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Abstract: This study presents the impacts of dredge spoil dumping in the pelagic habitat during a
27-month monitoring survey in eastern Mediterranean coastal waters (Saronikos Gulf, Aegean Sea),
with a focus on changes in trophic status and eutrophication levels, phytoplankton diversity and
bloom dynamics. A number of environmental parameters and phytoplankton metrics were signifi-
cantly influenced by the dumping operations, specifically phytoplankton diversity indices (number
of species, Diatoms:Dinoflagellates ratio) and total abundance, Chlorophyll-a, light transmission,
dissolved oxygen and inorganic nutrients, N:P ratio, and the Eutrophication Index (a metric for
trophic status assessment). Phosphates started to increase after the first year of dumping operations,
shifting the N:P ratio to values lower than 10. A similarity cluster analysis highlighted that the
phytoplankton community structure during the pre-dumping and the early-dumping period was
clearly discriminated from the period during and after the dumping operations. A clear shift with
an increase in the Diatoms:Dinoflagellates ratio was observed immediately after the initiation of
dumping operations, which maximized in the dumping site after two years of operations. Diatoms
dominated the phytoplankton communities, reaching ~ 95% relative abundance in the dumping site.
High biomass producers or potentially toxic diatom species proliferated forming blooms. Pseudo-
nitzschia multiseries was the most frequent potentially toxic species. A multivariate analysis (RDA)
highlighted that among a suite of phytoplankton metrics plotted against stressors relevant to dump-
ing, the Eutrophication Index, Chlorophyll-a, the diversity index Diatoms:Dinoflagellates ratio and
the abundance of the potentially toxic diatom P. multiseries emerged as the most suitable to reflect the
responses of phytoplankton communities to dumping. Dredge spoil dumping at sea poses pressures
to ecosystem components addressed by the European Marine Strategy Framework Directive (MSFD)
monitoring programs. In such a context, this study further supports the role of phytoplankton
diversity and blooms as sensitive monitoring elements for the environmental status assessment and
dumping management in coastal waters.

Keywords: dredging operations; dumping of dredge spoil; phytoplankton diversity; harmful algal
blooms HABs; eutrophication; trophic status assessment

1. Introduction

Dredging and dumping of dredge spoil are very common practices in estuarine and
coastal waters that have changed little over the past twenty years [1–3]. Over 99% of the
sediment dumped at sea is locally generated from port expansion and the deepening of
navigation channels [4]. Dredging is also used for purposes, such as beach nourishment or
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land reclamation. In most of the northern European coastal areas, dredging and dumping
are considered one of the most severe anthropogenic pressures, for instance, dumping is
generally prohibited in the Baltic Sea with the exception of dredge material that has been
previously processed in order to meet specific standards [5].

Dumping of dredge spoil can cause great alterations in the environment, as a conse-
quence of the resuspension of sedimented material, and therefore, dumping operations
are considered environmental pressures on the benthic and pelagic biota [6–8]. Suspended
particles, released into the water column from the disposal of dredge sediments, can
decrease water transparency and release nutrients and hazardous substances affecting
marine organisms, e.g., inorganic nutrients, heavy metals, tributyltin (TBT) and organic
contaminants [7,9,10]. The nutrients released from dumped dredge spoil may contribute
to eutrophication issues, whereas increased turbidity may lead to ephemeral effects on
light-dependent organisms, e.g., phytoplankton [4,11]. In fact, the impact of dredge spoil
dumping on phytoplankton is considered essential for the assessment of the actual dredging
effects [4], but such studies have been rather limited so far.

A reduction of 56–70% in the total phytoplankton primary production (sum of true phy-
toplankton and resuspended microphytobenthos) has been attributed to the deteriorated
light regime in dredged estuarine ecosystems [12,13]. Heavy metals, such as manganese
(Mn), nickel (Ni), copper (Cu) and lead (Pb) released from dumped dredge spoil, is con-
siderably absorbed by phytoplankton, when bloom and dredging events coincide, and
affect metal bioavailability in the water column [14]. Therefore, phytoplankton blooms
are important biological sinks of heavy metals during dredging, which are prone to be
transferred and biomagnified into the marine food web. Furthermore, shifts in phyto-
plankton community structure and the formation of Harmful Algal Blooms (HABs) have
been reported in some cases [15,16], but the impacts on phytoplankton diversity remain
largely unknown.

During dumping activities, increased levels of phosphorus and ammonia have been
shown to cause significant disruption, resulting in decreased abundance of micro- and meso-
zooplankton, larvae density and fish eggs [17,18]. Dumping has been found to modify the
benthic granulometry to finer-grained surface sediments and increase the sediment load in
contaminants, e.g., aliphatic, polycyclic aromatic hydrocarbons and heavy metals [19–21]. A
significant decline in species number and abundance of benthic macroinvertebrates almost
to an azoic state was reported in locations up to 3.2 km away from a spoil-ground [20].

To the best of our knowledge, the studies reporting on the pressures of dredging and
spoil dumping on phytoplankton diversity patterns and the formation of algal blooms are
rather limited. In this study, we present the impacts of dredge spoil dumping operations
on the pelagic habitat, with a focus on: (i) how the trophic status and eutrophication
levels are affected, (ii) if and how the phytoplankton diversity responds, and (iii) what
kind of HABs are generated during monitoring surveys for over 2 years (27 months) in a
coastal area of eastern Mediterranean Sea (Central Aegean Sea, Saronikos Gulf). A set of
environmental parameters (light transmission, dissolved inorganic nutrients, dissolved
oxygen, temperature, salinity) and phytoplankton metrics (Chlorophyll-a, total abundance,
phytoplankton diversity indices and bloom dynamics) were regularly monitored before,
during and after the dumping operations. Special attention was given to the species that
can form Harmful Algal Blooms (HABs) because of their role in coastal areas and our scarce
knowledge of them in dumping sites. Through a multidimensional perspective, the present
study attempts to designate the main drivers and stressors that affect the trophic status and
the phytoplankton dynamics in the perturbed environment of a marine dumping area.

2. Materials and Methods
2.1. Study Area and Sampling

The study area is a shallow marine coastal area (max depth 77 m) in the Saronikos
Gulf (Eastern Mediterranean, Greece), located in the vicinity of the waterfront of the
Athens metropolitan area (Figure 1). The site received dumped sediments from large-scale
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dredging operations in the lower course of the Kifissos river and its estuary. Along the
main course of the river, artificial stone embankments are placed for most of its length
and a motorway has been constructed over it, forming a covered canal of 9 km before the
river mouth [21]. After dredging, the cross-section of the lower river reach was enlarged,
increasing water discharges up to 1400 m3/s, in order to manage the flushing episodes
during intense rainstorms.
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Figure 1. Map of the study area with the licensed area for the dumping of dredge spoil (rectangle
ABCD). The sampling stations with numbers 1 to 5 represent stations DSS1 to DSS5, which were
located within the dumping site (DSS1 and DSS2) and in the nearby site (DSS3, DSS4 and DSS5).

The dredging of the Kifissos estuary resulted in the production of significant amounts
of sediments, which were licensed to be dumped further seaward in a designated coastal sea
area of 1 nmi2 surface (Figure 1). The sediments from the area around the river mouth were
mostly fine-grained (with muddy sand, sandy mud and mud) and a total of ~700.000 m3

of dredged material were dumped with a mean monthly discharge of 33.333 m3 [20]. The
dumping operations lasted from May 2010 to December 2011.

The coastal area of the licensed dumping site and the adjacent area were monitored
before, during and post dumping for 27 months (April 2010 to June 2012). The area was
also studied systematically during the previous years, thus the baseline status of the area
was well known and totally coincided with the findings of the sampling in April 2010,
just before the beginning of the dumping operations (e.g., [22–24]). A network of five
stations (DSS1 to DSS5; Table 1) was monitored monthly during that period with the
HCMR R/Vs ALCYONE and AEGAEO. Two stations (DSS1, DSS2) were located at the
sediment disposal area (rectangle ABCD in Figure 1) and three stations (DSS3, DSS4 and
DSS5) in the adjacent area.

2.2. Analyses of Environmental and Phytoplankton Parameters

Physical parameters of the water column (temperature T ITS90 in deg ◦C, salinity S and
light transmission LT in %) were sampled monthly (with minor exceptions). Their vertical
profiles at each station were recorded with SeaBird Electronics Inc. profilers (Models 19
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and 9), with a sampling rate of 2 scans s−1 and descent rate ~ 0.5 m s−1. LT was measured
with a Chelsea-Seatech Transmissometer attached on the SBE profilers and emitting at
660 nm; from LT value at any depth, the beam attenuation coefficient (BAC in 1 m−1) was
calculated using the formula: BAC = −ln (LT [decimal]) × z −1, where z is the instrument’s
path length in m (0.250 m). Given that any increase in the amount of suspended matter in
the water column causes a decrease in LT and consequently an increase in BAC, these two
parameters can be used to trace the plume resulting from dumping operations.

Table 1. Sampling stations with coordinates and depths during the monitoring survey.

Sampling Stations Latitude (N) Longitude (E) Depth (m) Site

DSS1 37◦53′40” 23◦39′40′′ 66 Dumping site

DSS2 37◦53′10” 23◦39′10′′ 69 Dumping site

DSS3 37◦53′20” 23◦40′50′′ 50 Nearby site

DSS4 37◦52′20” 23◦38′20′′ 77 Nearby site

DSS5 37◦54′00” 23◦38′20′′ 71 Nearby site

All seawater samples were collected with oceanographic bottles monthly. For dis-
solved nutrient analyses, seawater samples of 100 mL were collected in polyethylene
bottles, aged with 10% HCl. All the analyses were performed at the certified by EN
ISO/IEC 17025:2005 (366-2) biogeochemical laboratories of HCMR, using standard meth-
ods. Nitrate, nitrite and silicate concentrations in seawater were analyzed with a SEAL
nutrient autoanalyzer III [25–27]. Ammonium and phosphates in seawater were analyzed
with a UV–VIS Perkin Elmer 20 Lambda spectrophotometer, [28] for ammonium and [26]
for phosphate. The analyses of Dissolved Oxygen (DO) were performed on board immedi-
ately after sampling according to the Winkler method, modified by [29]. For the assessment
of the trophic status and the ecological quality in coastal waters, the Eutrophication Index
(EI) by [30] was computed, on the basis of nitrates, nitrites, ammonia, phosphates and
Chlorophyll-a concentrations, and the extrapolated five-step quality scale was used.

The phytoplankton community structure and biomass (Chlorophyll-a as a biomass
proxy) were studied in the area at depths close to the surface (2 m below) and the seafloor
(2 m above). Seawater samples of 1500 mL were collected monthly for Chlorophyll-a
analysis with oceanographic bottles. The samples were filtered immediately on board
through GF/F filters according to the method of [31]. Seawater samples were also collected
every three months for the analysis of phytoplankton diversity (species identification and
abundance) with light inverted microscopy [32].

2.3. Statistical Analysis

A set of phytoplankton indices, i.e., number of species (S), Shannon H’ diversity,
Pielou J’ evenness, etc., were computed with PRIMER software. The Bray–Curtis similarity
index was also computed with PRIMER, using the group average method and log + 1
transformation of data. Non-parametrical analyses, such as hierarchical agglomerative
clustering or Cluster analysis, multidimensional scaling analysis, or MDS and SIMPER
analysis were performed with PRIMER, on the basis of the Bray–Curtis similarity matrix
according to [33,34].

In order to test the responses of phytoplankton and environmental parameters to
dumping pressure, multiparametric statistical routines were performed with the R lan-
guage and environment for statistical computing (R Core Team 2021). One-way ANOVA
was applied using biological and environmental parameters as dependent variables and
dumping period, pressure and site as independent variables. In the cases where normality
and homogeneity could not be succeeded after transformation, the Kruskal–Wallis test was
applied instead. Post-hoc tests of Fisher’s LSD or Dunnett’s T3 were used according to
variance homogeneity test results. Normality was tested by means of Shapiro–Wilk test
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and transformations (Ln) were applied where needed. Homogeneity of variance was tested
using Levene’s test. Statistical significance was set to p < 0.05.

Redundancy Analysis (RDA) was performed in order to visualize the relationship
between phytoplankton and environmental parameters [35]. Redundancy Analysis (RDA)
is a direct extension of regression analysis to model multivariate response data, combining
regression with principal component analysis [36]. Before implementing RDA, variables not
dimensionally homogeneous were centered on their means and standardized. Additionally,
the distribution of each variable was examined, and where necessary, transformations were
applied in order to linearize the relationships and reduce the effects of outliers. Variance
inflation factor (VIF) was used in order to measure the extent of multicollinearity among the
explanatory variables [37]. Finally, it was checked that the system was not overdetermined
(i.e., the number of explanatory variables was less than the number of sites in the data
matrix). The abundances of the most frequent species of Pseudo-nitzschia were pooled to
the genus level in order to reduce the number of zeros and were log-transformed.

3. Results

The distributions of environmental parameters are presented in Figure 2a–j. Temper-
ature and light transmission showed maximal levels in summer and minimal in winter,
whereas salinity presented narrow margins between 37.8 and 39.1 (Figure 2a–c). Dissolved
Oxygen (DO) concentrations were increasing in cold months and decreasing in warm
months, as expected (Figure 2d). However, the lowest DO levels were observed at the
dumping site (September 2011). Oxygen saturation was also estimated in order to examine
if organic matter decomposition affected the DO in the water column. Oxygen saturation
levels were usually higher than 80%, except for the dumping site (72.7% at DSS2, June 2011)
and the nearby site (73.5% at DSS4 in September 2011) during the warm period.

Nutrient concentrations showed temporal and spatial variations (Figure 2e–j). Phos-
phates (PO4) ranged below 0.15 µM, but they started to increase after one year of dumping
operations. Consequently, the N:P ratio decreased to less than 10 after the first year of
dumping. Silicates (SiO4) and nitrates (NO3) were peaking mostly during the warm months
(June to September) with maximum values at 3.78 and 1.11 µM, respectively. The Si:N ratio
followed a similar distribution. Ammonium (NH4) did not surpass 1.00 µM, while it was
decreasing during the warm months.

The distributions of Chlorophyll-a (Chl-a) and phytoplankton abundance during
the dumping monitoring survey are presented in Figure 3a–c. Chl-a peaked during late
winter–spring (February–April) at all sites and phytoplankton abundance showed a similar
distribution pattern. The Chl-a peak was shaped in the surface layer after the first year
of dumping operations (1.181 µg L−1 in March–April 2011), whereas after two years
of dumping operations the Chl-a peak was shaped near the seabed (0.967 µg L−1 in
February 2012).

The Diatoms:Dinoflagellates ratio was increased after the initiation of dumping opera-
tions thanks to the increase in diatoms, and maximal levels were reached in the dumping
site after two years of dumping (Figure 3d). Lower ratio levels in spring 2011 were due
to higher dinoflagellate numbers. The potentially harmful algal bloom species, consisting
of high biomass producers or potentially toxic phytoplankton (Pseudo-nitzschia multiseries,
Chaeroceros affinis, Alexandrium spp.), were present throughout the monitoring period
(Figure 3e). They peaked significantly during the dumping operations in spring, shaping
the distribution of the phytoplankton total abundance. The Eutrophication Index (EI as
a metric for trophic status assessment) appeared to be driven by the Chl-a distribution
mostly (Figure 3f). However, in autumn months, EI was driven mostly by the nutrients’
availability, e.g., ammonium at all sites (October–November 2010) and silicates, nitrates
and phosphates at the dumping site (September 2011). EI designated an overall moderate
to good trophic status in the study area (0.28–0.41 range of EI average values for the whole
study area per sampling event).
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Figure 2. Distribution of temperature (a), salinity (b), light transmission (c), dissolved oxygen (d),
silicates (e), nitrates (f), ammonium (g), phosphates (h), N:P ratio (i) and Si:N ratio (j) during the
monitoring survey for the dredge spoil dumping in coastal waters (‘Dumping site’ is DSS1,DSS2 and
‘Nearby site’ is DSS3, DSS4, DSS5). Values are averaged from surface and bottom.

A more detailed composition of the first five most dominant species, their abundances
and their relative contributions (%) to the whole phytoplankton community during the
monitoring survey are presented in Supplementary Table S1. Diatoms were by far the
dominant phytoplankton group in most cases, reaching relative abundances of almost 95%
(October 2010 at the dumping site). Diatoms of the genera Pseudo-nitzschia, Leptocylindrus,
Chaetoceros, Skeletonema, Thalassiosira and Lauderia were among the most dominant taxa.
Actually, the highest Chl-a and total abundance values in spring 2011 were attributed to
a bloom of the potentially toxic diatom Pseudo-nitzschia multiseries which was distributed
throughout the study area, ranging from 69.500 to 184.200 cells/L. Nanoflagellates were the
second most dominant phytoplankton group. Another peak of phytoplankton abundance
(October 2010) was attributed to a bloom of nanoflagellates (198.090 cells/L) in the dumping
site, whereas this was not coupled with a Chl-a peak.

In order to examine the evolution of the phytoplankton community structure over
the three periods before, during and after the dumping operations, a cluster analysis was
performed. In the Cluster graph (Figure 4), the phytoplankton community structure shaped
one cluster for the periods of pre-dumping and early-dumping from April to October 2010,
which was clearly separated from the rest. During and after the dumping operations, some
of the autumn and winter months formed one cluster, whereas the spring and summer
months formed two other separate clusters.

The Pearson’s correlation coefficient, as well as the Spearman’s correlation coefficient
(for the cases where normality was not achieved: Dissolved Oxygen, Temperature, Light
transmission and Salinity), were calculated (at a 0.05 significance level) in order to examine
the associations among the physicochemical and the biological parameters over the whole
study area (Figure 5). The Shannon diversity index H’ and the Eutrophication index EI were
mostly correlated with nitrogen, Diatoms:Dinoflagellates ratio with N:P ratio, potentially
harmful species abundance with Si:N ratio, relative abundance of Pseudo-nitzschia with
light transparency, Chl-a and total phytoplankton abundance with dissolved oxygen.

In order to have a deeper look into some representative parameters for the pelagic
environment and phytoplankton communities, we tested statistically (one way ANOVA)
if they were affected by the dumping activity (dumping site and nearby site) and/or the
sampling period (before, during and after the dumping operations). The results of these
comparisons are presented in Supplementary Table S2. Most environmental and phyto-
plankton parameters were significantly influenced by the dumping operations (p < 0.05),
showing differences between the dumping pressure and/or the dumping period, e.g., Chl-a,
total phytoplankton abundance, number of phytoplankton species, Diatoms:Dinoflagellates
ratio, nitrates, phosphates, N:P ratio, silicates, the EI index, etc.
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Figure 3. Distribution of phytoplankton parameters during the monitoring survey for the dredge spoil
dumping in coastal waters (‘Dumping site’ is DSS1, DSS2 and ‘Nearby site’ is DSS3, DSS4, –DSS5):
Chlorophyll-a (a), Chlorophyll-a near the surface and near the seabed (b), phytoplankton abun-
dance (c), Diatoms:Dinoflagellates ratio (d), potentially harmful species (e) and Eutrophication index
EI (f). Values are averaged from surface and bottom.

A deeper insight into the combined effect of the most significant environmental fac-
tors on the variation of phytoplankton community structure and diversity was attempted
through the multivariate Redundancy Analysis (RDA) method (Table 2, Figure 6). Based
on the Variation Inflation Factor (VIF), correlated predictors were removed, thus the en-
vironmental factors included in the model were light transmission, temperature, salinity,
dissolved oxygen, dissolved nutrients (NO3, NO2, NH4, PO4, SiO4), N:P and Si:N ratios as
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explanatory variables. All values of VIF were below 10, indicating that multicollinearity
will not influence the model [38]. From the available suite of nine phytoplankton parame-
ters (Chl-a, total abundance, abundance of HAB species, relative abundance of HAB species,
Pseudo-nitzschia multiseries abundance, and the phytoplankton diversity indices: Number
of species S’, Shannon H’, Pielou J’ Diatoms:Dinoflagellates ratio) and the EI, the model
which better assessed the effect of the explanatory matrix on the response matrix was the
one including as response variables the EI, the Diatoms:Dinoflagellates ratio, Chl-a and
P. multiseries abundance. Pseudo-nitzschia was selected as the most frequent and abundant
phytoplankton taxon, also among the potentially harmful species.
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Figure 4. Cluster analysis of the phytoplankton community structure (data of species abundance,
cells L−1) in the sampling stations based on the different months of samplings. Data were log (x + 1)
transformed. The similarity levels (% on the y’y axis) are presented among the sampling stations (on
the x’x axis). The dashed line indicates the 50% similarity level above which the similarity level is
considered statistically important (p < 0.05).

In Figure 6 the first and second axes (RDA1 and RDA2) represented 75.55% of the total
variation in the multivariate system. On the first axis, the response variables were explained
primarily by the Eutrophication Index (EI) and secondarily by Chl-a. On the second axis,
the response variables were explained primarily by the Diatoms:Dinoflagellates ratio and
secondarily by P. multiseries abundance (Table 2). The most influential environmental
variables on the first axis were the NH4, Si:N ratio, NO3, N:P ratio, salinity and light
transmission, together with phosphates (PO4), silicates (SiO4), salinity and dissolved
oxygen on the second axis (Table 2). Light Transmission (p = 0.001), Salinity (p = 0.001),
Dissolved Oxygen (p = 0.007), PO4 (p = 0.001), NO3 (p = 0.001) and NH4 (p = 0.005) were
found to be statistically significant explanatory variables (at 0.05 or 0.01 or 0.001 significance
levels). The model was statistically significant (p = 0.001) and the first two RDA axes were
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also found to be statistically significant: RDA1 (p = 0.001) and RDA2 (p = 0.013) at either
0.001 or 0.05 significance levels.
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Table 2. Scores of explanatory and response variables for the first two axes of the Redundancy
Analysis (RDA). Statistically significant explanatory variables are indicated in bold characters.

Response Variables RDA1 RDA2 Explanatory Variables RDA1 RDA2

EI 2.055 −0.03134
Ammonium NH4 (µM) 0.8155 0.030799

Nitrates NO3 (µM) 0.6931 0.050349

Chorophyll-a (Ln) 0.07744 −0.04749
Salinity 0.5360 0.478432

Light Transmission −0.4017 −0.045965

Diatoms: Dinoflagellates ratio (Ln) −0.04951 −1.321

Phosphates PO4 (µM) 0.3772 −0.690978

Dissolved Oxygen (mL/L) 0.2722 −0.102520

N:P ratio 0.5506 0.601707

Abundance of Pseudo-nitzschia
multiseries (Ln) 0.03745 0.07160

Si:N ratio −0.7384 −0.003835

Nitrites NO2 (µM) 0.4863 0.025692

Silicates SiO4 (µM) 0.4836 0.068162
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Figure 6. Triplot of Redundancy Analysis (RDA).

The RDA triplot (Figure 6) is based on Type II scaling since the correlative relationships
between variables were of interest, focusing on response variables [39]. The angles between
all vectors on the RDA triplot reflect their linear correlation. The approximated correlation
between two variables is equal to the cosine of the angle between the corresponding
vectors. The placement of the environmental variables indicates their loading on the two
displayed axes, whereas the location of the response variables indicates how strongly a
response variable is associated with an environmental variable. Regarding the first axis
(RDA1), it can be observed that the explanatory variables NH4, Si:N, NO3, salinity and N:P
present a heavy loading on it. Accordingly, the response variable Eutrophication Index
indicates a strong positive association with NH4 and NO3, and a strong negative association
with Si:N, with respect to RDA1. Concerning the second axis (RDA2), the explanatory
variables PO4, N:P and salinity pose a heavy loading on it, whereas the response variable
Diatoms:Dinoflagellates ratio, indicates a strong negative association with N:P and salinity
and a positive association with PO4, with respect to RDA2.

4. Discussion

Although a substantial amount of research has been conducted, some effects of the
disposal of dredge sediments are rather poorly studied, e.g., the impact on phytoplankton
which is considered essential for the monitoring of dredge spoil dumping [4]. The resuspen-
sion of sediments and the subsequently increased turbidity is expected to enhance the light
attenuation; this factor might not be critical in hindering phytoplankton productivity in
dumping areas according to [40]. However, the persistent turbidity plume has been found
to reduce phytoplankton productivity in large-scale continuous extraction activity [41].

Sediment resuspension is known to be an important source of phosphate and nitrogen
in shallow estuarine systems [13,40,42]. In the present study, phosphates started to increase
after one year of dumping, dragging the N:P ratio to levels below 10, whereas the lowest
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DO concentrations and saturation levels were observed near the seabed in the dumping
site. Furthermore, a number of environmental and phytoplankton related parameters were
significantly influenced by the dumping operations. The inorganic nitrogen and phospho-
rus, N:P ratio, silicate, light transmission and DO, Chl-a, total phytoplankton abundances
and the number of species differentiated significantly over the gradient of dumping pres-
sure and/or dumping period, according to the ANOVA outcomes. The multiparametric
Eutrophication Index (EI) also showed sensitivity to the gradient of dumping pressure in
the area.

In the Bahía Blanca estuary, Argentina, dumping operations since the early 1990s have
been enriching the water column with suspended sediments [43,44]. Turbidity, dissolved
nitrite, nitrate and phosphate concentrations have shown increasing trends there. The
combined effect of the reduced river runoff and the input of new nitrogen and phosphate
into the Bahía Blanca estuary have rendered the resuspension of nutrients from bottom sed-
iments an important source for phytoplankton growth, especially during the low river flow
period [45]. According to our Pearson and Spearman correlation analysis, several phyto-
plankton indicators, such as the Shannon diversity index H’, Diatoms:Dinoflagellates ratio,
potentially harmful species abundance and the Eutrophication Index EI, were correlated
mostly with nitrogen or its ratios (N:P, Si:N).

In previous studies from estuarine systems, dredging had no impact on the seasonal
variability of phytoplankton biomass, reported as Chl-a values [14,46–48]. It is suggested
that this was probably related to the fact that turbidity and light attenuation did not reach
limiting levels for phytoplankton growth throughout the sampling period [47]. In the
present study, phytoplankton total abundance and Chl-a (as a proxy of phytoplankton
biomass) demonstrated the expected late winter/early spring surface peaks in the whole
area. However, after two years of dumping operations, the Chl-a maxima were shaped near
the seabed rather than near the surface. Chl-a and total phytoplankton abundance were
mostly correlated with DO, whereas Pseudo-nitzschia relative abundance was correlated
with light transparency (Spearman correlation). Overflows of high-concentration disposed
sediments are known to produce turbid plumes at the water surface which can later be
dispersed over several tens of kilometers under the combined conditions of oceanic and
atmospheric forcings (e.g., currents, tide, winds) [49].

During the pre-dumping and the early-dumping period in the present study, the
phytoplankton community structure was clearly discriminated from the period during and
after the dumping operations, according to the similarity cluster analysis. According to the
multivariate analysis findings (RDA), the most representative component of the phytoplank-
ton communities against stressors relevant to dumping was the Diatoms:Dinoflagellates
ratio, which was mostly associated with phosphates, N:P ratio and salinity. A significant
increase in the Diatoms:Dinoflagellates ratio emerged during the second year of dumping
operations due to the proliferation of diatoms. Diatoms are known to outcompete other
phytoplankton groups by growing fast and forming blooms when nitrogen and silicon
become available [50–52]. This ecological advantage may lie in their siliceous cell walls,
which require less energy to synthesize compared to the organic cell walls of dinoflagel-
lates [53]. Furthermore, their high affinity for nitrates and the formation of nutrient storage
vacuoles make diatoms more competitive under pulsed nutrient supply regimes [54,55].
High biomass blooms of diatoms have been found to proliferate for short periods even
in the open oligotrophic waters of Greece (Aegean Sea, Eastern Mediterranean), when
conditions are favorable [56].

Diatoms clearly dominated the phytoplankton communities reaching approximately
95% of relative abundance in the studied dumping site (Pseudo-nitzschia, Leptocylindrus,
Chaetoceros, Skeletonema, Thalassiosira and Lauderia among the most dominant taxa). These
high diatom numbers were probably favored by the release of silicon and nitrogen from
the dredge spoil, whereas they maximized the Diatoms:Dinoflagellates ratio after two
years of dumping operations. A clear shift in phytoplankton community composition
towards the dominance of the small diatom Thalassiosira minima at >80% of the total
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phytoplankton abundance in summer has been documented in the Bahía Blanca Estuary,
Argentina [57]. The diatoms Actinocyclus normanii, Chaetoceros affinis, Skeletonema costatum,
Thalassiosira spp. have also been found to comprise a substantial part of the plankton diatom
communities in the brackish waters of the Klaipëda Strait under extensive dredge spoil
dumping activities [58]. The release of resting stages into the water column is considered
a common mechanism for the establishment of diatom blooms [59,60]. For example, the
resuspension of resting spores of the Chaetoceros genus has been suggested as a potential
trigger factor for winter diatom blooms in the dredged Bahía Blanca Estuary [61]. On
coasts with rapid shifts in sedimentation patterns, dumping can also impact surf zone
diatoms [62] or increase benthic to pelagic diatom ratios [63].

Our knowledge of species that form Harmful Algal Blooms (HABs) at dumping
sites is rather scarce so far. A previous study reported an extensive HAB event with
Prymnesium parvum (Prymnesiophyceae) resulting in hypoxic conditions and fish kills in
the Zandvlei Estuary (South Africa) that is subjected to dredging activities [16]. In the
present study, high biomass producers or potentially toxic species of phytoplankton were
present throughout the sampling period and peaked significantly during the dumping
operations in spring. In many cases, there was just one species exceeding 50% of the
total phytoplankton abundance even in the summer months. Pseudo-nitzschia multiseries
were the most frequent potentially toxic species present in all sites and throughout the
sampling period. Furthermore, the abundance of P. multiseries emerged as the second most
representative component of the phytoplankton community structure against the dumping
stressors, according to the multivariate analysis (RDA). A bloom of P. multiseries (up to
~185.000 cells/L) generated a peak of Chl-a and total abundance after one year of dumping.
The dominance of P. multiseries and other potentially toxic Pseudo-nitzschia species has been
documented also in other perturbed coastal areas of Greece, such as the Maliakos Gulf and
Thermaikos Gulf [64–66]. In addition to the competitive advantages of diatoms described
above, P. multiseries is known to have also a ferritin that facilitates blooming after iron
inputs even in nutrient-limited oceanic regions, linking iron uptake to substantial metabolic
reactions, such as photosynthesis, nitrate assimilation, the urea cycle and carbohydrate
synthesis [67,68].

Other frequent species mostly in the dumping site were the potentially harmful
diatoms Chaeroceros affinis and Leptocylindrus minimus. The potentially toxic dinoflagellates
of the genus Alexandriun were also present at low concentrations at the dumping and some
nearby stations. In a dumping area of Izmir Bay in Turkey, dredge sediments’ dumping
operations were considered to favor the growth and reproduction of the red tide flagellates
Heterosigma cf. akashiwo and Gymnodinium cf. mikimotoi [69]. In our study, an autumn
bloom of nanoflagellates (~200.000 cells/L in October 2010) occurred a month after the
dumping operations started, but this was not followed by a Chl-a increase. This might be
attributed to the heterotrophic character of some nanoflagellates that could enable them to
temporarily proliferate on the organic matter released by the disposed of sediments.

Sediment resuspension at dumping sites is known to release significant organic matter
amounts in seawater [70], which suggests a potentially important alternative carbon and
nutrient pool for phytoplankton communities with heterotrophic and mixotrophic capa-
bilities, such as nanoflagellates and numerous HAB species [71,72]. Model results from a
dredged estuary further support this linkage by indicating a relationship between elevated
total phosphorus availability and the increased abundance of Dinophyceae and Prymne-
siophyce [16]. Organic resources released by dredging have been suggested to favor also
the proliferation of heterotrophic prokaryotes and the dominance of larger photosynthetic
picoeukaryotes (≥2.5) over the small photosynthetic prokaryotes (≤1 µm) [15] thanks to
their mixotrophic potential [73]. The expansion of toxin-producing cyanobacteria blooms
caused by the transport of contaminated inland waters to estuarine and coastal marine
waters, is also attracting high interest [74]. Among the toxins produced by cyanobacteria
(cyanotoxins), microcystins are the most common with effects on the pelagic habitats and
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phytoplankton [75]. In this sense, dredge spoil dumping can also cause this particular
environmental problem, which needs further studies.

The Diatoms:Dinoflagellates ratio index was the most important parameter to explain
the responses of phytoplankton diversity against the dumping pressures in the present
study (multivariate RDA analysis). Previous research has shown that phytoplankton di-
versity indices are sensitive to pressures and currently under investigation for reliable
environmental assessments in the framework of the European Marine Strategy Framework
Directive implementation (MSFD, 2017/848/EC), although more effort is recommended for
testing on a wide spatial scale to cover wider gradients of natural and anthropogenic pres-
sures [76–79]. In a recent study, a set of eight diversity indices was tested against different
anthropogenic pressure levels within a common data set of phytoplankton communities
(structure and abundance) from the Adriatic, Ionian and Aegean Seas [80]. Most of the
tested diversity indices were able to distinguish between the highest level of impact and
the rest of the impact categories. These indices maintained the distinction between two
levels of subsequently dichotomized impacts (no impact to low impact vs. high impact)
across latitudinal and longitudinal gradients.

There is some proof till now about the remediation of dumping sites in coastal areas
with high resilience thanks to the coastline morphology and hydrological conditions.
Such a case is a dumping site in Suape Bay, Brazil, where Chl-a and dissolved inorganic
nutrients did not show significant changes in their patterns. Some authors suggested
that the environment was influenced by strong hydrodynamism and greater penetration
of coastal waters after the opening of some reefs, causing greater water renewal, and
therefore, lower disturbance by the dumping process [6]. In any case, apart from dredging
and dumping of spoils, many other human activities co-occur in coastal areas, such as
aquaculture, offshore oil and gas facilities, wind, wave and tidal installments [81]. In
this respect, phytoplankton is considered an important ecosystem component for marine
monitoring and coastal management, due to the increased probability of overlap between
high productivity patches and maritime developments in coastal waters [82].

5. Conclusions

In this study, we tried to elucidate the impacts of dredge spoil dumping operations
on the pelagic habitat and the phytoplankton responses in a case study from Eastern
Mediterranean coastal waters. Phytoplankton diversity metrics and the trophic status
reflected the dumping pressure. The generation of blooms was favored in this perturbed
environment, supporting the dominance of potentially toxic diatoms. Phytoplankton is,
therefore, suggested as a sensitive tool for the monitoring and management of dredging
operations. Follow-up data would be quite informative to collect over an extended period
of time in order to determine any long-term effects of dumping pressure.

The implementation of the MSFD in European marine waters is expected to influence
anthropogenic activities, such as dredging for navigation and new constructions (harbors,
breakwaters, bridges, tunnels and wind farms), land reclamation and coastal protection,
sediment management and sand mining, the laying of cables and pipelines, etc. In this
context, dredging and sediment disposal at sea are posing pressures against a variety of
ecosystem components addressed by the MSFD monitoring programs, such as sea-floor
integrity [23] and plankton diversity [75], with phytoplankton as a key biological element
for the monitoring of the marine environment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14152343/s1, Table S1: Five most dominant phytoplankton
species, their abundances (cells 103 L−1) and their relative contribution (%) to the total phytoplankton
community (in descending order) in the dumping site and the nearby site. In bold characters, the
relative contributions above 50%; Table S2: One-way ANOVA with the biological and physicochemical
parameters (as dependant variables) which presented significant differences (values in bold with
statistical significance at p < 0.05) versus the dumping period and the site (as independent variables).

https://www.mdpi.com/article/10.3390/w14152343/s1
https://www.mdpi.com/article/10.3390/w14152343/s1
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Only parameters with significant differences are presented (Chl-a, N total phytoplankton abundance,
S number of phytoplankton species).
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