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Abstract: This research addresses the separate and combined impacts of changes in climate and land
use/land cover on the hydrological processes and sediment yield in the Xin’anjiang Reservoir Basin
(XRB) in the southeast of China by using the soil and water assessment tool (SWAT) hydrological
model in combination with the downscaled general circulation model (GCM) projection outputs. The
SWAT model was run under a variety of prescribed scenarios including three climate changes, two
land use changes, and three combined changes for the future period (2068–2100). The uncertainty
and attribution of the sediment yield variations to the climate and land use/land cover changes at the
monthly and annual scale were analyzed. The responses of the sediment yield to changes in climate
and land use/land cover were considered. The results showed that all scenarios of climate changes,
land use/land cover alterations, and combined changes projected an increase in sediment yield in
the basin. Under three representative concentration pathways (RCP), climate change significantly
increased the annual sediment yield (by 41.03–54.88%), and deforestation may also increase the
annual sediment yield (by 1.1–1.2%) in the future. The comprehensive influence of changes in climate
and land use/land cover on sediment yield was 97.33–98.05% (attributed to climate change) and
1.95–2.67% (attributed to land use/land cover change) at the annual scale, respectively. This means
that during the 2068–2100 period, climate change will exert a much larger influence on the sediment
yield than land use/land cover alteration in XRB if the future land use/land cover remains unchanged
after 2015. Moreover, climate change impacts alone on the spatial distribution of sediment yield
alterations are projected consistently with those of changes in the precipitation and water yield. At
the intra-annual scale, the mean monthly transported sediment exhibits a significant increase in
March–May, but a slight decrease in June–August in the future. Therefore, the adaptation to climate
change and land use/land cover change should be considered when planning and managing water
environmental resources of the reservoirs and catchments.

Keywords: climate change; land use/land cover change; sediment response; multiple scenarios; modeling

1. Introduction

Catchment sediment yield is mainly controlled by soil properties, topography, climate
condition, and land use/land cover types [1–4]. In contrast, the soil properties and topogra-
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phy are relatively stable, while climate and land use/land cover are variable over a specific
time period [5,6]. Climate change, mainly in the form of temperature and precipitation, has
a direct impact on runoff and an indirect impact on sediment by changing the process of
the water cycle in the basin, and further influences the phytoplankton community [7–9].
Land use/land cover changes caused by anthropogenic activities may re-distribute the
rainfall-runoff by changing the processes of infiltration, evapotranspiration, and ground-
water recharge, which has a profound impact on the water and sediment production
mechanism [10,11].

The impacts of climate change on streamflow and sediment yield have been investi-
gated in a number of studies [12–18]. A previous study indicated that the runoff increased
by 1.3% and the sediment yield increased by 2% for every 1% increase in rainfall in eight
large Chinese catchments [12]. Similarly, a preliminary study of a watershed in Spain
showed that higher precipitation is usually associated with more runoff and soil loss [13].
This is not only because precipitation increases soil moisture, but also because it saturates
soil moisture or produces soil crusts [14]. In contrast, Zhao et al. showed that the reduction
in precipitation was one of the main factors, leading to the sharp reduction in the discharge
and sediment yield in the middle reaches of the Yellow River [15]. However, the impacts
of precipitation change on soil erosion are complicated and are not always negative. In-
creasing rainfall may increase the plant biomass and vegetation canopy, thus reducing
the runoff and erosion [16]. In addition to precipitation, temperature is also one of the
important meteorological factors affecting the sediment of the basin [17,18]. For example,
Syvitski divided the watersheds into climatic zones according to different temperatures,
and found that the average temperature of the watershed has an important impact on
sediment transport [18].

On the other hand, the joint effects of climate variability and vegetation change
on hydrological process have been a key research point. Such synergistic influences on
hydrological processes and sediment yields are complex [19]. Some studies have found
that sediment alteration was dominantly influenced by land use/land cover changes,
while some showed that climate variability was a more important impact factor [20]. It is
essential to accurately distinguish and quantify the effects of climate variability/climate
change on streamflow and sediment for catchment and reservoir management in the future
under different conditions [21–24]. Compared to the influence on streamflow, few works
have concerned the sediment spatial and temporal changes in response to combining the
variations in the land use/land cover with climate change for an uncertain future. Therefore,
a thorough study on the impacts of multiple climatic conditions and land use/land cover
scenarios on sediment is needed [25].

An IPCC Special Report stated that a global warming of 1.5 ◦C above pre-industrial
levels has significantly affected the hydrological process including the quality and quantity
of water resources in many regions [26,27]. Until now, numerous studies on assessing the
response of hydrological circles to climate-driven force have widely applied the general
circulation model (GCM) projections of the coupled model inter-comparison project phase
5 (CMIP5) [4,28]. A tentative conclusion is that RCP2.6, RCP4.5, RCP6.0, and RCP 8.5 are
responsible for a 16.3%, 14.3%, 36.7%, and 71.4% increase in future streamflow, and a 16.5%,
32.4%, 81.8%, and 170% increase in future sediment yield, respectively, in northeastern
China [4]. An increase in monthly streamflow (maximum increases by 52–170% under
different RCP scenarios) was reported, along with a monthly average decrease in sediment
concentrations of 10% projected in southwest Iran in the future [28]. Although GCM
outputs have been extensively employed to study the impacts of climate change on the
hydrological process in many locations, it is problematic to use GCM outputs directly in
hydrological models at regional and local scales because of the low resolution of GCM
projections [29]. Therefore, downscaling methods are often applied to obtain regional
scale analysis of meteorological variables from coarse-scale GCM outcomes to allow the
conclusions on streamflow and sediment regime changes to be more reliable [30].
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The Xin’anjiang Reservoir, which is the largest reservoir in the Yangtze River Delta in
China, plays quite an important role in the local water supply, fishery, water transportation,
and crop irrigation [31]. The Xin’anjiang Reservoir is famous for its excellent water quality;
however, the pressure of water environment protection in the reservoir is increasing year
by year [32]. The Jiekou section, located in the estuary area of the Xin’anjiang Reservoir, in
particular, is facing the problem of a decrease in water transparency and the risk of algal
blooms [33]. This might be related to the climate variability and land use/land cover change
in the basin. Previous studies have noted that the annual streamflow through the Jiekou
section, accounting for over 60% of the total inflows of the Xin’anjiang Reservoir, showed an
obvious increasing trend in the last few decades caused by rainstorms [34,35]. However, few
studies have attempted to identify how climate variability and land use/land cover change
affect sediment yield. In this study, we focused on identifying and quantifying the effects of
climate change and land use/land cover change on the sediment yield using a hydrological
modeling approach. With the help of our research results, a deeper understanding of
sediment response to climate-driven forcing and land use/land cover changes in XRB
would be beneficial for water quality protection and bloom prevention of the reservoir in
the East Asian monsoonal region.

2. Data and Methods
2.1. Study Area

The Xin’anjiang River drains into the Xin’anjiang Reservoir, Chun’an, Zhejiang Province,
southeast China, situated within a watershed that spans an area of roughly 10,442 km2

(Figure 1) [36]. The reservoir has a surface area of 573 km2 and a water storage capacity of
178.4 × 108 m3 when the normal water storage level is 108 m asl [37]. The longest path of
the river is over 370 km, and two river gauging stations are located at Tunxi and Yuliang,
respectively. The basin is dominated by a typical subtropical humid monsoon climate and
enters the East Asian rainy season, also known as the plum rain, in June and July every
year [38]. For the last 50 years, the mean annual precipitation has been about 1621 mm, the
mean annual runoff is about 1018 mm, and the mean annual air temperature has ranged
from 16.7 ◦C to 18.9 ◦C. Approximately 42% of the annual precipitation is contributed by
monsoons (June–September), and the maximum humidity is recorded as 100% in June
and July.

Jiekou is the main entrance for the streamflow and sediment of the Xin’anjiang River
to Xin’anjiang Reservoir by controlling around 60% of the area of the whole basin [39]. The
elevation of the basin varies from −1 m to 1764 m from the mean sea level. The terrain is
complex and diverse with mainly a geomorphic type of mountains. The zonal soil types
of the basin are mainly red soil, yellow soil, and yellow brown soil, which are distributed
vertically according to the altitude. The area is covered with dense forests, which is the
most widely distributed land-use type. The cultivated land is concentrated at the periphery
of urban land [40].

2.2. Data Description
2.2.1. Hydrometeorological Data

Daily meteorological data recorded including air temperature (◦C), precipitation (mm),
relative humidity (%), solar radiation (MJ/m2/day), and wind speed (m/s) from 1973 to
2018 at two meteorological stations (Figure 1) were downloaded from the website of the
National Meteorological Information Center (China Meteorological Administration, CMA)
(http://data.cma.cn/en (accessed on 1 January 2019)) [41]. The observed daily streamflow
data for the period of 2001–2014 at two hydrological stations (Figure 1) were collected
from the Hydrological Data Yearbook published by the Ministry of Water Resources of the
People’s Republic of China (MWR) [42]. The mean sediment transport rate investigated
from 2006 to 2014 was obtained from the same data source. The time series above was
checked for outliers and errors in order to be used in hydrological modeling.

http://data.cma.cn/en
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Figure 1. The location of the Xin’anjiang Reservoir Basin, China.

2.2.2. Geospatial Data

The basic geospatial datasets required to construct the model include a digital elevation
model (DEM), a soil classification map, and land use information. The DEM map with a
90 m spatial resolution used for watershed delineation and sub-basin discretization was
downloaded by the Geospatial Data Cloud of China. The 1 km resolution soil map was
originally derived from the Harmonized World Soil Database (HWSD), which is produced
by the Food and Agriculture Organization of the United Nations [43]. The soil data over
China were derived from the results of the Second National Land Survey organized by
China’s State Council from 2007 to 2009. This was produced by the Institute of Soil Science,
Chinese Academy of Sciences.

To estimate the effect of land use/land cover change, two land use/land cover maps
with a spatial resolution of 30 m for XRB were interpreted from Landsat imagery in
1987 and 2015, respectively. The cloud was masked based on the pixel_qa band of the
Landsat surface reflectance data (https://developpers.google.com/earth-engine/datasets/
catalog/LANDSAT_LC08_C01_T1_SR (accessed on 1 May 2020)) after the images were
obtained. A median imagery was output by calculating the median value at each pixel
of all images in one collection (https://developers.google.com/earth-engine/reducers_
image_collection (accessed on 1 May 2020)). For each median imagery, the land use/land
cover information was extracted with a support vector machine classification algorithm in
the ENVI (version 5.3). The land use/land cover here is classified into five classes for the
SWAT model, namely forest, water body, cultivated land, urban land, and bare land [44].

2.2.3. RCP Data

Representative concentration pathways (RCPs) including a stringent mitigation sce-
nario (RCP2.6), an intermediate scenario (RCP4.5), and one scenario with very high GHG
emissions (RCP8.5) [45] were used to estimate the impacts of climate change. Eighteen
datasets obtained from a coupled model inter-comparison project phase 5 (CMIP5) GCM
for XRB were downloaded from the website of the World Climate Research Program
(https://esgf-node.llnl.gov/search/cmip5/ (accessed on 1 February 2020)). The Taylor
diagram method was adopted to assess the performance of datasets from CMIP5 GCMs
in simulating the historical meteorological elements [46]. Four assessment criteria—the

https://developpers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developpers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR
https://developers.google.com/earth-engine/reducers_image_collection
https://developers.google.com/earth-engine/reducers_image_collection
https://esgf-node.llnl.gov/search/cmip5/
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correlation coefficient (r), root mean square error (RMSE), standard deviation of observed
values (σO), and standard deviation of simulated values (σS)—were used to identify the
most applicable dataset. More detailed information about the Taylor diagram method can
be found in Taylor [46].

The selected CMIP5 datasets comprise three meteorological elements (daily air tem-
perature and precipitation) for a historical period (1901–2005) and a projection period
(2006–2100, RCP2.6, RCP4.5, and RCP8.5 scenarios). The original resolution data were
downscaled into 0.5◦ × 0.5◦ by the China Meteorological Data Service Center (CMDC)
using a statistical downscaling method.

2.3. Methodology

An integrated framework was designed to evaluate the effect of climate change and
land use/land cover change on the streamflow and sediment yield using XRB as a case
study. To set up the structure of this approach, we (1) assessed the accuracy and availability
of the downscaled GCM data, and the interpreted land use/land cover map from remote
sensing imagery; (2) designed individual and combined climate and land use/land cover
change scenarios; (3) modeled streamflow and sediment yield response under uncertainty;
and (4) evaluated the streamflow and sediment variation under climate change and land
use/land cover change. The simulation baseline is in the period of 1973–2005 and the future
is in the period of 2068–2100.

2.3.1. Climate Change and Land Use/Land Cover Change Scenarios

Three RCP scenarios were selected in this study to assess how different emissions
impact streamflow and sediment yield, namely, RCP2.6, RCP4.5, and RCP8.5. These three
scenarios represent the total radiative force in 2100 relative to pre-industrial values, which
are +2.6, +4.5 and +8.5 W/m2, respectively. The calibrated SWAT model was used to
simulate the following eight scenarios: SNB, SN2.6, SN4.5, SN8.5, SNLC

B , SNLC
2.6 , SNLC

4.5 , and
SNLC

8.5 , respectively, as listed in Table 1. The SNLC
B , SNLC

2.6 , SNLC
4.5 , and SNLC

8.5 were essentially
the SNB, SN2.6, SN4.5, and SN8.5 scenarios with the addition of the land use/land cover
change. We present the land utilization condition in 1987 as the baseline of the land
use/cover, based on assuming that there were no significant changes in the land use/land
cover during the baseline period (1973–2005). Similarly, we used the land use/land cover
map in 2015 as the representative land use/land cover in the future period (2068–2100). We
assumed that there would be no significant changes in the land use/land cover between
the future period (2068–2100) and that in 2015. More details on our scenarios can be found
in Table 1.

Table 1. The scenario analysis for characterizing the effects of climate change and land use/land
cover change on the streamflow and sediment.

Scenario Simulation Time Land Use/Cover Climate Description

SNB 1973–2005 LULC1987 History Baseline

SN2.6 2068–2100 LULC1987 RCP2.6 With a stringent mitigation scenario and no
land use/land cover change

SN4.5 2068–2100 LULC1987 RCP4.5 With an intermediate scenario and no land
use/land cover change

SN8.5 2068–2100 LULC1987 RCP8.5 With a very high greenhouse gas emission
scenario and no land use/land cover change

SNLC
B 1973–2005 LULC2015 History With a land use/land cover change and no

climate change

SNLC
2.6 2068–2100 LULC2015 RCP2.6 With land use/land cover change and a

stringent mitigation scenario

SNLC
4.5 2068–2100 LULC2015 RCP4.5 With land use/land cover change and

intermediate scenario

SNLC
8.5 2068–2100 LULC2015 RCP8.5 With land use/land cover change and a very

high greenhouse gas emission scenario
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2.3.2. SWAT Hydrological Model

The SWAT (Soil & Water Assessment Tool) model developed by the USDA (the United
States Department of Agriculture) is a semi-distributed, process-based, continuous, daily
time-step hydrological model. It has been widely applied to represent the main hydrological
processes within small and large basins [11,25,47]. In this study, ArcSWAT (an ArcGIS-
ArcView extension and interface for SWAT) running on the ArcGIS (version 10.2) platform
as an interface was used to assess the streamflow and sediment yield. Several sub-basins
and multiple HRUs (Hydrologic Respond Units) are divided according to the land use
types, soil classes, and slopes. Erosion caused by rainfall and runoff is calculated with
the Modified Universal Soil Loss Equation (MULSE) in the SWAT model [48]. Parameter
sensitivity analysis, calibration, and validation are carried out by SWAT-CUP (SWAT
Calibration and Uncertainty Programs), which is an automatic sensitivity analysis tool in
the SWAT model [49–51]. Sensitivity analysis is the procedure used to identify the most
influential parameters for calibration using SUFI-2 (the global sensitivity analysis of the
sequential uncertainty fitting) algorithm. In order to evaluate the performance of the SWAT
model in streamflow and sediment yields simulations, the Nash–Sutcliffe coefficient of
efficiency (NSE) and coefficient of determination (r2) between the observed and estimated
values were calculated by [52]:

NSE = 1− ∑n
i=1(Oi − Si)

2

∑n
i=1

(
Oi −O

)2 (1)

r2 =

[
∑n

i=1
(
Oi −O

)(
Si − S

)]2

∑n
i=1

(
Oi −O

)2
∑n

i=1
(
Si − S

)2 (2)

where Oi and Si are the observed and simulated hydrological parameters and O and S
are the mean of observed and simulated values, respectively. The criterion considers
the model performance to be: very good if 0.75 ≤ NSE < 1.00 and r2 = 1.00; good
if 0.65 < NSE ≤ 0.75 and 0.80 ≤ r2 < 1.00; satisfactory if 0.40 < NSE ≤ 0.65 and
0.50 ≤ r2 < 0.80; unsatisfactory if NSE ≤ 0.40 and r2 < 0.50 [53–55].

2.3.3. Sediment Response to Changes of Climate and Land Use/Land Cover

For a given catchment, the total change in the mean annual sediment between indepen-
dent periods with different climatic RCP scenarios and land use/land cover characteristics
can be estimated as:

∆DLC
RCPj = ∆DRCPj + ∆DLCj, j = 2.6, 4.5 and 8.5 (3)

where ∆DLC
RCPj indicates the total change in the mean annual sediment between the future

and baseline and ∆DRCPj is the change in the mean annual sediment because of the climate
change (different RCP scenarios, j = 2.6, 4.5 and 8.5, respectively) between the two periods.
We assumed that there were almost no other regulations or diversions except for land
use/land cover change in the catchment. ∆DLCj indicates the change in the mean annual
sediment as a result of change in the land use/land cover change between the two periods.

To separate the sediment yield impacts caused by climate variability and land use/land
cover change, an effective method used to quantify ∆DRCPj and ∆DLC can be seen in the
following expressions [56]:

∆DRCPj =

(
DRCPj − DB

)
+

(
DLC

RCPj − DLC
)

N
, N = 2, j = 2.6, 4.5 and 8.5 (4)

∆DLCj =

(
DLC − DB

)
+

(
DLC

RCPj − DRCPj

)
N

, N = 2, j = 2.6, 4.5 and 8.5 (5)
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where DRCPj(j = 2.6, 4.5, and 8.5) are the mean annual sediment under the RCP2.6, RCP4.5,
and RCP8.5 scenarios, respectively, with the historical land use/land cover condition. DB
is the mean annual sediment of the baseline. DLC

RCPj is the mean annual sediment under

different RCP scenarios after catchment land use/land cover change. DLC indicates the
mean annual sediment caused by land use/land cover change without climate variability.
The climate condition when simulating DLC was as the same as simulating DB.

As a result of the above, the difference in sediment between RCP scenarios (DRCPj) and
the baseline (DB) can be considered as the impacts of RCP scenarios on sediment change
(1987 land use/land cover condition). Similarly, the difference in sediment between DLC

RCPj

and DLC can be considered as the impacts of RCP scenarios on sediment change (2015 land
use/land cover condition). On the other hand, the effects of land use/land cover change on
sediment can be determined by applying the difference between DLC and DB or between
DLC

RCPj and DRCPj. The difference between sediment in different RCP scenarios after land
use/land cover change (2015 land use/land cover condition) and the baseline represents
the combined effects of climate variability and land use/land cover change. The combined
effects can also be described as:

∆DLC
RCPj = DLC

RCPj − DB, j = 2.6, 4.5 and 8.5 (6)

Therefore, the percentage contributions of different RCP scenarios (αRCPj) and land
use/land cover change (αLC) to the variations in sediment can be expressed by:

αRCPj =
∆DRCPj

∆DLC
RCPj

× 100%, j = 2.6, 4.5 and 8.5 (7)

αLCj =
∆DLCj

∆DLC
RCPj

× 100%, j = 2.6, 4.5 and 8.5 (8)

3. Results and Discussion
3.1. Climate Change Analysis under Varying Scenarios

Monthly meteorological data from CMA were used to assess the performance of GCM
outputs in climate in XRB. The arithmetic average value of the records of Tunxi Station
and Chun’an Station represented the average value of the basin. Eighteen meteorological
datasets including three elements (maximum temperature, minimum temperature, and
precipitation) from downscaled CMIP5 GCMs were used to plot a Taylor diagram against
the CMA data (see Figure 2). For the monthly minimum temperature, r values between
the CMA data and eighteen GCM outputs were 0.94–0.97, and all RMSE values were less
than 2.5 ◦C. Meanwhile, the σS of all GCM monthly minimum temperatures and σO were
very close. Hence, all eighteen GCMs were suitable to simulate the historical data of the
monthly minimum temperature (1973–2005). Eleven datasets outperformed the other GCM
outputs for the monthly maximum temperature with higher r and lower RMSE (Figure 2).
It can be seen from the Taylor diagram that the simulation results of all eighteen GCMs on
monthly precipitation were not as good as those on monthly temperature. The highest r for
precipitation was around 0.38, and the lowest RMSE was around 8.0 mm. Taken together,
a certain dataset, namely, CSIRO-Mk3-6-0, was selected to evaluate the effect of climate
change between the future and historical periods due to its best performance in climate
simulation in the basin.

Figure 3a,c,e shows the time series of the downscaled CSIRO-Mk3-6-0 annual maxi-
mum and minimum temperature averaged over XRB in the baseline period (1973–2005)
and 2006–2100. The mean annual maximum and minimum temperatures of the basin at the
baseline were 20.79 ◦C and 11.43 ◦C, respectively, while those in the last 33 years of the 21st
century (the simulation period, 2068–2100) will be increased dramatically by 1.91–5.11 ◦C
and 1.75–4.46 ◦C relative to that at the baseline. The mean monthly maximum temperature
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and minimum temperature from 2068 to 2100 under RCP2.6, RCP4.5, and RCP8.5 will be
increased by 1.36–7.14 ◦C and 0.72–7.18 ◦C relative to that at the baseline. XRB has four
distinctive seasons, with the highest increases in seasonal maximum and the minimum
temperature of 2.46–5.65 ◦C and 2.59–5.97 ◦C in fall (September–November) under different
RCPs, respectively.
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Figure 2. The Taylor diagram of the monthly maximum temperature, minimum temperature, and
precipitation simulated by the 18 GCM models.

The basin has a subtropical monsoon climate, and the precipitation is significantly
affected by monsoon circulation. Figure 3e shows that the mean annual precipitation in
1973–2005 was 1662.48 mm, while that in 2068–2100 increased significantly by 97.69–285.72 mm
relative to that in 1973–2005 under RCP2.6, RCP4.5, and RCP8.5. The temporal distribution
of precipitation in XRB is nonuniform. The precipitation from spring (March–May) and
summer (June–August) accounted for 36.78% and 35.36% of the total precipitation in a
year, respectively. The precipitation was low in the fall and winter seasons from September
to February of the next year, which accounted for 27.86% of the total precipitation in a
year. In 2068–2100, no significant changes in precipitation were observed in the spring, fall,
and winter seasons. There was abundant precipitation in summer (June–August), with an
increase of 4.79–9.35% under three RCP scenarios relative to the same period in 1973–2005.
The most obvious increase in precipitation occurred in June and accounted for 19.45–35.99%
of the same month in 1973–2005 under different RCPs.
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Figure 3. The time series of annual maximum temperature (a), annual minimum temperature (c),
annual precipitation (e), monthly maximum temperature (b), monthly minimum temperature (d), and
monthly precipitation (f) averaged over XRB projected by downscaled CMIP5 GCM (CSIRO-Mk3-6-0)
in 2006–2100 under RCP2.6, RCP4.5 and RCP8.5, respectively. The solid lines and histograms indicate
CSIRO-Mk3-6-0 outputs of different RCPs, the dotted line is the mean values of annual meteorological
elements of the basin in baseline (1973–2005). The dashed line with circles indicates the mean values
of monthly meteorological elements.

3.2. Land Use/Land Cover Change Analysis under Varying Scenarios

The land use/land cover classification map of 1987 and 2015 were interpreted from
Landsat imagery (see Figure 4). Take the patterns of land use in 1987 as the representative
underlying surface type in the baseline period, while the patterns of land use in 2015
represent the underlying surface type condition in the future. It is assumed that there will
be no significant changes in land use/land cover from 2015 to the end of the 21st century.
By comparing the land use/land cover classification maps of the XRB, it was found that
the spatial distribution of land use/land cover in the two periods were different, especially
the type of urban area. The urban area increased significantly due to deforestation and the
conversion of cultivated land. The urban area in 2015 and in the future will be increased
by 547% relative to that at the baseline period. The forest and cultivated land areas in
2015 and the future will be decreased by 2.94% and 13.35% relative to that at the baseline
period, respectively.

3.3. Results of Sensitivity Analysis and Model Performance Assessment

Table 2 lists the results of the global sensitivity analysis by using SWAT-CUP, based
on the sensitivity ranking of the parameters. For the simulated streamflow, CN2, CH_K2,
SOL_Z, SURLAG, ESCO, GW_DELAY, GWQMN, SOL_K, CANMX, SOL_AWC, ALPHA_BF,
and CH_N2 were the first 12 high sensitivity parameters, while USLE_P, SLSUBBSN,
BIOMIX, SPEXP, and SPCON were the top five high-sensitivity parameters for the simu-
lated sediments. In the streamflow parameters, the SCS runoff curve number ‘CN2’ ranked
first, much higher than the others. For a given catchment, CN2 controls the main runoff
confluence process and represents the confluence capacity of different underlying surfaces.
In the sediment parameters, the USLE (Universal Soil Loss Equation) equation support
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practice factor ‘USLE_P’ is the most sensitive, which indicates the ratio of soil loss under soil
and water conservation measures to soil loss under corresponding slope conditions. Table 2
shows that parameters representing the surface runoff, soil properties, groundwater return
flow, ground water, and land cover management are sensitive. Consequently, it is important
for the streamflow and sediment simulation to accurately estimate these parameters.
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Figure 4. The land use/land cover classification maps in 1987 and 2015 under the SN and SNLC

scenarios and the proportion of area of each land use/land cover type. The land use/land cover
in 1987 and 2015 represent the land use/land cover in the simulation baseline period (1973–2005)
and the future (2068–2100), respectively. WATR indicates water body, FRST indicates forest, URBN
indicates urban land, BARR indicates bare land, AGRL indicates cultivated land.

The SWAT model was calibrated and validated on a monthly scale in 2001–2010 and
2011–2014 for the streamflow for two stations (Tunxi and Yuliang station), respectively. The
results are shown in Figure 5 and Table 3. For Tunxi Station, the observed and simulated
streamflow fit well with the values of NSE = 0.83 and r2 = 0.85 for the calibration period
and NSE = 0.89 and r2 = 0.90 for the validation period. For Yuliang Station, the observed
and simulated streamflow were in satisfactory agreement with values of NSE = 0.64 and
r2 = 0.69 for the calibration period, and NSE = 0.73 and r2 = 0.88 for the validation period.
Based on the whole period of sediment monitoring data (2006–2014), the model was
calibrated and validated on a monthly scale in 2006–2012 and 2013–2014 for the sediment
for the same stations, respectively (see Figure 6 and Table 3). NSE and r2 between the
observed and simulated sediment transport rate were larger than 0.60 and 0.62 for the
calibration period for two stations. The results of the model validation at a monthly time
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step were good (NSE = 0.74 and r2 = 0.81) for Tunxi Station and satisfactory (NSE = 0.47
and r2 = 0.55) for Yuliang Station. The hydrological model captured the low and some
of the peak values of the flow and sediment very well. Overall, the SWAT model was
mainly satisfied with the observed data in the XRB. That is to say, it is acceptable to use the
calibrated parameters incorporated with the SWAT database for further simulations.

Table 2. The results of the sensitivity analysis and calibration for the SWAT model.

Parameter Definition Sensitivity Analysis Calibration

t-Statistics p-Value Min Max Optimal

Streamflow

CN2 * SCS runoff curve number for moisture
condition II −35.47 0.00 −0.5 0.5 0.047

CH_K2 Effective hydraulic conductivity in main
channel alluvium (mm/h) −2.64 0.01 −0.01 500 378.873

SOL_Z * Depth to bottom of first soil layer (mm) 2.57 0.01 −0.5 0.5 0.148
SURLAG Surface runoff lag time (days) −0.96 0.34 0.05 24 17.324
ESCO Soil evaporation compensation factor 0.64 0.53 0 1 0.347
GW_DELAY Groundwater delay (days) 0.58 0.56 30 450 62.025

GWQMN Threshold depth of water in the shallow
aquifer for return flow to occur (mm H2O) −0.50 0.62 0 5000 46.250

SOL_K * Saturated hydraulic conductivity of first soil
layer (mm/h) 0.39 0.70 −0.8 0.8 0.638

CANMX Maximum canopy storage (mm H2O) 0.29 0.77 0 100 90.425

SOL_AWC * Available water capacity of first soil
layer (mm/mm) 0.19 0.85 −0.5 0.5 −0.251

ALPHA_BF Baseflow alpha factor (days) −0.14 0.89 0 1 0.768
CH_N2 Manning’s “n” value for the main channel −0.01 0.99 −0.01 0.3 0.295
Sediment
USLE_P USLE equation support practice factor −39.88 0.00 0 1 0.020
SLSUBBSN * Average slope length (m) −12.38 0.00 −0.9 0.9 −0.498
BIOMIX Biological mixing efficiency −6.52 0.00 0 1 0.051

SPEXP Exponent parameter for calculating sediment
re-entrained in channel sediment routing 1.07 0.29 1 1.5 1.429

SPCON
Linear parameter for calculating the
maximum amount of sediment that can be
re-entrained during channel sediment routing

0.77 0.44 0.0001 0.01 0.006

Note: * The asterisk means the existing parameter value is multiplied by (1+ a given value).

This study used the SUFI-2 approach to analyze the sediment uncertainty, mainly
resulting from the uncertainties in the CMIP5 GCM projections and land use/land cover
information. In SUFI-2, the parameter uncertainty, described by a multivariate uniform
distribution in a parameter hypercube, accounted for all sources of uncertainties in the hy-
drological model. The propagation of parameter uncertainty led to the output uncertainty,
which was quantified by the 95% prediction uncertainty (95PPU) band. Latin hypercube
sampling was used to calculate the 95PPU at the 2.5% and 97.5% levels of the cumulative
distribution function of the output variables [48]. Two indices, the p-factor (the percent
of observations bracketed by the 95PPU) and r-factor (the relative width of 95% proba-
bility band), were calculated to evaluate the goodness of calibration uncertainty on the
basis of the p-factor approaching 100% and the r-factor approaching 1. For streamflow,
it is considered to be satisfactory if the p-factor >70% while having an r-factor of around
1 [47,48]. For the sediment, a smaller p-factor and a larger r-factor could be acceptable
(SWAT-CUP user-manual). In this study, the 95PPU of streamflow brackets was 88% of the
observations for Tunxi Station and 76% of the observations for Yuliang Station, while the
r-factor equaled 1.01 and 1.25, respectively. The uncertainty analysis results of the sediment
showed that the 95PPU bracketed 51% and 39% of the observations for Tunxi and Yuliang
Stations, respectively. Meanwhile, the r-factor equaled 0.62 for Tunxi and 0.51 for Yuliang,
which are very close to a suggested value of 1.
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Figure 5. A comparison between the observed and modeled monthly streamflow in XRB during
the calibration (2001–2010) and validation (2011–2014) periods. (a) The comparison result for Tunxi
Station; (b) the comparison result for Yuliang Station.

Table 3. The SWAT performance during the calibration and validation periods.

Variables Stations Periods Monthly Average NSE r2 Classes

Observed Simulated

Streamflow
(m3/s)

Tunxi Calibration 78.3 66.6 0.83 0.85 Very good/Good
Validation 108.9 114.7 0.89 0.90 Very good/Good

Yuliang Calibration 35.7 38.8 0.64 0.69 Satisfactory/Satisfactory
Validation 46.2 67.7 0.73 0.88 Good/Good

Sediment
(thousand tons)

Tunxi Calibration 38.9 43.3 0.70 0.71 Good/Satisfactory
Validation 38.1 54.0 0.74 0.81 Good/Good

Yuliang Calibration 16.0 24.1 0.60 0.62 Satisfactory/Satisfactory
Validation 28.0 29.8 0.47 0.55 Satisfactory/Satisfactory

3.4. Separating Impacts of Climate Variability and Land Use/Land Cover Change on Sediment

In the section of the estuary into the Xin’anjiang Reservoir, Jiekou, the mean annual
transported sediment was 48.93 × 104 tons/yr at the baseline (1973–2005). In the future pe-
riod (2068–2100), the mean annual transported sediment will be 69.53–76.31 × 104 tons/yr,
with a variation of 42.10–55.97% relative to that in the baseline period (combining effects
of climate change and land use/land cover change). We quantified the contribution of
climate change and land use/land cover change impacting the transported sediment at the
mean annual scale by using the framework described in Section 2.3.3. The results showed
that the joint climate and land use/land cover changes caused an increase in the mean
annual transported sediment of 20.60–27.39 × 104 tons/yr (see Table 4). The mean annual
transported sediment is expected to increase under both the individual and combined
climate and land use/land cover change impacts. Changes in the mean annual transported
sediment will be mainly driven by climate change if the land use/land cover conditions in
the future are kept as in 2015. In this case, the land use/land cover change might weaken
the influence on sediment attributed to climate change. Specifically, the increases in the an-
nual transported sediment for the predication period (2068–2100) due to climate variability



Water 2022, 14, 2346 13 of 19

are 20.07–26.85 × 104 tons/yr, which represent a contribution of 97.45–98.05%, while the
land use/land cover change will lead to an increase in the annual transported sediment by
0.53–0.60 × 104 tons/yr, with a contribution ranging from 1.95% to 2.67%. RCP8.5 showed
smaller effects in increasing the influence on the sediment attributed to climate change than
RCP2.6 and RCP4.5. However, the results may be very different if the future land use/land
cover condition changes significantly compared with 2015.
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Figure 6. The comparison between the observed and modeled monthly transported sediment in XRB
during the calibration (2006–2012) and validation (2013–2014) periods. (a) The comparison result for
Tunxi Station; (b) the comparison result for Yuliang Station.

Table 4. The results of separating the impacts of climate change and land use/land cover change on
the sediment in the XRB.

Scenarios ∆DRCPj(104 tons) ∆DLCj(104 tons) ∆DLC
RCPj(104 tons) αRCPj(%) αLCj(%)

RCP2.6 26.85 0.53 27.39 98.05 1.95
RCP4.5 20.07 0.53 20.60 97.45 2.55
RCP8.5 21.87 0.60 22.47 97.33 2.67

The spatial distribution of the sediment yield (sediment from the sub-basin that is
transported into the reach during the time step) in the baseline period (with the land
use/land cover map in 1987) and the relative variation ratio of the sediment yield under
RCP2.6, RCP4.5, and RCP8.5 are shown in Figure 7. The relative variation ratio is described
as a percentage of sediment yield in the baseline period. This means that we used the
difference between the modeling value of the sediment yield in different RCPs and at the
baseline as a numerator and the mean value of the sediment yield in the baseline period
as a denominator. In the baseline period, the sediment yields from each sub-basin were
0.02–2.07 tons/ha/yr, with an average value for the whole XRB of 0.75 tons/ha/yr. In
future scenarios (RCP2.6, RCP4.5 and RCP8.5), sediment yield had a strong response to cli-
mate change. Compared to the baseline period, our modeling analysis predicted dramatic
increases in the sediment yield for each sub-basin under all three RCPs, especially under
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RCP2.6 (with an increase of 19.20–85.70%) and RCP8.5 (with an increase of 34.18–68.05%).
The increases in future sediment yield under the scenario of RCP2.6 were mainly concen-
trated downstream of the basin and in the area around Xin’anjiang Reservoir, while those
under the scenario of RCP8.5 were mainly concentrated in the upstream of the basin. This
is mainly because the precipitation significantly increases from April to July, which is the
cultivation season of the main crops in the XRB, under the scenario of RCP8.5. The area
of cultivated land in the upstream sub-basins of Jiekou is relatively larger than that in the
downstream sub-basins. Consequently, frequent farming activities lead to an increase in the
sediment loss with rainfall runoff, increasing the sediment input of the reservoir. It can be
found that the spatial distribution of sediment yield change is consistent with that of water
yield change, which is the net amount of water that leaves the sub-basin and contributes to
streamflow in the reach.
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Figure 7. The spatial characteristics of annual sediment yield in XRB. (a) The mean annual sediment
yield of every sub-basin in the baseline period. (b) The relative changes in the sediment yield between
RCP2.6 and baseline. (c) The relative changes in the sediment yield between RCP4.5 and the baseline.
(d) The relative changes in the sediment yield between RCP8.5 and the baseline.

Figure 8 shows the inter- and intra-annual variability in sediment transported with
water out of reach in Jiekou under the baseline period, RCP2.6, RCP4.5, and RCP8.5. It can
be seen that the inter-annual variation in the transported sediment in Jiekou is significant.
Compared to the baseline, the mean annual transported sediment under RCP2.6, RCP4.5,
and RCP8.5 increased dramatically by 40.91–54.75% when there was no land use/land
cover change from 1987 to the future. The largest increase in the mean annual transported
sediment is under scenario RCP2.6, followed by scenario RCP8.5. Through correlation
analysis, the annual transported sediment was positively correlated with rainfall (r is
0.72 in the baseline period; r is 0.58–0.73 under different RCPs) and runoff (r is 0.77 in
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baseline period; r is 0.65–0.91 under different RCPs), respectively, indicating that rainfall
and runoff have a great impact on sediment output. Meanwhile, the nonparametric Mann–
Kendall test [57,58], commonly used to assess the significance of trends in hydrology and
climatology, was used to detect trends in the time series of the annual transported sediment.
The annual transported sediment (2068–2100) exhibited a positive trend for the Jiekou site
at the α = 0.1 level of significance under RCP2.6 and RCP4.5, respectively, but no significant
trend under RCP8.5 (α = 0.1).
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Figure 8. The inter- and intra-annual (monthly) variability in the sediment transported with water
out of reach at Jiekou (estuary of Xin’anjiang River) under different climate scenarios.

A non-uniform distribution of the mean monthly transported sediment in Jiekou
shows that the transported sediment in spring and summer accounted for 85.36% of the
total sediment output in 1973–2005 and 73.95–80.88% in 2068–2100. Under scenario RCP2.6,
the mean monthly transported sediment exhibited a significant increase in March–June,
but no obvious change in June–February of the following year. Under scenario RCP4.5, the
mean monthly transported sediment increased significantly in January–May but decreased
in June–August. Under scenario RCP8.5, there was a significant increase in February–May,
but a slight decrease in June–October. The intra-annual (monthly) distribution of the
transported sediment is consistent with that of rainfall. It is indicated that the transported
sediment is not only related to rainfall intensity, but also to the time distribution of rainfall.
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3.5. Implication for Water Quality Management of Reservoir/Lake

Influenced by the temperate monsoon climate, more than 60% of the annual precipita-
tion was recorded in April–August in XRB. According to the CMIP5 outputs, the monthly
precipitation increased significantly in June and the frequency of heavy rainfall events
increased in the flooding season under the three RCP scenarios. Correspondingly, the
reservoir’s inflow volume increased sharply after heavy rainfall. Compared with small
and medium rainfall, it is easier for heavy rainfall or rainstorms to cause massive soil
erosion. Seventeen HJ-1 A/B images during 10 heavy rainfall events from 2009 to 2014
were used to illustrate the relation of total suspended matter (TSM) concentration in the
estuary of the Xin’anjiang River to the amount of precipitation of the basin. A significant
positive correlation could be found between the TSM concentrations and rainfall amount
(p < 0.005) [41].

In the Xin’anjiang Reservoir, significant turbid density flow always follows heavy
rainfall events and rainstorms, which affects the reservoir water quality, especially in Jiekou
estuary. It was investigated that the first small peak flow in March 2018 in Jiekou caused
great changes in the water transparency and nutrient concentration, which indicates that
the first peak inflow discharge of each year has a great impact on the water quality of the
reservoir [33]. The particulate matter contributes to most nutrient inputs, which means
that heavy rainfall events could lead to very high nutrient input into the reservoir/lake
due to massive erosion from the upstream catchment and the area surrounding the reser-
voir/lake [59]. A large number of external nutrients carried by heavy rainfall (or rainstorms)
and floods as well as the sediment resuspension caused by flood scouring increase the
nutrient concentration of the water body in the reservoir/lake [60]. The degrees of eu-
trophication are aggravated correspondingly and suitable conditions for algae growth are
provided. Therefore, understanding the effects of rainfall increases in the flooding season
(especially the frequency of heavy rainfall events or rainstorm increases) on sediment yield
in the basin could help water managers to strengthen the management of heavy rainfall
runoff. It is also advantageous to the protection of water environment for reservoirs/lakes.

4. Conclusions

This study demonstrated that the sediment load and streamflow of XRB would sig-
nificantly increase in the future under the integrated impacts of climate change and land
use/land cover change. Sediment generated from the sub-basins above the Jiekou sec-
tion (transported into the reservoir) will increase by 42.10–55.97% in 2068–2100, relative
to that in the baseline period. Rainfall and temperature are the major climatic affecting
factors in these increases, and the land use/land cover change can be attributed to the
deforestation and urbanization during the simulating period. We found that more than
90% of these increases in sediment will be caused by climate change if the land use/land
cover situation in the future are not obviously changed. While climate change combined
with land use/land cover change in all three RCPs projected an increase in sediment, there
were disagreements on the spatiotemporal distribution of sediment yield under multiple
scenarios. In terms of space, the increases in the future sediment yield are mainly concen-
trated in the downstream of the basin under RCP2.6 but in the upstream of the basin under
RCP8.5. In terms of time, more precipitation and floods in the wet season may occur in
the future. Consequently, this will increase the sediment yield by 22.07–46.12% in the wet
season (March–August) with respect to the baseline scenario. Therefore, it is important to
emphasize increasing adaptation to climate change and land use/land cover change when
designing and managing water environmental resources of the reservoirs and catchments.

In summary, climate change and land use/land cover can exert a great influence
on the sediment yield in this humid and monsoonal climate region with separated or
combined effects. The projections of future changes in sediment yield suggest the great
challenge that lakes or reservoirs will face, because increasing sediment yield is associated
with the high input of nutrients, especially phosphorus, which is a critical element for
phytoplankton proliferation and algal bloom occurrence. Our findings can greatly benefit
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managers/decision-makers in improving their understanding of these effects on rainfall–
runoff processes and soil erosion as well as nutrient delivery in the catchment. Moreover, it
can help them to design and adopt reasonable measures for watershed management and
local governments regarding environmental conditions including climate change and land
use/land cover change.
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