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Abstract: Assessing and modeling the changes in land use and land cover (LULC) patterns and
associated ecosystem service values (ESV) has become an important global agenda for formulating
sustainable land management policies. Taking the coastal region of Bangladesh (CRB) as a case study,
we utilized remote sensing and GIS techniques to analyze Landsat data of 1999 and 2019 to estimate
the effect of LULC changes on the ESVs. The LULC classification, ESV quantification, and spatial
variations were performed by semi-automated classification, per-unit value transfer, and spatial
autocorrelation techniques, respectively. First, between 1999 and 2019, LULC altered dramatically
(agricultural land and coastal wetlands decreased, while all other LULC types increased). Second, the
total ESV decreased by 1.87%, which was mostly attributed to a 70% growth in both rural settlement
and aquaculture/saltpan, and a 30% decline in both agricultural land and wetlands. Third, significant
spatial correlation and moderately high spatial clustering were observed, which consisted mostly of
mangrove forests, waterbodies, and wetland zones. Both high-high and low-low values increased,
but spatial outliers remained unchanged. Conserving agricultural land should be prioritized in future
land use plans of CRB to meet the ever-increasing food demands, control natural land conversion,
and make land use sustainable.

Keywords: landsat; land use land cover; ecosystem services; coastal ecosystem; semi-automated
classification; spatial autocorrelation

1. Introduction

Ecosystem services (ES) are the state and mechanisms by which natural ecosystems
and the species that make up those ecosystems support and satisfy human well-being [1–3].
ES may be defined as products and services that directly or indirectly enhance human
survival. Provisioning, supporting, regulating, and cultural services are all examples of
ES [4,5]. These ES take into account multifarious societal advantages. The changes in land
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use land cover (LULC) have been significant globally due to rising population, economic
growth, and urban expansion over the past decades [6,7]. While humanity has changed
the structure and pattern of LULC to acquire foods, fibers, fuel, and other supplies for
thousands of years, the degree and speed of change have accelerated dramatically these
days [8]. On earth, there is barely anything that remains unchanged [9]. Globally, forests
are more generally converted into cropland, pastures, and growing areas. Annually, an
estimated 13 million hectares of agricultural land expansion into forest lands is evidenced.
Despite the significant increase in supply of food, fiber, wood, housing, and other critical
requirements, the changing dynamics of LULC are associated with a decreased supply of
many ES and an estimated 60% of the ES have been ruined during the last five decades [10].

The study of land cover is a potential utilization of remote sensing since sensors can
detect the radiation that is reflected from the surface. This enables the quality of the land
cover to be evaluated [11]. There is a connection between the study of ecosystem services
and remote sensing because of the characterization of soil type, biomass, tree canopy, leaf
area index (LAI), space-time monitoring of vegetation, and other factors [12–16]. These
factors, along with others, enable us to identify and map the contribution and loss of
ecosystem services from natural elements on the surface of the earth through the use
of models, spectral indices, merging different sources, and other processes. In other
words, remote sensing helps us to study ecosystem services [17]. The enhancement of
remote sensing in terms of geographical, spectral, radiometric, and temporal resolution has
increased its use by enabling the evaluation of ecosystem services [18,19]. This is one of
the many benefits of these advancements. In the process of evaluating ecosystem services
and determining how those services relate to decisions about land use, a broad range of
methodologies and techniques have been uncovered [20].

Ecological economists who have been analyzing environmental resources using the
profit-loss method are increasingly emphasizing ES evaluation. However, many ecosystem
services are public goods, and their economic benefit is hard to measure as a marketable
commodity, which is a major challenge for the assessment process of ecosystem services.
Nevertheless, the monetary assessment of ES is an integrated and universal tool for de-
termining and informing LULC change effects, and for campaigning, giving priority and
concentrating on investment interest in conservation and management practices [6]. In
addition, it may be necessary to measure ES and examine changes in its values that help the
sustainable land use process, as they provide a valuable approach to determining trade-offs
between alternative land use choices.

Several studies have been conducted in Bangladesh and across the world to track
the influence of LULC alterations on the structure and functioning of ESV. Most of these
studies indicated a moderate to large drop in ESV as a result of LULC alterations and
urbanization, whereas others found absolutely no changes. ESV has also been found
to be increasing in some investigations. The causes of such variances in ESV are both
anthropogenic and natural factors. To begin with, in terms of rapid urbanization and
industrialization, numerous changes in LULC occur at the same time, due to a variety of
competing demands that are not restricted to urban sprawl. Reforestation and protection,
natural protection, infrastructural development, comfort, and tourism and recreation are
only a few of them [21,22]. Second, there is a strong link between ESV types and LULC
usage [23,24]. The capacity to synthesize and apply the outcomes of these case studies
to other places is limited due to their significant implications and distinct nature and
characteristics. Among the natural processes, sea-level rise, salinity intrusion, and erosion
are reported in Bangladesh [25,26]. As a result, it is critical to investigate the influence
of LULC changes on ESV in order to inform policy- and decision-makers for sustainable
planning and management as well as a safe ecological system.

There are several ways of quantifying the value of different ecosystem services, but the
“benefit transfer” devised by Costanza et al. [2] is the most widely utilized. As far as ser-
vice functions go, they divided the world’s ecosystems into 16 categories and 17 subtypes.
When applied to Bangladesh, however, their findings have been widely planned. Bias exists
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in some circumstances, such as when agricultural ESV is understated and wetland ESV
is overstated. Instead of developing countries such as Bangladesh, their ESV resembled
the economic level of industrialized countries (e.g., the United States and European coun-
tries). Huq et al. [27] developed the equivalent per unit area for Bangladesh’s freshwater
ecosystem services using the same methods proposed by Costanza et al. [2]. A poll of
200 ecologists was used to determine the equivalent weight factor. In some parts of coastal
Bangladesh, equivalent per-unit-area values were combined with land use data to calculate
ESV [27]. By coordinating the land cover types proportional to the biomes, LULC can
operate as a proxy using this strategy. The latter then assigns economic values centered
on a standard, which are subsequently adjusted locally and the coefficient values are de-
termined. This method is a form of multi-criteria technique that allows the integration of
multiple different metrics into a single monetary unit. This method also yields reliable
and comparable findings, as well as an evaluation of change over time and across a varied
urbanization standpoint. As a result, it provides a continuous mechanism for increasing
knowledge over time from various study findings.

The current study focuses on the coastal region of Bangladesh (CRB). The CRB is
a dynamic mix of saltwater and freshwater systems that provide economically valuable
ecosystem services (ESs) to local communities but are under tremendous strain from both
climate change and human activity [28]. Since 2009, Bangladesh’s economic development
has accelerated to the point where it now embraces the vision for 2021 and 2041, making it
one of the world’s fastest-developing areas [29]. As a result, the coastal regions have been
subjected to harsh natural conditions, overconsumption, and loss of natural provisioning
services, putting ecosystems and human well-being at risk. The Bangladesh government
has taken a number of steps to ameliorate the country’s deteriorating environmental
situation, including increasing forest cover and protecting high-yield agriculture. The key
limiting element in the CRB’s social and economic sustainable growth is the provision of
ES in an imbalanced manner. However, no studies in CRB have been done that give a full
knowledge and estimation of the influence of such changes in land cover and policy on the
ESs. As a result, the goals of this research were to (i) monitor and quantify the changes in
LULC and ESVs of the CRB between 1999 and 2019; and (ii) analyze the spatial distribution
and variations of ESVs across the CRB. To do so, Landsat images were processed and
analyzed through the Semi-Automated Classification Plugin in QGIS 2.18.14. ESV was
estimated following the unit value transfer method. Besides, spatial distribution patterns
and changes were assessed through district-level mapping and categorization of the values
of different ecosystem functions, and spatial autocorrelation. After that, the sensitivity
coefficient was calculated to determine the value coefficient’s uncertainty. This study seeks
to generate helpful information for rural-urban planners and decision-makers for regional
coordination and sustainable development based on the findings.

The present article proceeds with a brief description of the study area and an explana-
tion of the data and methods. This segment comprises the valuation and calculation of the
ESV of the CRB. Finally, we folded up the presentation of the core findings of the study
with their discussions and their possible implications.

2. Materials and Methods
2.1. Study Location

The Ganges–Brahmaputra–Meghna (GBM) river system and the Bay of Bengal domi-
nate the geomorphology and hydrology of Bangladesh’s coastal zone. Bangladesh’s coast-
line zone (Figure 1) comprises 47,201 km2, accounting for 32 percent of the country’s land-
mass and 19 districts (Jessore, Narail, Gopalganj, Shariatpur, Chandpur, Satkhira, Khulna,
Bagerhat, Pirozpur, Jhalakati, Barguna, Barisal, Patuakhali, Bhola, Lakshmipur, Noakhali,
Feni, Chittagong, and Cox’s Bazar). The coastal zone is home to around 35 million people,
or 29 percent of the population [30]. Bangladesh’s coastal zone is divided into three sections
based on geographic features: (a) the eastern zone; (b) the central zone; and (c) the western
zone [31]. The semi-active delta is crisscrossed by many channels and streams in the west-
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ern area, known as the Ganges tidal plain. The most vigorous and continuous accretion as
well as erosion processes are seen in the central area. This zone includes the Meghna River
Estuary. The eastern section is dominated by more stable steep terrain. The 710 km long
coastline is made up of the intersection of different biological and economic systems, includ-
ing mangroves (the world’s biggest mangrove forest encompasses 6017 square kilometers)
and tidal flats. Estuaries, sea grass, around 70 islands, accreted land, beaches, a peninsula,
agricultural communities, urban and industrial regions, and ports make up the island chain.
Many of the people who live along the shore are impoverished, and they are vulnerable to
both natural and manmade calamities. The primary natural catastrophes include sea-level
rise, cyclones, storm surges, coastal flooding, salt intrusion, and land erosion, all of which
are caused by climate change [32,33].
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Figure 1. Study location map.

2.2. LULC Change Analysis
2.2.1. Satellite Data Acquisition and Classification

LSDS Science Research and Development database of the United States (https://espa.
cr.usgs.gov/, accessed on 5 May 2021) was used to gather a total of eight LandsatTM and
OLI-TIRS scenes (paths/row: 135/45, 135/46, 133/44, 133/45, 137/44, 137/45, 138/44,
and 138/45) with a spatial resolution of 30 m × 30 m. For the years 1999 and 2019, a
total of 16 scenes were utilized to analyze the LULC patterns. We only evaluated images
captured during the dry season with a cloud cover of 0 percent in order to reduce data set
disturbance. Furthermore, we developed a systematic procedure for processing Landsat
images, which includes steps such as clipping images by study area shapefiles, stacking
different bands, creating a mosaic of the multiband image, creating ROI and signature
shapefiles, performing supervised maximum likelihood classification, and post-processing
to improve the quality of misclassified data (Figure 2, Figures S1 and S2).

https://espa.cr.usgs.gov/
https://espa.cr.usgs.gov/
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Figure 2. LULC classification framework.

We considered 7 broad LULC forms (Table 1) in the study area corresponding to
16 biomes established by Costanza et al. [34]. At first, we identified the micro land use
classes and then they were merged under seven macro classes through Semi-automated
Classification Plugin (SCP) of QGIS 2.18.14 software [35]. The use of SCP of QGIS in
LULC classification, followed by editing through the post-processing function to recover
misclassification, may provide a larger potential to reach a higher degree of accuracy in
total LULC classification [25].

Table 1. Land use and land cover classification scheme for CRB.

Type Description

Agricultural land (AL) Cultivated and uncultivated farmlands

Rural settlement and mixed
vegetations (RSMV)

Land covered with woodland, trees in the soil forests, around
homesteads and rural institutions, and mixed plantation
forest vegetation along the roadside

Mangrove forest (MF) Natural and plantation mangrove forest vegetation in the
wetland and offshore areas

Coastal wetland (CW) Mudflat, coastal flat, exposed soils in the riverine area,
wetland, coastal marsh, and newly accreted land

Built-up (BU) Residential, commercial, industrial, transportation, roads,
mixed urban, and other forms of development land areas

Waterbody (WB) River networks, canals, and active hydrological features

Aquaculture/ Salt pan (AS) Flowing open waterbodies under shrimp culture or
salt production

2.2.2. Accuracy Assessment of LULC Classification

Misclassification is one of the various complexities associated with LULC classification.
As a result, we used ground-truthing and secondary source observation to test the accuracy
of our LULC classification [36]. To gather land use information for the image 2019, a
collection of 300 randomly generated points were chosen for ground-truthing. To cover
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as much territory as possible, the ground-truthing points were selected to be spaced
out. The ground-truthing data was used to create a confusion matrix, which depicts the
classification’s total accuracy as a percentage of classified and real land use. Besides,
producer’s accuracy (the proportion of pixels correctly classified based on the reference
points) and user’s accuracy (the proportion of pixels correctly classified based on the
reference points) provided further specifics of the accuracy measurement (the proportion
of pixels that are correctly classified based on the classified image). The mangrove ground-
truthing point was collected in the plantation mangrove field. The Sundarbans mangrove
forest was not considered because it is a protected area and difficult to access. As a result,
since the fieldwork was completed in December 2020, accuracy evaluation based on ground
data was only feasible for the picture of 2019 considered in this report. The accuracy of the
image in 1999 was assessed using a rigorous observation of Google Earth images for that
particular year.

The accuracy of land use classification in the year 1999 was assessed using Google
Earth imagery and calculated using a confusion matrix, yielding an overall accuracy of
85.24 percent (Table 2). Furthermore, an exhaustive ground-truthing study established that
the accuracy of land use classification with the most recent year (2019) was 88.75 percent.

Table 2. Confusion matrix for accuracy assessment of the LULC classification.

Year LULC types AL RSMV MF CW BU WB AS CO PA OA

1999

AL 69 2 2 2 1 0 1 77 89.61

85.24

RSMV 4 52 2 1 0 0 0 59 88.14
MF 2 3 39 0 0 1 1 46 84.78
CW 2 2 0 32 3 0 1 40 80.00
BU 2 1 1 3 35 0 1 43 81.40
WB 1 2 1 0 0 33 3 40 82.50
AS 1 0 2 1 0 2 39 45 86.67
TO 81 62 47 39 39 36 46 350
UA 85.19 83.87 82.98 82.05 89.74 91.67 84.78

2019

AL 49 2 2 1 1 0 0 55 89.09

88.75

RSMV 2 45 2 1 0 0 0 50 90.00
MF 0 2 31 0 0 1 1 35 88.57
CW 2 2 0 35 1 0 0 40 87.50
BU 2 1 0 1 35 0 1 40 87.50
WB 1 0 1 0 0 32 1 35 91.43
AS 0 0 2 1 0 3 39 45 86.67
TO 56 52 38 39 37 36 42 300
UA 87.50 86.54 81.58 89.74 94.59 88.89 92.86

Note: AL = Agricultural land; RSMV = rural settlement and mixed vegetation; MF = mangrove forest; CW= coastal
wetland; BU = built-up; WB = waterbody; AS = aquaculture/saltpan; TO = truth overall; CO = classification
overall, PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy.

2.2.3. LULC Map Creation and Change Analysis

Finalization of LULC classification directed us to create LULC maps of the year 1999,
and 2019 by using the ArcMap 10.3 software. From the LULC maps, we calculated the area
of lands under each LULC categories and then inter-land transformation among different
LULC categories was performed by cross-tabulation functions. After that, we estimated
the amount of land gain or losses over a 20-year interval and their change rates by using
the following equation [37]:

Total LULC gain or loss = A2 − A1 (1)

Percentage of LULC gain or loss =
A2 − A1

At
× 100 (2)

where A1, A2, and At represent the area of initial, final, and total LULC, respectively.
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2.3. Valuation of Ecosystem Services

A large number of ecosystem service assessment studies used a value coefficient tech-
nique proposed by Costanza et al. [34] to estimate the ESV of different landscapes globally
because it is considered as a pioneering study in the discipline and has characterized
an inclusive set of valuation coefficients that covers 16 core land biomes and provides
17 different ecosystem service functions, which could be representative for diverse land-
scapes. A case study conducted by Akber et al. [36] in the southwestern CRB also followed
the valuation coefficient proposed by Costanza et al. [34]. However, only a few case stud-
ies on the valuation of ecosystem services based on benefits obtained by stakeholders
on various ecosystems are available in Bangladesh. Huq et al. [27] specifically updated
the value coefficient based on the “expert-driven matrix” and performed a case study on
freshwater ecosystem resources in the southwestern coastal area. Besides, two more case
studies [38,39] have been conducted on the valuation of plantation mangrove ecosystem
services in Bangladesh’s south-central and southeastern coastal areas. Despite the lack
of primary evaluation research on the ESs provided by aquaculture/saltpan land biomes,
Akber et al. [36] used the value of food provision as proposed by Costanza et al. [34]. By
integrating the results of previous investigations [25,27,36,38,39], we calibrated the per-unit
value coefficient for each of the seven land cover groups (Table 3).

Table 3. Monetary valuation (USD ha−1 yr−1) of ecosystem services of different LULC types in
coastal Bangladesh.

Function Services
ESV (USD ha−1 yr−1)

AL RSMV MF CW BU WB AS

Provisioning Food production 922 357 250 135 0 603 952
Raw material 317 211 27 27 0 423 0

Regulating Extreme event management 78 78 2500 272 77 233 0
Climate regulation 426 533 1140 853 0 533 0
Water regulation 958 1277 579.3 2555 0 2555 10

Supporting Biodiversity protection 333 499 4400 499 0 499 114
Soil formation and retention 141 141 1650 212 0 141 7

Waste treatment 1103 1103 760 1930 0 2206 3

Culture Recreational and cultural tourism 261 261 550 392 392 457 7

Total 4539 4461 11,856 6874 469 7649 1093

Note: AL = agricultural land; RSMV = rural settlement and mixed vegetation; MF = mangrove forest; CW = coastal
wetland; BU = built-up; WB = waterbody; AS = aquaculture/saltpan.

2.4. Calculation of ESV

The amount of land covered by a certain land cover type was multiplied by the
coefficient’s value to get the overall ecosystem value for each land use type [25]:

ESV = ∑ AkVCk (3)

where ESV is the value of ecosystem services, Ak denotes the area (ha), and VCk denotes
the coefficient value (USD/ha/year) for the land use category “k”.

The following formula was used to calculate the rate of change in the value of ecosys-
tem services throughout the research period:

ESVChange =
ESV2019 − ESV1999

ESV1999
× 100% (4)

where ESV change denotes the rate of change in ESV over 1999–2019 in CRB, ESV1999
denotes the total ESV of CRB in 1999, and ESV2019 denotes the total ESV of CRB in 2019.



Water 2022, 14, 2293 8 of 21

2.5. Spatial Autocorrelation

We analyzed the distribution features of ESV all over the CRB by using a method
known as exploratory spatial data analysis (ESDA), namely spatial autocorrelation. Spa-
tial autocorrelation analysis was carried out by using the GeoDa-1.12.1.161 program in
accordance with the approach described by [40]. Moran’s I specify a value score range
that may go from +1 to −1 in the context of spatial autocorrelation. This range represents
the geographical pattern that exists between surrounding areas and observations [40]. A
Moran’s I score that is close to +1 demonstrates a significant similarity pattern between the
high and low values, while a score that is close to −1 displays a strong dissimilarity pattern
and indicates a pattern of high and low values that is varied. On the other hand, LISA,
which stands for “local indicators of spatial association,” identifies four different types of
spatial clusters at the local level: HH (high-high), HL (high-low), LH (low-high), and LL
(low-low). A value of HH indicates that rises in ESV in the assessed region lead to rises in
ESV in the adjacent area, while LL values indicate that falls in ESV in the evaluated area
lead to falls in ESV in the neighboring area. The HL and LH areas are those with extreme
values, suggesting a negative spatial autocorrelation, i.e., increases in the evaluated region
lower the value of the neighboring area, and reductions in the evaluated area raise the
value of the nearby area, respectively.

2.6. Sensitivity Analysis

In this study, different biomes were used as proxies for different land uses, but they
may not have matched correctly. For example, aquaculture’s ecosystem service value,
in particular, is a source of uncertainty. The overall ESV of the research area could be
overwhelmed or oppressed if the ESV of any land use class were overestimated or un-
derestimated. Because of the uncertainty of proxy values, a coefficient of sensitivity was
calculated using the elasticity concept, which is defined as the percentage change in output
for a given percentage change in input [41]. The ESV coefficient of agriculture, RSMV,
mangrove, coastal wetland, built-up, waterbody, and aquaculture/saltpan land use cate-
gories were adjusted by ±50%. Although the agriculture, waterbody, and aquaculture land
categories match with the proxy biomes of Huq et al. [27], their CS was calculated to test
their robustness [42]. The CS was calculated as follows:

CS =

(
ESVj − ESVi

)
/ESVi(

VCjk − VCik

)
/VCik

(5)

ESV stands for approximate ecosystem service value, VC stands for value coefficient, i
and j stand for original and modified values, respectively, and k stands for land use type.

The percent difference in expected overall ESV to the percent change in the adjusted
valuation coefficient (VC) is represented by CS [42–44]. While the ratio is less than 1, the
estimate of ES is inelastic and robust, and when the ratio is greater than 1, the calculation is
elastic. The use of an effective ecosystem VC is usually more important where there is a
larger proportional change in the ES leading to a proportional change in the VC [42,45].

3. Results
3.1. Dynamics of LULC Change during 1999–2019

Geographical distribution of coastal Bangladesh’s LULC patterns (Figure 3 and Table S1)
depicts that agricultural land was the primary LULC class in 1999, accounting for about
52.40% of the total area. The areas covered by RSMV, waterbodies, and mangrove forest
lands are also significant, with relative ratios of 18.60%, 13.83%, and 9.69%, respectively. The
other LULC types, on the other hand (coastal wetland, built-up land, and aquaculture land),
account for just 5.47% of the total area.
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Between 1999 and 2019, we observed a growth in RSMV, mangrove forests, built-up
areas, waterbodies, and aquaculture land, while agricultural and coastal wetland declined
(Table S1). We noticed a rapid expansion in the built-up area over this time, at a rate of
15.38 percent per year, resulting in a total growth of 198.45 km2. RSMV land increased
at a 3.50 percent annual rate over the research period, totaling 5876.23 km2, which is
2397.36 km2 bigger than the combined aquaculture, coastal wetland, and built-up land area
in 2019. Annual increases in aquaculture, waterbodies, and mangrove land were 3.49%,
0.17%, and 0.03%, respectively. Agriculture land lost the most land (30.15% (7125.69 km2))
between 1999 and 2019, while coastal wetland lost 30.02% (259.89 km2).

Additionally, we observed regional disparities in the geographical distribution of these
important LULC types alterations (Table S2). During the study period, the highest loss of
agricultural land was evident in Satkhira, Jhalokati, Pirojpur, Bagerhat, and Barisal district,
with 57.28%, 57.26%, 55.37%, 48.09%, and 44.06%, respectively, from the base of year 1999,
while Bhola and Chandpur districts had the lowest loss, 2.66%, and 4.72%, respectively,
although none of the districts had seen an increase in the agricultural land. RSMV land
assisted by homestead construction substantially increased over time with a rapid increase
in the districts of Jhalokati (303.05%), Patuakhali (272.59%), Barguna (189.62%), Pirojpur
(176.02%), Barisal (147.5%), Bagerhat (136.5%), and Khulna (116.24%) during 1999–2019
(Table S2). There were no apparent changes in mangrove forest cover in the three ma-
jor districts of Bagerhat, Khulna, and Satkhira, which hosted more than 90% of the total
mangrove forest in Bangladesh. However, due to the government’s projects on plantation
mangrove forests, the acreage of mangrove forest has increased in the districts of Barguna
(by 19.91%), Bhola (by 23.42%), Cox’s Bazar (by 98.34%), Patuakhali (by 155.48%), Feni
(by 762.7%), and Lakshmipur (by 404.7%). During the study period, most of the districts
experienced losses of coastal wetland, except for some districts such as Barisal and Shari-
atpur, which increased coastal wetland by 519.30% and 180.41%, respectively, which may
have corresponded to accretion in the riverine areas. Built-up land increased in all coastal
districts, with a rapid shift in Bagerhat (32,787.5%), Narail (2077.9%), Gopalganj (1942.5%),
and Shariatpur (1539.05%) districts. Waterbodies rapidly increased in Lakshmipur (30.63%),
Gopalganj (29.96%), Shariatpur (24.84%), Noakhali (21.93%), and Barisal (19.94%) districts,
which could have corresponded to land erosion, while Cox’s Bazar showed the highest
loss (34.07%) of waterbodies, which could have corresponded to the accretion process.
Aquaculture land rose rapidly in the districts of Bagerhat (77.7%), Cox’s Bazar (48.7%),
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Khulna (12.1%), and Satkhira (119.5%), and these four districts constitute 87.34% of the
total aquaculture/saltpan areas in 2019.

According to the chord diagram (Figure 4), the transfer amount of agricultural
land, RSMV, wetlands, and waterbodies was rather significant. Between 1999 and 2019,
7940.7 km2 of agricultural land was converted to RSMV, 1282 km2 to aquaculture/saltpan,
986.7 km2 to waterbodies, and 136 km2 to built-up. From RSMV, 2001.5 km2 was trans-
formed into agricultural land, 170.4 km2 into waterbodies, and 78 km2 into aquacul-
ture/saltpans. From coastal wetlands, 353.8 km2 was converted to waterbodies and
280.4 km2 to agricultural land. From waterbodies, 672.5 km2 was converted to agricultural
land, while the additional 386.7 km2 was converted to wetlands. Besides, 329.8 km2 of
aquaculture/saltpan area was converted to agricultural land, whereas 67.6 km2 of the same
was converted to RSMV (Table S3). In general, the area of agricultural land converted to
RSMV was greater than the area of RSMV converted to agricultural land, resulting in an
increase in tree vegetation and a loss in agricultural land. Simultaneously, changes in the
waterbodies were mostly transferred from agricultural land and coastal wetlands owing
to fast riverbank erosion, while the accretion process resulted in a considerable rise in
agricultural land and coastal wetlands.
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3.2. Changes of ESV between 1999 and 2019
3.2.1. Change in Total ESV

The total ESV of CRB in 1999 was estimated at USD 25.18 billion (Table 4). Among
the different land biomes, agricultural land contributed the highest of this value (about
42.59%), while it also occupied the highest portion (52.40%) of the whole landscape. Besides,
mangrove forests, waterbodies, and RSMV contributed 20.57%, 18.94%, and 14.85%, respec-
tively. Coastal wetlands accounted for 2.36%, while aquaculture/saltpan and built-up land
contributed 0.66% and 0.01% of the total ESV of the study area, respectively.
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Table 4. ESV and their change rate by different land use type in CRB between 1999 and 2019.

Component AL RSMV MF CW BU WB AS Total

ESV 1999 (109 USD) 10.73 3.74 5.18 0.59 0.00 4.77 0.17 25.18
ESV 1999 (%) 42.59 14.86 20.57 2.36 0.01 18.94 0.67 100

ESV 2019 (109 USD) 7.49 6.36 5.21 0.42 0.01 4.93 0.29 24.71
ESV 2019 (%) 30.31 25.75 21.09 1.68 0.05 19.96 1.15 100

ESV change 1999–2019 (109 USD) −3.23 2.62 0.03 −0.179 0.01 0.16 0.12 −0.47
ESV change 1999–2019 (%) −30.15 70.04 0.61 −30.02 307.56 3.39 69.74 −1.87

Over the last two decades, the ESV of natural habitats (i.e., mangrove forest, RSMV,
and water bodies) increased by USD 2.81 billion, from USD 13.70 billion in 1999 to USD
16.51 billion in 2019 (Table 4). The total ESV increase by these natural landscapes was largely
contributed by the protection of natural mangrove forests, development of plantation
mangroves, and planting of different tree species in and around rural homesteads and
other settlement areas. In comparison, the total ESV of manmade ecosystems (i.e., built-up
land and land used for aquaculture/saltpans) increased by USD 0.13 billion. However, the
greatest loss of ESV was evident in agricultural land, which decreased by USD 3.23 billion
(−30.15%), from USD 10.73 billion in 1999 to USD 7.49 billion in 2019. The ESV of coastal
wetland decreased by USD 0.18 billion. Generally, the total ESV (between 1999 and 2019) in
CRB plummeted by USD 0.47 billion, or reduced by 0.09 percent each year.

Figure 5 shows the contribution of each ecosystem function to the total ESVs, as well as
a comparison of their contributions. Except for climate regulation (0.07%), water regulation
(1.08%), and biodiversity protection (2.22%), all ecosystem service functions showed a
decline from 1999 to 2019. The ESV for food production (−10.74%), raw materials (−7.75%),
and waste treatment (−2.57%) suffered the most losses over the study period. Extreme
event management (−0.24%), soil formation and retention (−1.17%), and recreational and
cultural tourism (−1.66%) had the smallest ESV changes.
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3.2.2. Spatial Variation in ESV Changes under Different Ecosystem Service Functions

The pattern of changes in the value of ecosystem service functions at the district
scale is shown in Figure 6. The spatial distribution of ESV due to food production change
revealed that the food production services decreased in all coastal districts, with the
highest decrease in the districts of Jhalokati (−31.35%), Pirojpur (−29.11%), and Barisal
(−20.67%). In the case of raw material production, the highest decrease was evident in



Water 2022, 14, 2293 12 of 21

the districts of Satkhira (−22.97%), Bagerhat (−15.50%), and Jahlokati (−15–25%), while
only Noakhali district reported an increase in raw material by 3.11% during 1999–2019.
The highest level of extreme event management capacity increased by 39.54%, 39.25%,
and 11.25% in Lakshmipur, Patuakhali, and Cox’s Bazar districts, respectively, whereas
the highest decrease was found in Noakahli (−29.29%) district. The climate regulation
function value increased in 11 out of 19 districts, with the highest increase found in the
districts Jhalokathi (10.86%), Patuakhali (6.97%), Barisal (6.43%), and Pirojpur (6.28%),
whereas the highest decrease was found in Satkhira district (−9.22%). The increase in
water regulation function value was highest in the districts Jhalokati (14.64%), and Barisal
(10.60%), whereas the highest decrease was found in Cox’s Bazar (−8.68%) and Satkhira
(−9.77%) districts. The biodiversity protection function value increased in all districts
except Chandpur (−0.04%), Noakhali (−13.75%), and Satkhira (−2.94%), with the highest
increase in Patuakhali (29.09%), Jhalokati (20.84%), and Lakshmipur (20.17%) districts.
The increase in soil formation and retention function value was evident in Patuakhali
(22.28%) and Lakshmipur (16.01%) districts, whereas the maximum decrease was found in
Noakhali district (−19.51%). The highest decrease in waste treatment function value was
found in the districts Satkhira (−13.79%), Cox’s Bazar (−9.94%), and Bagerhat (−5.91%),
whereas the maximum increase was found in Shariatpur (3.16%) district. In terms of
cultural and recreation function value, the highest decrease was reported in the districts
Satkhira (−10.50%) and Cox’s Bazar (−6.51%), whereas the highest increase was found in
Lakshmipur district (4.75%).
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3.3. Spatial Autocorrelation of ESV in CRB
3.3.1. Global Spatial Autocorrelation of ESV

For 1999 and 2019, Moran scatter plots were obtained (Figure 7). The Moran’s I of the
ESV is shown in Figure 7 for each time, with varying patterns. Moran’s I was 0.338421 and
0.336522 in 1999 and 2019, respectively, which were unusually high levels. The findings
demonstrate that the ESV distribution pattern in the studied region was clearly clustered,
indicating a significant positive connection. Between 1999 and 2019, the ESV’s Moran’s I
decreased somewhat, indicating that the cluster phenomena of the ESV’s spatial distribution
in this research region waned.
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3.3.2. Local Spatial Autocorrelation of ESV

Only four kinds of significant autocorrelations can be detected in the research region:
high-high (HH), low-low (LL), low-ligh (LH), and high-low (HL) (Figure 7). The local
Moran’s I of the ESV had minor revisions from 1999 to 2019. Figure 7 reveals that the
Sundarbans mangrove forest region and the broader GBM had the highest HH values
(Ganges, Brahmaputra, and Meghna river areas). On the central coast, LL values were
mostly found in inner coastal districts such as Jessore, Gopalganj, Barishal, and Narail, as
well as the exposed coastal districts with bigger farmlands, such as Barguna, Patuakhali,
Lakshmipur, and Noakali. The HL values were close to those of the LL area, indicating that
this research region was in the transitional zone between landscape types. HL steadily rose
in value. The geographical distribution of HH, LL, and HL regions might be intuitively
represented by the LISA clustering map. The ESV significance level is reflected in the
LISA significance map (Figure 7). The ESV’s significance threshold in LL and HH was
0.05, with some values at 0.01 and 0.001 as well. The ESV of these locations was connected
to the ESV of nearby areas in a favorable way. In mangrove forests, waterbodies, and
wetlands, the significant level was 0.01; this indicated that the spatial distribution of ESV
was highly converging and exhibited a strong association. Between 1999 and 2019, the area
of the significant region (p = 0.05) declined, while the extent of the more significant region
(p = 0.01) rose, and the highest significant region (p = 0.001) stayed steady.

3.4. Sensitivity of Ecosystem Services

Table 5 shows the results of using alternate value coefficients to measure the cumulative
value of ES over two years. In all years, the estimated CS for all land use groups was less
than unity, indicating that the estimated cumulative ecosystem service values for the
sample area are somewhat inelastic in terms of the value coefficients. For coastal wetlands,
built-up, aquaculture, and others, the CS ranged from 0.000 to 0.024. When the valuation
coefficient for these land use divisions was changed by 50%, the CS varied from 0.000–0.000
for built-up to 0.303–0.426 for agriculture. This finding also suggested that the estimates of
ecosystem service values are reliable where strongly undervalued or overvalued coefficients
can have a significant impact on the degree to which estimates of ecosystem service values
change over time.

Table 5. Total approximate ecosystem services and coefficient of sensitivity (CS) in CRB after changing
the ES valuation coefficient (VC) from 1999 to 2019.

Change in Value Coefficient
1999 2019

Percent CS Percent CS

Agriculture ± 50% ±21.294 0.426 ±15.157 0.303
RSMV ± 50% ±7.429 0.149 ±12.873 0.257

Mangrove forest ± 50% ±10.285 0.206 ±10.546 0.211
Coastal wetland ± 50% ±1.181 0.024 ±0.842 0.017

Built-up ± 50% ±0.006 0.000 ±0.025 0.000
Water body ± 50% ±9.471 0.189 ±9.979 0.200

Aquaculture/salt ± 50% ±0.334 0.007 ±0.577 0.012

4. Discussion
4.1. Land Use Land Cover Change and Associated Ecosystem Service Value Change

The most common LULC change in Bangladesh’s coastal area was the loss of culti-
vated land to rural settlement building, followed by rural settlement-based vegetation
development, which was also validated in previous research [25,36]. We calculated that
the overall ESV in the study area declined by 1.87% (USD 0.47 billion) from 1999 to 2019
based on the approximate size of the seven LULC categories and our ecosystem service
assessment methodology. The transfer of a significant quantity of agricultural land to the
development of rural communities and urban built-up regions was mainly attributed to
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the loss of ESVs. The reduction of coastal wetlands also made a substantial contribution
to the overall loss of ESVs. However, the development of various vegetation resources
surrounding the rural community resulted in a significant improvement in ESs, which
more than compensated for the loss of ecosystem services as a result of agricultural land
loss. Furthermore, the growth of coastal afforestation via planting mangrove species has
helped to reduce total ESV losses in CRB. Positive change was apparent at the district level
owing to the growth of RSMV in the northern and eastern districts, while the development
of plantation mangrove forests in the south-central and southwestern districts increased
the ESV. The drop in ESV in certain districts, such as Cox’s Bazar, was primarily caused by
the loss of inland agricultural areas and mountainous forest vegetation owing to settlement
building to house over a million refugees who fled Myanmar as a consequence of the
Myanmar government’s ethnic cleansing of the Rohingya people [46].

In contrast to our findings, research in other parts of the globe documenting agricul-
tural land expansion and associated ESV assessment methods has shown a decrease in total
ESV [44,45,47]. One of the most important elements in preventing the overall ESV change
due to agricultural land losses has been the government’s progressive effort to enhance
the vegetation by planting various fruit, fuelwood, and forest species in and surrounding
rural settlements, as well as the coastal greenbelt project for mangrove plantation [48–52].
Moreover, among the many other variables, variance in the value coefficients employed
may be to blame. This (previous) research utilized Costanza et al. [2] valuation coefficients,
which differ significantly from Costanza et al. [34] coefficients, partly due to the high
number of case studies used in 2014 to get the values for each land biome [53]. If we look
at how much ecosystem service value has been lost in CRB over the last two decades based
on locally estimated value coefficient, we can see that maintaining the important ecosystem
services is a significant problem that may be somewhat offset by ecosystem-based land
use planning, such as planting trees of various types in and around the settlement area.
The biggest compensation for the general decline in the significance of natural ecosystem
service in Bangladesh’s coastal area is forest restoration and RSMV development in many
locations. This corresponds to the findings of [25], who found that forest planting in the
central CRB contributed the most in raising the ecological service value.

The shift from agriculture to other land uses has resulted in a reduction in food
and raw material output in the coastal area, which is contrary to the worldwide trend of
agricultural growth. The underlying reason of this may be Bangladesh’s ever-increasing
population, which necessitates massive homestead construction and urban landscape
development [25]. In addition, the substantial reduction in many ES functions has major
policy implications for balancing food security and ecological services. This is similar to the
results of many previous research, which showed the supply of various ecosystem services
such as food production [25,26,36], raw material [25,27,36,54], waste treatment [55], and soil
formation [36]. The impact of improving services such as climate and water management,
as well as biological conservation, is already seen in the coastal region of Bangladesh for
implementing various ecosystem-based adaptation methods [28,56,57].

In CRB, HH and LL showed positive correlations with ESV. HL and LH outliers
also developed sporadically in various regions. High-density clusters were found in
primary tropical rainforest, natural and plantation mangroves, and close to water (rivers
and wetlands); this might be explained by the rich biodiversity, material exchanges, and
energy conversion of aquatic ecosystems. Meanwhile, LL clusters were discovered close to
communities and nearby farmlands, as well as in long-established protected zones. Urban
and agricultural development, as well as other human activities, usually damage these
places, affecting the natural ecosystem functions and lowering their ESV. Therefore, by
being aware of the geographical distribution of ESV, conservation managers may better
successfully manage resources. The degree of land use might be reduced by efficiently
reestablishing vegetation on unused and dry areas, thereby boosting biodiversity, ESV,
and ecological integrity in the CRB. Managers could protect the slopes for afforestation or
ecological restoration. Strict restrictions on urbanization may encourage compact human
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settlements, which would protect the environment by lowering carbon emissions and
environmental disruptions.

4.2. Challenges of Sustainability of Land Management and Ways Forward

Apart from the anthropogenic factors such as high population growth and increased
economic activity, the geographical position of Bangladesh makes the LULC pattern of
coastal regions sensitive to several climatic shocks and stresses, which in turn creates a
significant challenge for achieving land use sustainability. For instance, increased tempera-
ture, erratic rainfall, and sea-level rise induced saline water intrusion in agricultural lands
(Figure 8). Meanwhile, almost 63% of arable land in the coastal zone has been impacted
by varying levels of soil salinity [58] and is expected to be elevated further in the current
century due to SLR. It is also estimated that a one-meter rise in sea level could submerge
about 20% of the total landmass of Bangladesh, displacing 20–30 million people from the
coastal zone [59,60].

The agricultural development in this region is primarily constrained by poor soil
fertility, heavy soil texture, soil salinity in the dry season (Figure 8), and poor polder
management [61,62]. These constraints affect both cropping intensity and production,
which instigate the coastal people to switch over to alternate land use such as shrimp culture
or salt farms from traditional crop-based farming practices by building embankments [63].
Shrimp farming increased very rapidly, from 2000 ha in 1970 to 275,000 ha in 2013, due to
the motivation of higher profitability, international demand, and interest from government,
development agencies, and private entrepreneurs [64,65]. Allowing the entry of saltwater
for shrimp culture has reduced the cultivated land and created new lands under saline water,
especially when embankments are damaged, causing land degradation and environmental
problems [66]. During the monsoon season, there are floods almost every year, with
multiple events that lead to a large area of land erosion and accretion, which destroy
human well-being, settlement areas, and agricultural land and render dwellers landless,
putting their livelihoods at risk. Over the different time horizons, the increased frequency
and intensity of different climatic hazards (Figure 8) has directed rapid LULC change in
this region, destroying the biodiversity of coastal ecosystems, creating unemployment,
reducing agricultural production, and escalating food and livelihood insecurity of the
coastal community.
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With the loss of natural habitats and their associated resources, some of the limitations
in the agricultural sector will increase and therefore further jeopardize agricultural output.
A further reduction in the forest clearing (climate protection service) will accelerate global
warming, a significant ecosystem challenge that would also impact productivity in the
agriculture sector among many other implications. For instance, crop yields are predicted to
decrease by 10–20 percent or 50 percent by 2050 due to climatic variation/ change [70]. This
is no exception to the coastal area of Bangladesh, an extremely climatically prone country
with a poor adaptive potential that depends on the natural resources for agriculture [28,69].
Considering the extreme susceptibility of CRB to global climate change-induced natural
disasters such as cyclones, rising sea levels, salinity, erosion, and flooding [28,62,69,71,72],
we advocate that the conservation of cultivated land should take precedence in the future.

The CRB should be prioritized for developing ecosystem-based adaptation such as
the protection of wetlands and forest lands as well as the development of mangrove
plantations [73]. As a hard measure, the construction of dams and frequent dredging of the
river channels should be done to protect the erosion [57]. Another important adaptation
could be the development of more saline-resistant crop varieties, which should be adapted
to saline-prone croplands (consequence of sea-level rise) [28,69]. Upon discussion, the
government of Bangladesh may also initiate a crop insurance policy for agricultural farmers
to ensure compensation when a disaster event causes loss to their farm products [57,74,75].

4.3. Limitations of the Study

The research has several limitations that will need to be resolved in future studies.
To begin, we analyzed the LULC patterns using open-source Landsat imagery and a su-
pervised classification algorithm, which may result in some misclassification due to the
difficulty of the LULC pattern in Bangladesh at a local scale [25]. This was enhanced,
however, by using the Semi-automated Classification Plugin’s post-processing feature, as
well as ground-truthing, field visits, literature reviews, and Google Earth image archives
and editing the misclassification. Furthermore, we did not take into account any particu-
lar biophysical considerations for sensitivity analysis, which may be achieved in future
studies [76]. Finally, the ESV assessment used in the study could have overestimated or
underestimated the real importance of Bangladesh’s coastal land biomes, which could be
corrected by performing national-level estimations of ecosystem service values in different
land biomes by an eminent expert panel of government.

5. Conclusions

The land use land cover of coastal Bangladesh has dramatically altered between 1999
and 2019. The most apparent transformation was evident between agricultural land and
rural settlement-based vegetation. Between 1999 and 2019, the total ESVs of CRB decreased
by 1.87%, from USD 25.18 × 109 in 1999 to USD 24.71 × 109 in 2019, owing to decreasing
agricultural land and wetlands, as well as the expansion of settlements and aquacul-
ture/saltpans. Among the different ESs, values of food and raw materials declined, while
values of biodiversity conservation and water management increased notably. The spatial
variation of ESV was prominent. It was found that districts with mangroves possessed an
exceptionally high total ESV, such as Satkhira, Khulna, and Bagerhat. A significant spatial
correlation and moderately high spatial clustering were observed, which consisted mostly
in mangrove forests, waterbodies, and wetland zones. Both high-high and low-low values
increased, but spatial outliers remained almost unchanged. In coastal Bangladesh, the
sustainability of land use management in the face of potential anthropogenic causes and
adverse climate change scenarios requires striking a balance between the conservation of
natural resources and the preservation of cultivable agricultural land. The results of this
research concerning growing mangroves and RSMV development have important policy
implications for constructing a barrier against ESV loss caused by a significant decrease in
agricultural areas in other regions of the globe, as well as associated socio-geographical
and environmental issues.
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