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Abstract: This study mainly investigated the adsorption behavior and mechanism of microfiltra-
tion membranes (MFMs) with different physiochemical properties (polyamide (PA), polyvinylidene
fluoride (PVDF), nitrocellulose (NC), and polytetrafluoroethylene (PTFE)) for bisphenol A (BPA).
According to the adsorption isotherm and kinetic, the maximum adsorption capacity of these MFMs
was PA (161.29 mg/g) > PVDF (80.00 mg/g) > NC (18.02 mg/g) > PTFE (1.56 mg/g), and the ad-
sorption rate was PVDF (K1 = 2.373 h−1) > PA (K1 = 1.739 h−1) > NC (K1 = 1.086 h−1). The site
energy distribution analysis showed that PA MFMs had the greatest adsorption sites, followed by
PVDF and NC MFMs. The study of the adsorption mechanism suggested that the hydrophilic mi-
crodomain and hydrophobic microdomain had a micro-separation for PA and PVDF, which resulted
in a higher adsorption capacity of PA and PVDF MFMs. The hydrophilic microdomain providing
hydrogen bonding sites and the hydrophobic microdomain providing hydrophobic interaction, play
a synergetic role in improving the BPA adsorption. Due to the hydrogen bonding force being greater
than the hydrophobic force, more hydrogen bonding sites on the hydrophobic surface resulted in a
higher adsorption capacity, but the hydrophobic interaction contributed to improving the adsorption
rate. Therefore, the distribution of the hydrophilic microdomain and hydrophobic microdomain
on MFMs can influence the adsorption capacity and the adsorption rate for BPA or its analogues.
These consequences provide a novel insight for better understanding the adsorption behavior and
mechanism on MFMs.

Keywords: microfiltration membranes; bisphenol A; adsorption mechanism; hydrogen bonding;
hydrophobic interaction

1. Introduction

Water pollution has invariably been one of the focuses of the prevention of environ-
mental pollution. In recent decades, endocrine disruptors (EDCs), the emerging pollutant
detected in drinking water, which seriously affects human health and the environment,
have drawn significant social and scientific concerns [1–4]. Several published studies have
reported that EDCs are widely detected in effluents released from sewage treatment plants,
surface water, and drinking water [5–10]. Bisphenol A, which is one of the important
compounds in the production of polycarbonate plastics and resins, is a typical environ-
mental endocrine disruptor of high concern due to its role in the use of many industrial
compounds worldwide [11]. Despite its low toxicity, long-term exposure to BPA may pose
health risks to the reproductive and endocrine systems of animals, and it is evident that
high concentrations of BPA may pose greater health risks to developmental and neurode-
velopmental toxicity in animals [12–14]. Therefore, efficient removal of BPA from water is
significant for the drinking water safety.

Several methods have been reported for the removal of pollutants, including electro-
oxidation, photo-oxidation, biodegradable, adsorption, and membrane technology [15–20].
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In wastewater treatment, membrane technology promises a bright future with many ad-
vantages, such as relatively high efficiency, selectivity, low cost, minor footprint, and less
secondary pollution [21]. Membrane treatment technology, according to the pore size of
the membrane, can be generally divided into Microfiltration (MF), Ultrafiltration (UF),
Nanofiltration (NF), and Reverse Osmosis (RO) [20]. Much progress has been made re-
cently in the adsorption and enrichment treatment of organic pollutants, heavy metals, and
other pollutants in water by using the membrane and the membrane modified by physical
or chemical methods [22–25]. UF membranes mainly use physical screening and micro-
osmosis to remove impurities in water through the pressure difference on both sides of the
membrane, so as to achieve the separation of large and small substances [26]. The molecular
weight of NF membranes is usually in the range of 150~2000 Da, which is between the
RO membrane and the UF membrane [27]. Although NF and RO membranes represent
valid removal of various nanoscale molecules and ionic solutes based on size exclusion
and electrostatic interactions, the process requires high trans-membrane pressure and is
liable to fouling, which affects their practical uses [28,29]. MF membranes are microporous
membranes, which have the characteristics of high voidage, high throughput filtration,
and no secondary pollution [30]. MF membranes can be modified by various molecules to
capture target solutes [31,32]. Sieving retention by these membranes is scarcely possible
because of their large pore size, but adsorption plays a key role in the removal of target
contaminants in water by MF membranes [33]. The research found that estrone could
be readily removed from water by nylon MF membrane due to the chemisorption that
occurred between estrone and the nylon membrane [34]. Based on these studies, we hy-
pothesized that microporous membranes with different chemical compositions may exhibit
different adsorption behavior for BPA. It would provide useful information to find or
design the proper MF membrane with good adsorption capacity by a deep understanding
of the adsorption mechanism of MFMs for BPA.

In this work, four specific MFMs with different chemical compositions (PA, PVDF,
NC, and PTFE) were selected to analyze their adsorption behavior and adsorption mecha-
nism. They are common membrane materials and are widely used in the field of separa-
tion [35–38]. We investigated the adsorption behaviors of the after-mentioned BPA on four
MFMs with respect to adsorption kinetics, isotherms, site energy analysis, and rapid filtra-
tion adsorption. The adsorption mechanism of the BPA on MFMs were studied intensively
based on the physiochemical properties. By exploring the adsorption mechanism of BPA
on MFMs, this study will contribute to choosing or designing MFMs as an adsorption filter
membrane using the removal of specific pollutants.

2. Materials and Methods
2.1. Materials

Commercially available PA MFMs, PVDF MFMs, NC MFMs, and PTFE MFMs (av-
erage pore size = 0.22 µm) were supplied by Tianjin Keyilong Experimental Equipment
Co., Ltd. (Tianjin, China). The properties of the four MFMs are shown in Table 1. BPA
(99%) was purchased from Beijing Bailingwei Technology Co., Ltd. (Beijing, China). The
chemical structure of BPA is shown in Figure 1. Methanol (CH3OH, AR) was acquired from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All the reagents were used as
received. The water used in all the experiments was deionized water prepared by our lab.
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Table 1. Properties of four MFMs.

Membrane
Material Molecular Structure pH

Tolerance
Temperature

Tolerance Performance

PA
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2.2. Adsorption Experiments

The adsorption experiments were conducted at room temperature (25 ◦C). The con-
centration of the BPA solution was measured by an Ultraviolet-Visible spectrophotometer
(UV-3150, Shimadzu, Kyoto, Japan) at 277 nm wavelength.

2.2.1. Batch Adsorption

In the adsorption kinetic experiments, the initial concentration of the BPA solution
was fixed at 20 mg/L. A piece of the membrane (0.05 g) and 50 mL of BPA solutions were
placed in a conical flask (100 mL). All the flasks were placed in a constant temperature
oscillation box, which vibrated at 150 rpm. The samples were collected at different times.
For adsorption isotherm experiments, a piece of the membrane (0.05 g) and 50 mL of BPA
solutions with different concentrations (5, 10, 20, 30, 50 mg/L) were added into a conical
flask (100 mL). All the flasks were placed in a constant temperature oscillation box, which
vibrated at 150 rpm for 24 h to achieve equilibrium. Control experiments (without mem-
branes) were carried out simultaneously. The concentrations of BPA measured in control
experiments were used as the initial concentrations. All experiments were conducted
in duplicate.

2.2.2. Rapid Filtration Adsorption

Laboratory-scale rapid filtration adsorption experiments were conducted to investigate
the efficiency of membranes for removing BPA from water during the filtration process. The
schematic diagram of the experimental apparatus of rapid filtration adsorption is provided
in Figure S1. A piece of the membrane (0.12 g, 1.256 × 10−3 m2) was placed in the filtering
device, and 50 mL of 10 mg/L BPA solution was poured into the device for filtering. The
filtering was processed under nature pressure without external pressure. Filtration was
collected to detect the concentration of BPA. To compare with the BPA removing efficiency
under the condition of equilibrium adsorption, the equilibrium adsorption experiments
were conducted by placing the same size of membranes and 50 mL of 10 mg/L BPA
solution into a conical flask at 150 rpm for 24 h to reach adsorption equilibrium. Control
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experiments (without membranes) were carried out simultaneously. The concentrations
of BPA measured in control experiments were used as the initial concentrations. All
experiments were conducted in duplicate.

2.3. Characterization and Analytical Methods
2.3.1. Characterization Methods

The surface morphology of MFMs was observed with a field-emitting scanning elec-
tron microscope (ZEISS, Gemini 300, Jena, Germany) after being sputtered with the gold
layer. The surface chemistry of the MFMs was analyzed by energy-dispersive X-ray
spectrometry (EDS) conducted with an Octane elect super (EDAX, Mahwah, NJ, USA).
The MFMs before and after BPA adsorption were analyzed using an FTIR instrument
(IRTRACER-100, Shimadzu) equipped with a ZnSe crystal under attenuated total reflection
settings (ATR-FTIR). The infrared spectra of the samples were recorded between 600 and
4000 cm−1 using 32 scans obtained at a resolution of 2 cm−1.

The water contact angles of the three MFMs were identified by the Video Optical
Contact angle Measurement (Hake Test Instrument, Beijing, China). Each membrane was
subjected to five measurements at least, and the average value was taken. To calculate
the coefficient of water absorption of MFMs, the following experiments were performed
in triplicate. A piece of the washed and dried membrane (0.12 g, 1.256 × 10−3 m2) was
weighed and dipped into ultra-pure water (50 mL) for 48 h at 25 ◦C. Then, the membrane
was taken out by forceps to eliminate excess water and then weighted immediately. The
coefficient of water absorption of MFMs (W, %) is shown in the following Equation (1).

W =
m − m0

m0
× 100% (1)

where m0 (g) and m (g) denote the mass of the membrane before and after adsorp-
tion, respectively.

2.3.2. Adsorption Kinetics

The adsorption kinetics can usually be characterized by mathematical models, includ-
ing the pseudo-first-order model and pseudo-second-order model [45,46].

The pseudo-first-order model is provided in the following Equation (2):

qt = qe

(
1 − e−K1t

)
(2)

The pseudo-second-order model adsorption model can be represented as follows:

qt =
K2q2

et
1 + K2qet

(3)

where qt (mg/g) and qe (mg/g) are the amount of adsorbent adsorbed at time t (h) and
the equilibrium adsorption capacity of adsorbent, respectively; K1 (1/h) is the adsorption
rate constant of the pseudo-first-order; K2 (g/(mg·h)) is the adsorption rate constant of the
pseudo-second-order.

2.3.3. Adsorption Isotherms

Langmuir and Freundlich isotherms, which have been frequently used to model the
adsorption of pollutants on adsorbents, were applied to describe the adsorption equilibrium
data of BPA on MFMs [47,48].

The Langmuir isotherm equation is shown as follows in Equation (4).

1
qe

=
1

KLqmax
· 1
Ce

+
1

qmax
(4)
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The calculation of Freundlich model was performed by the following Equation (5):

ln qe = ln KF +
1
n

ln Ce (5)

where qe (mg/g) and qmax (mg/g) are the equilibrium adsorption capacity and the maxi-
mum sorption capacity of adsorbent, respectively; Ce (mg/L) is the equilibrium concen-
tration of adsorbent; KL (L/mg) is the Langmuir constant; KF ((mg/g)/(mg/L)n) is the
Freundlich constant; n is the indicate heterogeneity factor.

2.3.4. Adsorption Site Energy Distribution Theory Analysis

The site energy distribution theory (SEDT) is a theoretical method to study the ad-
sorption mechanism from the perspective of energy, which can provide information about
the energies of the adsorption system, such as low-, average-, and high-energy adsorption
sites [49]. Therefore, the analysis of site energy distribution was helpful to better understand
the adsorption mechanism of BPA in water by MFMs and provides a more comprehensive
theoretical basis. The energy distribution of adsorption sites for heterogeneous adsorbents
can be calculated by Equation (6):

qe(Ce) =
∫ +∞

0
qh(E, Ce)F(E)dE (6)

where qh(E, Ce) and F(E) are the homogeneous isotherm and site energy frequency distri-
bution over local adsorption sites with adsorption energy E, respectively.

The condensation approximation proposed by Cerofolini has been widely used in
practice as follows in Equation (7) [50].

Ce = Cs exp
(
−E − Es

RT

)
= Cs exp

(
− E∗

RT

)
(7)

where Cs (mg/L) is the maximum solubility of the solute, and Es (kJ/mol) is the adsorption
energy at concentration Cs. R, T, and E* are the universal gas constant, the absolute
temperature (K), and the adsorption energy difference between solute and solvent on the
adsorbent surface based on reference point Es, respectively.

By correlating the energy distribution of the adsorption isotherm sites, an approximate
SED function F(E*) could be obtained, as shown in Equation (8):

F(E∗) =
−dq(E∗)

dE∗ (8)

where F(E*) and q(E*) (mg/L) are the energy distribution function of the adsorption site
and the solute adsorption concentration, respectively.

According to Langmuir model Equation (4) and formulas (7) and (8), the distribution
of adsorption sites can be obtained as follows:

F(E∗) =
qmKLCs

RT
exp

(
− E∗

RT

)[
1 + KLCs exp

(
− E∗

RT

)]
(9)

3. Results and Discussion

A preliminary study was carried out to investigate the effect of different of MFMs on
the adsorption of BPA. As shown in Figure S1, the adsorption efficiencies of different MFMs
were dramatically different, and the PTFE MFMs exhibited an extremely low adsorption
efficiency. The main reason is that the PTFE MFMs are highly hydrophobic, leading to
the BPA aqueous solution being hard to approach their surface. Thus, in the following
experiment, PTFE MFMs were excluded for further study.
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3.1. Adsorption Kinetic

The adsorption kinetic data of BPA on three MFMs are shown in Figure 2. As depicted
in Figure 2, the uptakes of BPA on membranes increased dramatically in the first 2 h,
and then, the adsorption rate slowed down with time. The adsorption equilibrium was
reached within 5 h for all evaluated membranes. The rate-limiting step is a physical
process for the pseudo-first-order model, but it depends on chemical processes for the
pseudo-second-order model, which involves the adsorption force between the adsorbent
and adsorbate [51]. Therefore, to study the rate-limiting steps and the mechanism of BPA
adsorption on membranes, the pseudo-first-order model and the pseudo-second-order
model were applied to fit the kinetic data (Figure 2). The parameters of these models are
presented in Table 2. According to the graphical interpretation (Figure 2) together with
judging the value of R2, the adsorption data of BPA for the membranes fitted well with the
pseudo-first-order model. The parameter K1 in the pseudo-first-order model is frequently
used to describe how fast the adsorption equilibrium is achieved, and the larger adsorption
rate constant K1 usually represents quicker adsorption [52]. The result dictated that the
adsorption rate of the PVDF MFMs was the fastest, followed by PA and NC MFMs.
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Figure 2. The kinetic adsorption model fitting of the pseudo-first-order model and pseudo-second-
order model for the adsorption of BPA onto three MFMs.

Table 2. The kinetic adsorption constants of BPA by three MFMs.

Membrane
Material

Pseudo-First-Order Model Pseudo-Second-Order Model

K1
(1/h)

qe
(mg/g) R2 K2

g/(mg·h)
qe

(mg/g) R2

PA 1.739 5.637 0.996 0.625 6.063 0.965
PVDF 2.373 4.442 0.986 0.810 4.717 0.938

NC 1.086 2.134 0.967 0.419 2.320 0.916

3.2. Adsorption Isothermal

Langmuir and Freundlich models were applied to fit the isotherm data to evaluate
the maximum adsorption capacity, homogeneity, and heterogeneity in the surface of three
MFMs and the adsorption mechanism. Figure 3 illustrates the modeling results of BPA
adsorption on three MFMs based on Langmuir and Freundlich isotherms, together with
relevant parameters summarized in Table 3. From the results, the Langmuir model agreed
better than the Freundlich models judging from the “R2” values (R2 > 0.99). The Langmuir
isotherm is generally performed to assess monolayer chemical-mediated adsorption on
a homogeneous surface [53]. The results showed that the adsorption of BPA by the three
MFMs was more inclined to monolayer adsorption. In addition, the R2 of the Freundlich
model was also excellent, which may account for the uneven distribution of energy on
the membrane surface in the experiments. The Freundlich model is mainly used to study
multimolecular adsorption, which can better reflect the heterogeneity of the adsorbent
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surface [54]. Combining the correlations of the two models showed that the inhomogeneous
distribution of energy on the membrane surface and the adsorption of BPA on the three
MFMs were more biased towards monolayer adsorption in the non-homogeneous system.
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Figure 3. The isothermal adsorption model fitting of Langmuir (a) and Freundlich (b) for the
adsorption of BPA onto three MFMs.

Table 3. The isothermal adsorption constants of BPA by three MFMs.

Membrane
Material

Langmuir Model Freundlich Model

KL
(L/mg)

qmax
(mg/g) R2

KF
(mg/g)/
(mg/L)n

n R2

PA 0.0026 161.29 1.000 0.448 1.038 0.999
PVDF 0.0027 80.000 0.996 0.278 1.125 0.989

NC 0.0065 18.018 0.994 0.129 1.080 0.993

Based on the data of the Langmuir model, it was clear that PA MFMs had an apparently
high BPA adsorption with the maximum adsorption capacity (qm) up to 161.29 mg/g, while
the qm of NC and PVDF MFMs were 18.02 and 80.00 mg/g, respectively. It showed that PA
MFMs exhibited an evident adsorption capability of BPA that far exceeded other kinds of
MFMs in the experiments. In the data of the Freundlich model, KF indicates the adsorption
capacity, and PA MFMs > PVDF MFMs > NC MFMs, which is consistent with the results of
the Langmuir model. In Table 4, some membrane materials are listed for the comparison
of BPA-removal effectiveness. It is worth noting that the removal effect of PA MFMs
is commendable.

Table 4. Comparison of maximal adsorption capacity of BPA by various membranes.

Membrane Material Membrane Type qm (mg/g) Ref

PA MF 161.29 This study
PVDF MF 80.00 This study

NC MF 18.02 This study
PTFE MF 1.56 This study
NNM NF 91.30 [55]

CA-P-CDP NF 50.37 [56]
PP-g-SA-HEA-PVDF Composite membrane 26.67 [57]

β-CD/CS/PVA NF 352.17 [58]
CDGO Composite membrane 25.50 [59]

SRt-PAN NF 17.50 [60]
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3.3. Site Energy Distribution Analysis

In order to deepen the understanding of the adsorption potential energy of solute BPA
removal by three MFMs, the adsorption of BPA by MFMs was further analyzed using the
theory of adsorption potential energy distribution. The site energy E* of BPA adsorption on
three types of MFMs as a function of qe are shown in Figure 4. The R2 data (Table 3) using
the Langmuir model were the most desirable for the experimental analysis of adsorption
isotherms, so the site energy analysis was performed based on the Langmuir model, and
the relevant data obtained are shown in Table 5.
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Figure 4a shows that the adsorption energy (E*) decreased rapidly with increasing
qe, which verified the possible inhomogeneous properties of SED and the existence of
a limited number of high-energy adsorption sites on the MFMs [61]. As the BPA con-
centration increased, the BPA molecules first attached to the high-energy sites until the
high-energy sites were completely occupied, and then, they shift to the low-energy sites for
adsorption [62]. The high-energy and low-energy regions often correspond to the low- and
high-concentration regions, respectively. As shown in Figure 4b, the energy distribution of
the adsorption sites fitted by the three MFMs for the BPA adsorption process belonged to
the L-class shape, which indicated that the adsorbent had a high affinity for the adsorbate
in the low concentration range [63]. By comparing the energy range of the three MFMs
in Table 5, the adsorption process of BPA by PA MFMs was more inclined to the low
potential energy region, which means that PA MFMs had a better adsorption affinity for
the adsorption of BPA. By definition, the area formed between the bottom of the curve and
the coordinate axis in Figure 4b shows the number of available adsorption sites in a specific
energy range [64]. Although the shapes of the distribution functions for BPA adsorption
were similar for the three MFMs, there were significant differences in the areas under their
curves. Most of the adsorption sites were obtained by BPA on PA MFMs, followed by
PVDF and NC MFMs, which was consistent with the previous analysis that the adsorption
capacity of BPA was PA > PVDF > NC.

Table 5. The parameters of the adsorption energy distribution of BPA on different MFMs.

Membrane Material
The Energy Range The Average

Site Energy
The Site Energy
Heterogeneity

E
(kJ/mol)

µ (E*)
(kJ/mol)

σ*
e

(kJ/mol)

PA 5.298–11.173 7.940 2.059
PVDF 6.609–11.886 9.004 1.802

NC 8.230–13.514 10.635 1.907
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3.4. Rapid Filtration Adsorption and Equilibrium Adsorption

To provide the level of adsorption required by water treatment, the adsorption prop-
erty of the three types of MFMs by rapid filtration process and equilibrium adsorption
process was evaluated and compared. As can be seen in Figure 5, the BPA removal efficiency
of PA MFMs in filtration was obviously better than that of the other two MFMs, while
the NC membrane was the worst, which is consistent with the previous thermodynamic
and kinetic experimental results. Compared to equilibrium adsorption, the rapid filtration
adsorption showed that the removal efficiency of BPA molecules was higher, with the most
obvious change for PA MFMs. There may be several reasons: Firstly, during filtration,
the solution had a natural pressure on the membrane, and the pressure drove the rapid
diffusion of BPA molecules to the membrane surface, so the diffusion of BPA solutes from
the solution to the membrane surface was faster during filter adsorption. Furthermore, the
filtration process drove the BPA molecules in the solution to bind to the membrane more
fully, occupying more adsorption sites on the membrane surface and inside the membrane.
Therefore, the removal efficiency was greatly enhanced. In addition, the contact time be-
tween the BPA solution and the membrane during the filtration process was shorter, and the
filtration may have been completed before desorption occurred. However, for equilibrium
adsorption, the adsorbed solute may be desorbed and finally reach the equilibrium of
adsorption and desorption. Therefore, the removal efficiency of BPA was higher at rapid
filtration than at the equilibrium adsorption, which would facilitate the removal of BPA in
an aqueous solution by filtration adsorption.
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Figure 5. The removal efficiency of BPA on different MFMs by rapid filtration and equilibrium
adsorption. (The removal efficiency of different MFMs immersed in 50 mL of 10 mg/L BPA solution
for 24 h was compared with the removal efficiency of different MFMs filtering 50 mL of 10 mg/L BPA
solution.).

3.5. Adsorption Mechanism

According to the adsorption isotherm and kinetic analysis, three MFMs exhibited a
significantly different adsorption capacity and adsorption rate for BPA. The order of ad-
sorption capacity was PA MFMs (qmax = 161.29 mg/g) > PVDF MFMs (qmax = 80.00 mg/g)
> NC MFMs (qmax = 18.02 mg/g). The order of adsorption rate was the PVDF MFMs
(K1 = 2.373 h−1) > PA MFMs (K1 = 1.739 h−1) > NC MFMs (K1 = 1.086 h−1). In the batch
adsorption process, both the chemical composition and physical structure of absorbents
can affect solute adsorption. The physical structure has an effect on the physical adsorption
resulting from a specific surface area [65]. The adsorption mechanism, such as electrostatic
interaction, hydrogen bonding, and hydrophobic partitioning, can be attributed to the
different chemical composition of the absorbent towards the target solute [66]. In this study,
the target solute BPA was a hydrophobic compound (log Kow = 3.32) [57]. Hydrophobic
partitioning is expected to occur in aqueous solutions in the presence of the hydrophobic
microdomain of absorbents. The phenolic hydroxyl and alkylene moieties on the BPA
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molecule can act as proton donors and bind to the electronegative oxygen and nitrogen
atoms via intermolecular hydrogen bonds. BPA molecules undergo a minimal dissociation
in pH-neutral conditions due to their high acid dissociation constant (pKa = 9.6–10.2),
therefore, electrostatic interactions would be limited [67].

As shown in Figure 6, the SEM of PA and PVDF MFMs had a similar surface mor-
phology, but there was an obvious adsorption difference between PA and PVDF MFMs.
Furthermore, NC MFMs with a fibrous-like pore wall seem to have a higher specific surface
area; however, the adsorption capacity and rate by NC MFMs was the lowest. These
indicated that the physical structure was not the main factor affecting the BPA adsorption.
The different adsorption capacities of the three types of MFMs can be attributed to their
different chemical composition.
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The chemical composition and content of three MFMs were further analyzed by EDS
and elemental mapping in Figure 7. The element composition of PA MFMs and NC
MFMs is consistent with their molecular structure formula in Table 1, and their element
percentage is basically consistent with the content of elements in the structure, respectively.
From the chemical composition of three MFMs, PA and NC MFMs have the same element
composition, but the O and N content of NC is higher than PA. About 3.4% (atomic
percentage) of O content is on the PVDF MFMs, which is because the PVDF MFMs were
modified for improving hydrophilicity. Because O or N elements on the MFMs possess a
lone electron pair, they can be proton acceptors and bind to proton donors. There are two
phenolic hydroxyls in BPA molecules, which are known to be active proton donors [34].
Therefore, hydrogen bonding may occur between the BPA and the MFMs.

Actually, the carbonyl oxygen atom presenting in the amide group of PA has a high
negative atomic charge and can combine with the amine proton on the adjacent amide
group to form inter-molecular hydrogen bonds. When interacting with a foreign molecule
with a strong proton donor, the existing hydrogen bonds in PA change to form preferential
hydrogen bonds with the molecule in contact [68]. After adsorption of BPA, there were
obvious fluctuations in the peak at 1635 cm−1 and 1539 cm−1 in Figure 8a. The change
in band intensity after the adsorption of BPA may be due to the hydroxyl group (-OH) of
the BPA molecule as a hydrogen bond donor and the amide group of PA as a hydrogen
bond acceptor through intermolecular interactions carried out by hydrogen bonding [69].
The FTIR spectra of PVDF MFMs proved that hydroxyl groups (~3500 cm−1) and carboxyl
groups (~1700 cm−1) were modified on PVDF MFMs in Figure 8b. Compared with the
membranes before the adsorption of BPA, it was obvious that a new ester group characteris-
tic peak appeared at 1713 cm−1, which may be a combination of surface (C=O) vibrational
stretching and the hydroxyl group of the BPA molecule to form intermolecular hydrogen
bonds [70]. Nonetheless, the characteristic adsorption peaks of the NC MFMs before and
after adsorption can be seen in the FTIR spectra of Figure 8c with almost no changes. NC is
a polymer produced commercially by reacting purified cellulose from plants with nitric acid
and replacing the cellulose hydroxyl group with nitrate [71]. The nitric acid and hydroxyl
groups in NC made it easy to interact with solute molecules by electrostatic interaction
and hydrogen bonds. Nevertheless, electrostatic interactions would be limited, as BPA
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molecules only undertake microscopic dissociation in pH-neutral conditions, as shown by
its high acid dissociation constant (pKa = 9.6–10.2) [67]. The peaks responding to stretching
vibration (~2910 cm−1) and deformation vibration (~1371 cm−1) of the C-H bond of NC
had no obvious change. It proved that there are no obvious interactions between NC and
BPA molecule [72]. Hydrogen bonding forces may occur between BPA and NC MFMs, but
it is difficult to detect because of the low adsorption capacity of NC MFMs for BPA.
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The FTIR results proved that hydrogen bonding was generated when BPA contacted
the PA and PVDF MFMs. In theory, the number of proton acceptors was NC MFMs > PA
MFMs > PVDF MFMs. However, the adsorption of BPA did not agree with the number
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of proton acceptors. Although hydrogen bonding played an important role for BPA on
membranes, there should be other interactions between BPA and membranes.

Hydrophobic partitioning is expected to occur in aqueous solutions in the presence of
the hydrophobic microdomain of adsorbents due to the hydrophobic nature of BPA. The
hydrophobicity or hydrophilicity of absorbents can be evaluated by the static contact angle
and water absorption coefficient. The static contact angle reflects the instantaneous inter-
action between the absorbent’s surface and water, while the water absorption coefficient
reflects the hydrophilic properties of the absorbent’s surface and interior. Three MFMs have
the similar contact angle of less than 90 degrees in Table S1, which means that all MFMs’
surfaces are hydrophilic [73]. However, there was an obvious water adsorption difference
among the three MFMs. As shown in Figure 9, NC MFMs had the highest water absorption
coefficient, with an average water absorption rate as high as 213.81%. The average water
absorption coefficient of the PA MFMs was 84.41%, and of PVDF MFMs, it was 80.99%.
These indicated that the NC MFMs had the highest hydrophilicity, leading to the adsorption
sites being hindered by water molecules. This can explain why NC MFMs had the lowest
adsorption for BPA than PA and PVDF MFMs. Meanwhile, these suggested that PA and
PVDF MFMs are more hydrophobic than NC MFMs, which was further proved by the EDS
mapping in Figure 7, showing that the hydrophobic microdomain existed in MFMs.
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The PA MFMs used were aliphatic PA. The main chain of aliphatic PA molecules
included a large number of amide groups (-CO-NH-) as hydrophilic moieties and sepa-
rated by methylene (-CH2-) sequences of hydrophobic moieties. As shown in Figure 7a,
green and blue dots represent oxygen and nitrogen atoms, respectively, as the hydrophilic
microdomain, which are slightly separated from the carbon chain represented by red dots
as the hydrophobic microdomain in PA MFMs. Nitrocellulose is a polymer with a lot of nits
and hydroxyl groups [71]. PVDF MFMs have a low surface energy and hydrophobicity [32].
F atoms represented by green dots are wrapped around C atoms as the hydrophobic mi-
crodomain, and few O atoms are represented by blue dots, as hydrophilic microdomains
are dispersed in the PVDF MFMs. As shown in Figure 7, the hydrophobic microdomain
on PVDF seems to be larger than PA and PA larger than NC, which was consistent with
the water absorption coefficient of the three MFMs. Therefore, the hydrophobic interaction
between BPA and PVDF MFMs may be strongest, followed by PA and NC MFMs. However,
the higher hydrophobicity of PVDF MFMs did not exhibit a higher adsorption capacity
than PA MFMs, which implied that hydrophobic interaction is not the predominant driving
mechanism for the BPA adsorption on MFMs. Combined with the results of FTIR, hydrogen
bonding was generated when BPA contacted the PA and PVDF MFMs. The proton accep-
tors (O, N content) of PA MFMs are far more than PVDF MFMs based on the elemental
analysis and FTIR. Thus, it is possible that the adsorption driven by hydrogen bonding
of PA is stronger than PVDF. Indeed, hydrogen bonding energy is usually in the range of
8–50 kJ/mol, which is much higher than hydrophobic interaction [74,75]. The high-energy
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hydrophilic microdomain hydrogen site was occupied preferentially. From the point of
energy, the hydrogen bond offered more energy to overcome the energy barrier of the ad-
sorption and diffusion process. These agreed with the results of the site energy distribution
analysis mentioned above. Thus, it makes sense that the adsorption capacity of PA MFMs
is far more than PVDF MFMs. Nevertheless, the adsorption rate of PVDF MFMs is faster
than PA and NC MFMs. The adsorption rate is related to the mass transport of the solute
across MFMs, which may involve three major consecutive processes [76]: (1) diffusion
from the water phase into the pore of the membrane; (2) sorption onto and then diffusion
across the membrane; (3) desorption from the permeate side of the membrane. As the water
molecules occupied the adsorption sites on hydrophilic NC MFMs, the BPA molecules
struggled to access the membrane. The adsorption of BPA on NC MFMs was limited. Due
to the hydrophobic microdomain on PA and PVDF MFMs and the hydrophobic nature of
BPA, the hydrophobic partitioning may contribute to BPA diffusing to the surface of the
MFMs. Considering the diversity of hydrophobicity of MFMs, these may be able to explain
why the adsorption rate of PVDF is faster than PA and NC. Owing to the weak hydrophobic
interaction, desorption can easily occur after adsorption. It was proven from the results of
rapid filtration adsorption and equilibrium adsorption that the removal efficiency of BPA
by filtration adsorption was larger than the equilibrium adsorption, because adsorption
occurs rapidly, but desorption has not yet started during the rapid filtration.

Based on the analysis above, hydrogen bonding and hydrophobic partitioning are
important factors in determining the adsorption capacity and adsorption rate of MFMs.
We speculate that hydrogen bonding contributes to the BPA molecules’ strong binding,
but hydrophobic interaction is conducive to the BPA molecules approaching the surface
of the membrane. The interaction mechanism between membranes and BPA is shown in
Figure 10. The highly hydrophilic surface of NC MFMs makes most of the adsorption
sites occupied by water molecules, and the highly hydrophobic surface of PTEF MFMs
makes BPA molecules surrounded by the water molecules, struggle access the membrane
surface, which leads to these membranes having a low adsorption capacity. However,
the hydrophilic microdomain and hydrophobic microdomain have a micro-separation for
PA and PVDF MFMs, which result in the adsorption capacity of PA and PVDF MFMs
far more than NC and PTFE MFMs. The hydrophilic microdomain providing hydrogen
bonding sites and the hydrophobic microdomain providing hydrophobic interaction with
the hydrophobic solute, work together to promote the adsorption of BPA on the membrane
surface. Due to the hydrogen bonding force being greater than the hydrophobic force,
more hydrogen bonding sites on the hydrophobic surface result in a higher adsorption
capacity, but hydrophobic interaction contributes to improve the adsorption rate. Hence,
the distribution of the hydrophilic microdomain and hydrophobic microdomain on the
surface of the membrane can influence the adsorption capacity and adsorption rate for BPA
or its analogues.

Since hydrogen bonding and hydrophobic partitioning are important factors in deter-
mining the adsorption capacity and adsorption rate of MFMs, this means that it may be
sensitive to certain water chemistry parameters [77]. In fact, in actual wastewater, there may
be water chemistry parameters such as salinity, pH, and natural organic matter (NOM) that
have an effect on the adsorption process of MFMs, such as the partitioning of hydropho-
bic solutes in water, which may be affected by salinity, and NOM may have competitive
adsorption with BPA [56,77]. However, the effect of water chemistry parameters on the
adsorption of BPA by MFMs was not explored in depth in this work and will be discussed
further in our subsequent studies.
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4. Conclusions

Four specific MFMs with different chemical compositions were applied to analyze
their adsorption behavior and adsorption mechanism to evaluate the feasibility of MFMs as
adsorbents to remove BPA. There are major conclusions from this study: (1) There is obvi-
ous different adsorption behavior among these MFMs. The maximum adsorption capacity
of PA MFMs reached 161.29 mg/g, but PVDF MFMs exhibited the maximum adsorption
rate. A further site energy distribution analysis suggested that PA MFMs had the greatest
adsorption sites, followed by PVDF and NC MFMs. (2) The removal efficiency of BPA
was higher at rapid filtration than at the equilibrium adsorption, which would facilitate
the removal of BPA in an aqueous solution by filtration adsorption. (3) The hydrophilic
microdomain provided hydrogen bonding sites and the hydrophobic microdomain pro-
vided hydrophobic interaction, which were important driving mechanism for the BPA
adsorption on membranes. (4) The adsorption of BPA by either highly hydrophilic or
highly hydrophobic MFMs is unfavorable. The MFMs with a micro-separation of the
hydrophilic microdomain and hydrophobic microdomain can promote the adsorption of
BPA. The adsorption capacity and adsorption rate can be adjusted by adjusting the ratio of
the hydrophilic microdomain to hydrophobic microdomain on the surface of membranes.
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www.mdpi.com/article/10.3390/w14152306/s1. Figure S1: The schematic diagram of the experi-
mental apparatus of rapid filtration adsorption; Figure S2: Comparison of the maximum adsorption
capacity calculated by the Langmuir model for isothermal adsorption of four MFMs; Table S1: The
static contact angle of three MFM.

Author Contributions: J.S.: Conceptualization, Methodology, Supervision. X.J.: Investigation, Data
curation, Writing—Original draft. Y.Z.: Investigation, Methodology. J.F.: Supervision, Writing—
Reviewing and Editing. G.Z.: Writing—Reviewing and Editing. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of Chongqing, China (Project
No. cstc2020jcyj-msxm X0928) and the Natural Science Foundation of China (Project No. 41977337).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this paper.

https://www.mdpi.com/article/10.3390/w14152306/s1
https://www.mdpi.com/article/10.3390/w14152306/s1


Water 2022, 14, 2306 15 of 17

References
1. Wee, S.Y.; Aris, A.Z. Occurrence and Public-Perceived Risk of Endocrine Disrupting Compounds in Drinking Water. NPJ Clean

Water 2019, 2, 4. [CrossRef]
2. Corsini, E.; Ruffo, F.; Racchi, M. Steroid Hormones, Endocrine Disrupting Compounds and Immunotoxicology. Curr. Opin.

Toxicol. 2018, 10, 69–73. [CrossRef]
3. Guo, C.; Ren, F.; Jin, J.; Zhang, H.; Wang, L.; Zhang, H.; Chen, J. Internal Exposure of Chinese Children from a Typical Coastal

City to Bisphenols and Possible Association with Thyroid Hormone Levels. Environ. Int. 2021, 156, 106759. [CrossRef]
4. Kawa, I.A.; Masood, A.; Fatima, Q.; Mir, S.A.; Jeelani, H.; Manzoor, S.; Rashid, F. Endocrine Disrupting Chemical Bisphenol A

and Its Potential Effects on Female Health. Diabetes Metab. Syndr. Clin. Res. Rev. 2021, 15, 803–811. [CrossRef] [PubMed]
5. Xu, E.G.B.; Liu, S.; Ying, G.; Zheng, G.J.S.; Lee, J.H.W.; Leung, K.M.Y. The Occurrence and Ecological Risks of Endocrine

Disrupting Chemicals in Sewage Effluents from Three Different Sewage Treatment Plants, and in Natural Seawater from a Marine
Reserve of Hong Kong. Mar. Pollut. Bull. 2014, 85, 352–362. [CrossRef] [PubMed]

6. D’Alessio, M.; Onanong, S.; Snow, D.D.; Ray, C. Occurrence and Removal of Pharmaceutical Compounds and Steroids at Four
Wastewater Treatment Plants in Hawai’i and Their Environmental Fate. Sci. Total Environ. 2018, 631–632, 1360–1370. [CrossRef]

7. Kasonga, T.K.; Coetzee, M.A.A.; Kamika, I.; Ngole-Jeme, V.M.; Benteke Momba, M.N. Endocrine-Disruptive Chemicals as
Contaminants of Emerging Concern in Wastewater and Surface Water: A Review. J. Environ. Manag. 2021, 277, 111485. [CrossRef]
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