−0.5 and 0.5. In addition, MRE of simulation results was 0.1525. Briefly,
the error between simulated values and observed values was not large, and the Col-SVM
model had high accuracy and a good simulation effect for chlorophyll a concentration.

To monitor the overall chlorophyll a concentration of Donghu Lake, it is necessary to
convert the known chlorophyll a concentration at sampling points into the chlorophyll a
concentration distribution map of the whole lake. The chlorophyll a concentration distribu-
tion maps of the whole Donghu Lake were obtained by the spatial interpolation method
according to the Col-SVM model simulated values and observed values of chlorophyll
a concentration, and they are shown in Figure 4. The simulation effect of the Col-SVM
model can be comprehensively analyzed by comparing the differences between the two
distribution maps.
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Figure 4. The comparison of chlorophyll a concentration distribution map in Donghu Lake.
(a) Chlorophyll a concentration distribution map based on observed values. (b) Chlorophyll a
concentration distribution map based on simulated values.

It is shown in Figure 4 that the chlorophyll a concentration distribution map based
on observed values (a) and simulated values (b) were basically the same. Specifically,
distribution of chlorophyll a concentration in the whole Donghu Lake varied greatly, and
the areas with high chlorophyll a concentration were distributed in the south and southeast
of Donghu Lake on 26 March 2018. Donghu Lake, as one of the largest urban lakes in
China, has a vast area of water, but it has been divided into many sub lakes due to human
intervention, the water fluidity is poor, and the material transfer and exchange between
the sub lakes is slow. Guozheng Lake and Tangling Lake, which are located at the north
of Donghu Lake, are the two largest sub lakes of Donghu Lake. They have a large water
area and are connected with the Yangtze River and Shahu Lake. Therefore, the water body
is flowing, and the pollutants in the water body are easy to diffuse, transfer, transform,
and degrade. In addition, the two sub lakes are mainly surrounded by urban communities
and natural scenic spots with strict pollution control and good ecological environment
protection. As a result, the water quality is good, the eutrophication is not serious, and
chlorophyll a concentration is not high. On the contrary, the area of other sub lakes is
relatively small, and they have less connection with the external waters; the water flow is
slow, and so is the material transfer and transformation. At the same time, most of these
sub lakes are long and narrow in shape and have long shorelines around which are many
residents, universities, markets, and farmland; as a result, a large amount of domestic
sewage and irrigation wastewater containing nutrients are produced around it and are
discharged into the water body of these lakes. From this, the concentration of nutrients such
as nitrogen and phosphorus in local water bodies becomes extraordinarily high, resulting
in water eutrophication and high chlorophyll a concentration. Generally, the simulation
result of the Col-SVM model is basically consistent with the actual situation of Donghu
Lake. However, there are some differences between Figure 4a,b. First, the concentration
ranges of chlorophyll a in the two distribution maps were different. The maximum value
in Figure 4a was greater than that in Figure 4b, and the minimum value in Figure 4a is
smaller than that in Figure 4b. In addition, there were some differences in the distribution
of chlorophyll a concentration in local waters in the two maps. For example, it is shown in
Figure 4a that chlorophyll a concentration in Shuiguo Lake and the northwest of Guozheng
Lake was higher than that in other waters of Guozheng lake. In the southeast sub lake of
Donghu Lake, the chlorophyll a concentration of Miaohu Lake, Houhu Lake, and Yujia
Lake increased successively as a whole. However, these differences were not reflected
in Figure 4b. The difference between the two distribution maps shows that there were
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some small errors in the simulation results of chlorophyll a concentration in Donghu Lake.
In conclusion, the Col-SVM model shows a good effect on the simulation of chlorophyll
a concentration in Donghu Lake, reflecting the real overall distribution of chlorophyll a
concentration in Donghu Lake, but the local simulation effect was poor.

The universality of the Col-SVM model to simulate chlorophyll a concentration of
Donghu Lake in the time dimension was verified by using the Col-SVM model and dif-
ferent datasets to simulate chlorophyll a concentration and comparing the error between
simulated values and observed values at different times. The comparison between simu-
lated values of the Col-SVM model and observed values of chlorophyll a concentration at
different times is shown in Figure 5.
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Figure 5 shows the comparison between simulated values and observed values of
chlorophyll a concentration at different times, and the results demonstrated that R between
simulated values and observed values of chlorophyll a concentration in four different time
can reach 0.9291, 0.9868, 0.9792, and 0.9921, and that the determination coefficient between
simulated values and observed values of chlorophyll a concentration at four different times
all exceeded 0.92, indicating that the ABC-SVM model has good universality. At the same
time, it can be found that when the chlorophyll a concentration was low, the simulated
values were closer to the observed values, and the simulation effect of the ABC-SVM model
was better. When the chlorophyll a concentration was too high, there was a large deviation
between the simulation result and the observed values in some sampling points. In general,
the difference was not large between simulated values and observed values of chlorophyll
a concentration in four time periods, and only a few sampling points had obvious errors.
In sum, the Col-SVM model has a good universality in the time dimension and can be used
to simulate the chlorophyll a concentration in Donghu Lake at different times.

4. Conclusions

In this study, we used SA, GA, ABC, and PSO to optimize the penalty coefficient C
and kernel parameter γ of SVM and built SVM models for chlorophyll a concentration
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simulation assisted by environmental factors. SVM models (SVM model, SA-SVM model,
GA-SVM model, ABC-SVM model, PSO-SVM model) were used to construct the Col-SVM
model collaboratively by the introduced data assimilation method. These empirical models
were used to simulate the chlorophyll a concentration in Donghu Lake, and the simulation
effect of the models was compared and analyzed. The modeling results show that the
application of optimization algorithms improved the performance of modeling based on
SVM and GA had the best improvement effect. In addition, data assimilation can not
only improve the simulation effect, but it can also enhance the stability of the model. The
Col-SVM model had good performance in simulating the concentration of chlorophyll a
in Donghu Lake, and RMSE, MAPE, NSE, bias, and MRE between simulated values and
observed values were 10.07 µg/L, 0.3132, 0.9577, −0.0502, and 0.1525, respectively. Fur-
thermore, R between simulated values and observed values of chlorophyll a concentration
at four different times all exceeded 0.92, and Col-SVM model had a good universality in
the time dimension and was able to be used to simulate the chlorophyll a concentration in
Donghu Lake at different times. In conclusion, the Col-SVM model is a simple and effective
empirical model for simulation of chlorophyll a concentration in Donghu Lake.
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