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Abstract: Hydrological data in general and water quality (WQ) data in particular frequently suffer
from missing records and/or short-gauged monitoring/sampling sites. Many statistical regression
techniques are employed to substitute missing values or to extend records at short-gauged sites,
such as the Kendall-Theil robust line (KTRL), its modified version (KTRL2), ordinary least squares
regression (OLS), four MOVE techniques, and the robust line of organic correlation (RLOC). In this
study, in aspiring to achieve better accuracy and precision, the À Trous-Haar wavelet transform (WT)
was adopted as a data denoising preprocessing step prior to applying record extension techniques.
An empirical study was performed using real WQ data, from the National WQ monitoring network
in the Nile Delta in Egypt, to evaluate the performance of these eight record-extension techniques
with and without the WT data preprocessing step. Evaluations included the accuracy and precision
of the techniques when used for the restoration of WQ missing values and for the extension of the
WQ short-gauged variable. The results indicated that for the restoration of missing values, the KTRL
and WT-KTRL outperformed other techniques. However, for the extension of short-gauged variables,
WT-KTRL2, WT-MOVE3, and WT-MOVE4 techniques showed more accurate and precise results
compared with both other techniques and their counterparts without the WT.

Keywords: water quality; record extension; missing values; Nile Delta; wavelet transform

1. Introduction

The availability of representative and accurate hydrological and water quality (WQ)
data is a crucial part of long-term water resource management [1–3]. Water resources data
in general and WQ data in particular suffer from missing records and/or short-gauged
monitoring/sampling sites [4,5]. Many statistical regression approaches have been applied
for the restoration of missing records and/or the extension of short-gauged water resources
records. One of the widely used regression techniques for both the restoration of missing
hydrological and WQ records and the extension of records at short-gauged sites is the
simple linear regression technique (ordinary least-squares regression-OLS) [6]. Two of the
OLS main assumptions are: the explanatory and response variables are linearly related
(highly correlated); and the data used are representative. However, the OLS suffers from
two major flaws:

• It is sensitive to the existence of outliers (extreme/unusual records), as outliers’ exis-
tence seriously affects the estimation of the OLS intercept and slope parameters [7,8];

• It generates extended records with an underestimated variance [4,9–12]. Producing
extended records with underestimated variance results from a bias in the estimation of
extreme values, which as a result produces a bias in the estimation of exceedance and
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non-exceedance probabilities [4,5]. For WQ management generally and particularly
for WQ assessment, high percentiles and extreme values are critical for evaluating
whether WQ is within accepted limits or standards [13].

Water quality data have unique features, like nonnegative values, positive skewness,
nonnormal distribution, presence of censored values (e.g., below a detection limit), presence
of outlier/extreme values, seasonal patterns, and autocorrelation. Two of the more common
features are the positive skewness and existence of outliers; owing to these two features,
WQ data often have a form approaching the lognormal distribution [5,14,15]. Given that
these WQ data mainly characterize outliers’ existence, deviation from normal distribution,
and the presence of censored values, a robust or nonparametric regression technique may
be more appropriate.

Several robust regression techniques (e.g., least median of squares; least absolute
deviations; Winsorized regression; and trimmed least square estimation) and nonpara-
metric regression techniques (e.g., monotonic regression and Kendall–Theil robust line
(KTRL) have been designed as analogs to OLS with the advantage of being insensitive to
outliers’ existence [7,16]. Nevitt and Tam [7] studied the performance of different robust
and nonparametric approaches compared to the performance of OLS in cases of outliers’
existence and deviation from normality. The results indicated that the KTRL is the most
convincing analog to OLS regression, with the advantage of being insensitive to outliers’
existence and/or deviation from normality. The KTRL is widely employed not only for both
record extension and the restoration of missing values/records but also for the assessment
of monotonic trend in water resources data (e.g., [8,17–20]). Although the KTRL overcomes
one of the main OLS flaws by being insensitive to outliers’ existence, it is similar to OLS in
producing extended records with an underestimated variance.

MOVE1 & MOVE2 proposed by [9] and MOVE3 & MOVE4 proposed by [10] are
examples of Maintenance of Variance Extension (MOVE) systems that give extended
records with unbiased variance. Several studies have used MOVE approaches to extend
stream-flow records (e.g., [21–23]), for missing precipitation values restoration (e.g., [24,25]),
and for WQ record extension (e.g., [5]). Although the MOVE techniques overcome one of
the major flaws of OLS, they also are sensitive to outliers’ existence.

Recently, three regression techniques to overcome not just one but the two major
flaws of the OLS were proposed: Khalil et al. [4] provided a modified version of the KTRL
(KTRL2), Khalil and Adamowski [4] proposed the Robust Line of Organic Correlation, and
Khalil et al. [26] proposed a modified version of the MOVE-1 that involves the L-moments
in the estimate of the model slope (LM-R). Several studies have been carried out to assess
the performance of these three techniques (KTRL2, RLOC, and LM-R) using Monte Carlo
and empirical experiments [4,5,27,28]. These studies showed that in the case where outliers
exist, these three newly developed techniques (KTRL2, RLOC, and LM-R) outperform the
four MOVE techniques in producing extended records with unbiased variance. However,
for the restoration of missing records, the KTRL outperforms other techniques in the
existence of outliers.

More recently, Nalley et al. [2] employed the À Trous-Haar wavelet transform (WT)
as a data preprocessing step before applying record-extension techniques for streamflow
record extension. In Nalley et al. [2], the WT was applied to the predictor (x) and response
(y) variables to create an approximation and detailed components for each x and y; record
extension techniques were then applied separately for the extension of each component, and
the results to estimate the streamflow extended records were finally summed up. Nalley
et al. [2] compared the performance of the OLS, KTRL, MOVE techniques, KTRL2, and
RLOC, with and without the WT data preprocessing step, for the extension of streamflow
records using streamflow data at 67 paired sites from Canada’s Reference Hydrometric
Basin Network. The main results showed consistent improvements in the WT-KTRL2, WT-
RLOC, WT-MOVE1, and WT-MOVE2 techniques’ precision and accuracy when compared
to their traditional counterparts (without WT), especially for the extended records statistical
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parameters. However, as a restoration for missing streamflow values, the WT-based
techniques showed inconsistent improvements.

In this study, the use of the “À Trous-Haar” WT as a data preprocessing step for
WQ record extension and missing WQ values restoration was evaluated. In contrast to
the approach of [2], in this study, the WT was applied only to the predictor, and only
the predictor approximation component was used in the record extension technique to
directly estimate the missing WQ values. In addition, unlike streamflow, WQ data have
much shorter temporal coverage and suffer from irregular sampling. To put it another way,
streamflow indicates a long time series, whereas WQ indicates a short time series. The major
objective of this research is to explore the À Trous-Haar WT-record extension techniques
for WQ record extension and missing value restoration. An empirical experiment that
utilizes real WQ data obtained from the Egyptian National WQ Monitoring Network was
applied. In this experiment, eight record-extension techniques, the OLS, KTRL, KTRL2,
RLOC, and four MOVE techniques were examined with and without the À Trous-Haar WT
data preprocessing step.

2. Materials and Methods

It is assumed that two highly correlated WQ variables, a WQ variable x that has
n1 + n2 measured records, and a WQ variable y that has only n1 concurrent measured
records, are illustrated as the following forms:

x1; x2; x3; . . . . . . ; xn1; xn1+1; xn1+2; . . . . . . . . . . . . . . . ; ...; xn1+n2

y1; y2; y3; . . . . . . ; yn1;

Records of the short-gauged WQ variable y can be estimated/extended for the period
n1 + 1 through n1 + n2 using statistical regression techniques. Another common case,
where both WQ variables x and y have similar sizes (e.g., n1 + n2) of concurrent measured
records, but the WQ variable y has some missing values (m), is illustrated as the following
forms:

x1; x2; x3; . . . ; . . . ; xn1; xn1+1; xn1+2; . . . ; . . . . . . ; . . . ; . . . ; ...; xn1+n2
y1; y2; y3; .; m; . . . ; m; xn1+1; xn1+2; m; . . . . . . ; m; . . . ; ...; xn1+n2

Missing values (m) in the WQ variable y can also be substituted using regression
techniques. Simple regression techniques that involve only one predictor (independent
variable x) have the following form [29]:

ŷi = c + s (xi) + ε (1)

where c is the regression intercept, s is the slope, xi is the observed x values, and ŷi is the
estimated y values for the period through i = n1 + 1, . . . n1 + n2 (record extension), or, for
missing values (m) in WQ variable y, and ε is a random error (εmean value is zero) [29].
The main difference between these simple regression techniques is the way in which c
and s are estimated. The following subsections briefly illustrate the eight record-extension
techniques examined in this study: the OLS, MOVE techniques, KTRL, KTRL2, and RLOC.

2.1. Ordinary Least Squares Regression (OLS)

The OLS regression technique portrays the covariation between the dependent (re-
sponse) WQ variable (y) and independent (predictor) WQ variables (x). The OLS cOLS and
sOLS estimates obtained by solving normal equations to minimize the squared error in the
estimated y values are illustrated as follows [30]:

sOLS = r
syc

sxc
(2)

cOLS = yc − sOLS xc (3)
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where yc, xc are the mean values of yc and xc, whereas syc and sxc are the standard deviation
values of yc and xc, which reflect the period of concurrent records, and r is their correlation
coefficient for the series of concurrent records.

OLS has five assumptions: the dependent (y) and independent (x) variables are
linearly related (highly correlated), the data are representative, and the model residuals are
homoscedastic, independent, and normally distributed [29,31]. The OLS is unbiased with
a small mean square error MSE = σ2

y
(
1− ρxy

)
for the estimation of a missing record [12],

where σ2
y is the y population variance and ρxy is the population correlation coefficient

between x and y. However, as a record-extension technique, it creates extended records
with an underestimated variance [9,12,29,32]. In addition, as the OLS c and s are based on
statistical parameters (mean and standard deviation) that are clearly altered by the existence
of outliers. The presence of censored values, outliers and deviation from normality are
three of the main WQ data characteristics that make OLS not the ideal technique for WQ
record extension or restoration of missing values.

2.2. Maintenance of Variance Extension Techniques (MOVE)

MOVE approaches have the main advantage of producing extended records with
unbiased variance, which overcome one of the OLS’s major flaws [9,10]. In MOVE1, c and s
were created so that the whole estimated time series of ŷi for i = {1; 2; . . . . . . . . . .n1; n1 + 1;
. . . . . . . . . n1 + n2} have a similar mean and standard deviation to those of the concurrent
period, yc and syc, respectively. MOVE1 cM1 and sM1 are defined as follows [9]:

sM1 = sign (r)
syc

sxc
(4)

cM1 = yc − sM1 xc (5)

where sign (r) stands for the algebraic sign (+ or−) of the (r). For MOVE2, proposed by [9],
the cM2 and sM2 estimates were determined so that if MOVE2 is employed to estimate the
entire sequence of ŷi for i = {1; 2; . . . . . . n1; n1 + 1; . . . . . . n1 + n2}, the unbiased population
estimates of the mean (µ̂y) and variance (σ̂y

2) introduced by [33] could be reproduced [9] ,
and the MOVE2 cM2 and sM2 estimates are defined as follows [9]:

sM2 =
σ̂y

sxc
(6)

cM2 = µ̂y − sM2 x (7)

where the µ̂y and σ̂y
2 estimates are defined as follows [33]:

µ̂y = yc + sign(r)
n2

n1 + n2
β̂(xE − xc) (8)

σ̂y
2 = β̂2s2

xE +

[
n1 + n2 − 3

(n1 − 3)(n1 + n2 − 1)

]
n1 − 1
n1 − 2

(
s2

yc
− β̂s2

xc

)
(9)

where xE is the mean value, s2
xE is the estimate of variance based on the full series (xi) for

i = {n1 + 1; . . . . . . n1 + n2}, and β̂ is defined as follows:

β̂ =
∑n1

i=1(xi − xc)(yi − yc)

∑n1
i=1(xi − xc)

(10)

Vogel and Stedinger [10] proved that the MOVE1 and MOVE2 strategies are unable to
achieve their goal mainly because record extension techniques are only applied to extend
records ŷi only, for i = {n1 + 1; . . . . . . n1 + n2}, and not for the entire series that includes
the period of concurrent records. Vogel and Stedinger [10] proposed cM3 and sM3 estimates
for the MOVE3 technique that can be employed to generate extended records so that the
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resulting sequence of n1 + n2 records {y1, y2, . . . . . . ., yn1, ŷn1+1, . . . . . . , ŷn1+n2} has the
unbiased µ̂y and σ̂y

2 proposed by [33], as follows [10]:

sM3 =
(n1 + n2 − 1)σ̂y

2 − (n1 − 1)s2
yc
− n1

(
yc − µ̂y

)2
− n2(a− µ̂)2

(n2 − 1)s2
xE

(11)

cM3 =

[
(n1 + n2)µ̂y + n1yc

]
n2

− sM3 xc (12)

Vogel and Stedinger [10] also showed that the µ̂y and σ̂y
2 proposed by [33] and used

in MOVE2 and MOVE3 are not necessarily the best asymptotic estimators for small samples
of interest, which are common to hydrology in general and WQ in particular. Vogel and
Stedinger [10] provided improved population estimators µ̂y

∗ and σ̂y
∗2 for small samples,

as follows:
µ̂y
∗ = yc + θ1

n2

n1 + n2
β̂(xE − xc) (13)

where θ1 = (n1−1)ρ2

(n1−4)ρ2+1

σ̂y
∗2 = (1− θ2)s2

yc
+ θ2

[
β̂2s2

x +

[
1− n1 + n2 − 3

(n1 − 3)(n1 + n2 − 1)

]
n1 − 1
n2 − 2

(
s2

yc
− β̂s2

xc

)]
(14)

where θ2 = (n1−4)ρ2

(n1−8.5)ρ2+4.5
where ρ is the population correlation coefficient. Thus, MOVE4 was proposed by [10] to
create extended records so that the ensuing sequence of n1 + n2 records {y1, y2, . . . . . . .,
yn1, ŷn1+1, . . . . . . , ŷn1+n2} has a mean µ̂y

∗ and variance σ̂y
∗2. The MOVE4 cM4 and sM4

estimates are obtained by replacing the [33] estimators µ̂y and σ̂y
2 in Equations (11) and

(12) by µ̂y
∗ and σ̂y

∗2, respectively.
MOVE slopes and intercepts are based on the x and y parameters, which are visibly

affected by outliers, despite the fact that the main benefit of MOVE approaches is the
preservation of variance in extended records [4,8,27–29]. As a result, the MOVE approaches,
like OLS, are sensitive to the existence of outliers.

2.3. Kendall–Theil Robust Line (KTRL & KTRL2)

The KTRL slope (sKT) estimate is based on the Kendall rank correlation
coefficient [4,27–29]. sKT is based on a pairwise comparison between each pair of records
(xi − yi) and all other pairs (xj − yj). For each pair of comparisons, a slope of ∆y/∆x is
calculated, a concurrent record of size n pairs results in n(n − 1)/2 calculated slopes, and
the median of all the pairwise slopes is sKT [34]:

sKT = median
yj − yi

xj − xi
∀i < j i = 1, 2, . . . . . . . . . n1 − 1 and j = 2, 3, . . . . . . , n1 (15)

The KTRL intercept (cKT) is defined as follows [35]

cKT = median(yc)− sKT ∗median(xc) (16)

In the KTRL2 proposed by [4], the slope estimate (sKT2) was developed so that the
extended records would have a cumulative distribution function (CDF) similar to the CDF
of the measured records. The KTRL2 sKT2 and cKT2 estimates are defined as follows [4]:

sKT2 = median
y(j) − y(i)
x(j) − x(i)

∀i < j i = 5th, 10th, . . . . . . 90th and j = 10th, 15th, . . . . . . , 95th (17)

cKT2 = median(yc)− sKT2 ∗median(xc). (18)
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where y(j) and x(j) . are the percentiles of yc and xc estimated during the period of concur-
rent records. Percentiles are calculated for the 5th, 10th..., and 95th percentiles, according
to [4]. As a result, 171 [n (n1)/2 = 19 (19 − 1)/2] pairwise comparisons will come from a
set of 19 (x(j),y(j)) percentile pairs. A slope ∆y

∆x is produced for each of these comparisons,
and the median of the 171 possible pairwise slopes is used as the slope estimate. As a
result, rather than minimizing the error in the estimation of the y records, the goal was to
minimize the error in the estimation of the y percentiles.

2.4. Robust Line of Organic Correlation (RLOC)

Khalil and Adamowski [5] introduced the RLOC as a modified version of MOVE1
with the benefit of being insensitive to the existence of outliers. The RLOC slope (sRL) and
intercept (cRL) estimates are based on the median and interquartile range (IQR) ratios, as
follows [5] :

sRL =
y(75) − y(25)

x(75) − x(25)
(19)

cRL = median(yc)− sRL ∗median(xc) (20)

where y(75), y(25), x(75), x(25) are the 75th and 25th percentiles of y and x measured
concurrent records. When the data are normally distributed, [5] found that MOVE1 and
RLOC have approximately the same performance, but the RLOC estimator becomes more
accurate with a minor deviation from normality.

2.5. Wavelet Transform

The wavelet transform (WT) was initially developed in the mathematics community
but has been proven to be a useful tool for analyzing nonstationary time series in hydrology
and hydrogeology (e.g., [36–41]). The WT is a time and frequency domain multiresolution
analysis that is an important derivative of the Fourier transforms (FT) [42]. The WT has
advantages over the FT, as it can simultaneously gather information on the time, location,
and frequency of a signal, whereas the FT only offers frequency information [42].

The À Trous-Haar WT was chosen as the most suitable discrete WT (DWT) for fore-
casting tests in this study [43]. Du et al. [44] have shown that although the DWT is quite
popular, it is usually misemployed in hydrological forecasting as a data-preprocessing step.
As with DWT, different algorithms (such as maximal overlap DWT-multiresolution analysis
(MODWT-MRA) and DWT-MRA) use future values to compute the approximation and
detail components [44]. However, the À Trous algorithm does not rely on future data in the
decomposition process [45].

The WT (Ws) (details component) is calculated using the equations below [46] when
C0 is the original time series and CS is the approximation component at scale s:

WS(k) = CS−1(k)− CS(k) (21)

CS(k) =
+∞

∑
l=−∞

h(l)Cs−1(k + 2sl) (22)

where k is the wavelet transform calculation location (inside the time series), h(l) is the
low pass filter, and l = (1/16, 1/4, 3/8, 1/4, 1/16). The À Trous-Haar wavelet transform
proposed by [47] should be replaced with the standard À Trous WT to account for the
requirement that future data values cannot be included in the wavelet transform calculation.
The À Trous-Haar wavelet algorithm is identical to the À Trous wavelet method, with the
exception that the low-pass filter h(l) is substituted with a simpler filter, with l = (0.5, 0.5).
As a result, Equation (19) is [48]:

CS(k) =
1
2
(CS−1(k)− CS−1(k− 2s)) (23)



Water 2022, 14, 2264 7 of 19

As a result, the information after k is not used in calculating the wavelet coefficient at
any time point k. In this study, the À Trous-Haar algorithm was applied to the predictor
x as a data preprocess, and then the record-extension techniques were applied using the
predictor approximation component to estimate the desired y records.

3. Empirical Experiment

The Edko drainage system is one of the Nile Delta’s major drainage systems. Beginning
from Shubra-Kheitto free flow Lake Edko before reaching the Mediterranean, the Edko
catchment area is approximately 96,000 hectares with a length of 48.8 km [49]. Since August
1997, monthly samples have been gathered at 11 water quality monitoring locations across
the Edko drainage system (Figure 1).
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Figure 1. Edko drainage system WQ monitoring locations.

The empirical experiment used ten years of monthly WQ measured records for Sodium
(Na) and Total Dissolved Solids (TDS) measured at 10 out of the 11 monitoring locations.
One location was excluded due to an incomplete Na dataset. It is assumed that 10 years of
monthly records are representative of the Na and TDS measured at these 10 monitoring
locations. It should be emphasized that the selection of the Na and TDS for this case study
was due to their high correlation.
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Table 1 shows descriptive statistics for the Na and TDS measured at the 10 monitoring
locations. Figure 2 displays the box plots for Na and TDS, which reveal outliers and positive
skewness. Table 2 displays the findings of the Kolmogorov–Smirnov goodness-of-fit test,
which assesses the normality of the data under the null hypothesis that the sample was
drawn from a normal distribution. The results show that none of the two WQ variables at
any of the ten monitoring stations allow the test null hypothesis to be accepted (Table 2).

Table 1. Na and TDS descriptive statistics.

Monitoring
Locations

Minimum Maximum Mean St. Deviation Skewness

Na TDS Na TDS Na TDS Na TDS Na TDS

(mg/l)

WE01 1.13 203.00 16.79 1411.00 4.14 667.99 1.96 179.36 2.84 0.61
WE02 1.20 216.00 58.71 4155.61 21.45 2138.95 10.40 772.74 0.52 0.16
WE03 1.16 213.00 68.02 4734.70 9.17 1118.71 6.57 450.35 6.38 4.46
WE05 0.31 232.00 33.05 2978.05 6.31 950.24 3.09 266.01 5.61 3.43
WE06 1.09 197.00 16.96 1602.07 7.01 946.12 2.51 207.51 1.31 0.43
WE07 1.13 210.00 37.71 3737.00 9.47 1141.43 6.14 514.64 2.66 2.97
WE08 3.00 562.00 62.41 6390.00 23.73 2313.47 14.24 1153.32 0.66 0.64
WE10 1.00 259.00 11.61 1426.00 5.70 835.95 1.88 168.32 0.86 0.41
WE11 3.52 642.00 44.53 3556.00 6.78 913.38 4.14 306.54 6.86 6.20
WE21 1.27 232.00 43.88 3624.00 17.36 1774.25 7.91 577.39 0.98 0.82Water 2022, 14, x FOR PEER REVIEW 9 of 20 
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Figure 2. Box plots for the Na and TDS records.
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Table 2. Kolmogorov–Smirnov goodness of fit test for Na and TDS.

Monitoring Locations
p Value

Na TDS

WE01 3.35 × 10−91 1.80 × 10−102

WE02 6.03 × 10−99 1.80 × 10−102

WE03 5.76 × 10−96 1.80 × 10−102

WE05 4.71 × 10−94 1.80 × 10−102

WE06 3.19 × 10−99 1.80 × 10−102

WE07 6.58 × 10−99 1.80 × 10−102

WE08 3.40 × 10−102 1.80 × 10−102

WE10 8.20 × 10−97 1.80 × 10−102

WE21 6.03 × 10−99 1.80 × 10−102

WE11 2.00 × 10−102 1.80 × 10−102

WE21 6.03 × 10−99 1.80 × 10−102

The TDS was employed as an explanatory variable (predictor or independent variable)
to extend the Na records (response or dependent variable) using the eight record extension
approaches. The effectiveness of the eight record-extension approaches, as well as the
use of the À Trous-Haar WT data preprocessing step, were evaluated using a split-sample
cross-validation method. In the split sample cross-validation, every two years of monthly
records were eliminated (n2 = 24) from the ten years of available data and the remaining
eight years were used to define the period of concurrent records. Four different sizes were
considered for the period of concurrent records n1 equal to 60, 70, 80, and 90 records.

The eight record-extension approaches were used for the estimation of Na using TDS
as a predictor at each of the Edko drain 10 monitoring locations considered in this study.
As a result, 200 different extended Na record realizations were constructed (10 locations ×
5 different sample combinations x four different n1 sizes = 200).

For each of the 200 distinct realizations studied, the correlation coefficient of yc and xc
was consistently positive and ranged between 0.77 and 0.84.

The bias (BIAS) as accuracy metric and the root mean squared error (RMSE) as a preci-
sion metric were used to assess the performances of the eight record-extension approaches
under the À Trous-Haar data preprocess step:

BIAS =
1
nt

nt

∑
i=1

Ŝi − Si (24)

RMSE =

√√√√ 1
nt

nt

∑
i=1

(
Ŝi − Si

)2 (25)

where Si and Ŝi are the measured and estimated statistics of the dependent variable for
i = 1; . . . . . . nt, respectively, and nt is the number of trials in the empirical study.

4. Results and Discussion

Figures 3–5 show the BIAS and RMSE values for the estimation of the extended
records (Figure 3), extended records’ mean value (Figure 4), and extended records’ standard
deviation (Figure 5).
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For the restoration of missing records (Figure 3), the OLS and MOVE techniques
showed comparable results, indicating that the WT step had no clear influence. However,
for KTRL, KTRL2 and RLOC, the WT step deteriorates the accuracy and precision. These
results are due to the high correlation between the two WQ variables (Na & TDS); high
linear dependence is one of the assumptions of regression techniques, which may mask
the influence of the data preprocessing step for the restoration of a missing record. High
precision was generally observed for the KTRL and MOVE techniques, whereas high
accuracy was generally observed for OLS, MOVE3, and MOVE4. The KTRL provided
the most precise results for the period of concurrent records equal to 90 and 80, whereas
MOVE2 was the most precise for concurrent records of sizes equal to 70 and 60. As
the period of concurrent records increases, the data become more representative, and
nonparametric techniques demonstrated their performance. This dynamic regarding the
period of concurrent records is clear not only for the KTRL performance but also for all
eight techniques with and without the WT data preprocessing step, as shown in Figure 3.

These results are in agreement with [2] results for the restoration of stream flow
missing values, where the use of the À Trous-Haar WT as a preprocessing step did not
show consistent improvement. Based on these results and results obtained by [2] and given
the limited WQ data (10 years in this study) compared to streamflow data (40 years used
by [2]), we may confirm that the use of the À Trous Haar WT as a data preprocessing step
did not show clear improvement for the restoration of missing WQ values.

Figure 4 shows the BIAS and RMSE results for the estimation of the mean value of
the extended records. In general, the OLS and MOVE techniques showed comparable
results with their WT-based counterparts, which indicates that the WT step had no clear
influence. However, for KTRL, KTRL2 and RLOC, the WT step deteriorates the accuracy
and precision. Given that the regression techniques are proposing a line that passes by
the mean (X) and mean (Y) for the OLS, and median (X) and median (Y) for the KTRL,
the mean value of the estimated records should be accurate and precise. Given the linear
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dependence between the TDS and Na, the OLS and MOVE approaches provided more
precise and accurate results with almost no influence of the WT data preprocessing step.
The period of available records affects more the KTRL, KTRL2, and RLOC approaches; as
the period of available records decreases, the accuracy and precision deteriorate. High
precision was generally observed for the KTRL, MOVE3, and MOVE4 approaches, whereas
high accuracy was generally observed for OLS, MOVE3, and MOVE4.

Figure 5 shows the BIAS and RMSE results for the estimation of the Na expanded
records’ standard deviation values. Relatively high accuracy was obtained for the WT-
MOVE3, WT-MOVE4, WT-KTRL2 and WT-RLOC techniques, whereas the WT-KTRL2 was
the most precise for relatively large-size concurrent records (e.g., n1 = 90), and the WT-
MOVE1 provided more precise results for small sizes (e.g., 60 records). Higher accuracy of
the extended records’ standard deviation provided by the MOVE3 and MOVE4 approaches
than the MOVE1 and MOVE2 is noted. This is attributed to the main difference between
those techniques, where MOVE3 and MOVE4 were developed for small-size samples,
unlike MOVE1 and MOVE2, which are based on population parameters. These results are
in agreement with the results obtained by [10,27], where the four MOVE techniques were
compared using streamflow and WQ data, respectively. This indicates the usefulness of the
MOVE3 and MOVE4 for such small period of WQ records. The better accuracy provided by
the KTRL2, RLOC, WT-KTRL2, and WT-RLOC approaches is due to the advantage of being
insensitive to the existence of outliers and the ability to maintain variance of the extended
records. These results are in agreement with results obtained by [27,28], which showed
the better accuracy and precision provided by the KTRL2 and RLOC compared to MOVE
techniques in the presence of outliers. For the extended records’ standard deviation, the
WT data preprocessing step smooths the raw data into an approximation component that
minimizes the influence of extreme values, which affects the extended records’ variance
more than their mean value.

Figures 6 and 7 show the BIAS and RMSE results for the Na extended records’ full
length of percentiles from the 5th to the 95th percentile, respectively. Figures 8 and 9 provide
more focus on the BIAS and RMSE for the low and high percentiles, respectively. In general,
Figures 6–9 show that the accuracy and precision of the extended record percentiles increase
as the period of concurrent records increases. This is attributed to the first assumption in
regression techniques that the dependent and independent data are representative; as the
period of concurrent records increases, the data become more representative, and their
sample parameters become more accurate and precise.
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For the four periods of concurrent records considered, the WT-KTRL provided ex-
tended records that are more accurate and precise in presenting the extended period low
percentiles. The WT-KTRL showed either similar or slightly better performance than the
KTRL. However, for high percentiles (e.g., 85th, 90th and 95th), both the KTRL and WT-
KTRL techniques showed the least accuracy and precision (e.g., n1 = 60 and 70) or the
second least accuracy and precision for n1 = 80 or 90.

These results are not in agreement with previous results provided by [4], which
showed that the KTRL provided extended records that overestimated low percentiles and
underestimated high percentiles. These different results are attributed to the existence
of outliers in the independent variables (x) more/not in the dependent variable (y), as
shown in Figure 2. The heavy existence of outliers in the independent variable relative to
the dependent variable affects the variance and standard deviation, which becomes larger
than it should be. A clear explanation of the OLS or MOVE1 slope estimates is that an
overestimated (fault larger) standard deviation for the independent variable leads to an
underestimation of the regression slope. Underestimation of the regression slope provides
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underestimation of the extended records, which leads to underestimating low as well as
high values. For OLS, WT-OLS, KTRL, and WT-KTRL, underestimation of the regression
slope leads to reduced overestimation of low values (low percentiles) but simultaneously
increases underestimation of high values (high percentiles). Similarly, underestimating the
MOVE slope results in underestimating high and low values, resulting in underestimating
both high and low percentiles.

In evaluating the influence of the WT step, WT-KTRL and WT-OLS showed slightly
more accurate and precise results than KTRL and OLS, respectively. For the MOVE tech-
niques, for both the high and low percentiles, the WT-step did not show clear improvement
but reduced the accuracy and precision. For KTRL2 and RLOC, accuracy and precision
improvements were detected with the WT data preprocessing step.

For the four different periods of concurrent records, the highest accuracy in estimating
high percentiles was obtained by WT-MOVE3 and WT-MOVE4, followed by the MOVE1-
WT technique. The highest precision was obtained by the WT-MOVE1, WT-MOVE3, and
WT-MOVE4 techniques, while WT-KTRL2 became the second highest precision technique
when the period of concurrent records was 90.

Thus, when the period of concurrent records was large enough to be considered repre-
sentative, KTRL2 and WT-KTRL2 showed accurate and precise estimates in representing
their statistical parameters. However, for restoration of missing records, the KTRL showed
more accurate and precise results for small-sample WQ data.

In brief, results showed that using the À Trous-Haar WT as a data preprocessing step
did not improve the accuracy or precision of any of the eight regression approaches for the
estimation of missing WQ records. However, for the extension of short-gauged WQ records,
using the À Trous-Haar WT step improved the accuracy and precision of the extended
records’ standard deviation and extreme percentiles. Thus, the use of the À Trous-Haar
WT as a data preprocessing step is recommended if the objective is to extend WQ records
at short-gauged sites. In addition, and in agreement with previous studies [4,28], results
showed that the KTRL is preferable for the restoration of missing WQ values in case of the
presence of outliers. For the extension of WQ records, the WT-MOVE3 or WT-MOVE4 is
preferable, while in the presence of outliers, the WT-KTRL2 is desirable.

5. Conclusions and Recommendations

For the restoration of WQ missing data and the extension of WQ records at short-
gauged locations, eight record-extension strategies were investigated in this study. The
evaluation took into account a data preprocessing step that used the À Trous-Haar WT
to denoise the predictor by just using the À Trous-Haar approximation component in the
regression technique. Real WQ records from the Edko drainage system in Egypt’s Nile
Delta were used in an empirical investigation. The results showed that adding the WT data
preprocessing step did not improve the restoration of missing values significantly. However,
for the extended records’ standard deviation and percentiles, it showed improvements in
accuracy and precision.

It can be concluded that the selection of the appropriate record-extension technique
is based on two main aspects: the existence of outliers; and the objective of the record
substitution, either to estimate missing values or to extend short-gauged records. The
existence of outliers should be checked carefully before selecting an applicable record-
extension technique, especially if the objective is to provide extended records that preserve
the statistical parameters. For the restoration of missing WQ values, either the OLS or the
KTRL should be used, with said KTRL being preferred in the existence of outliers. For
the extension of WQ records at short-gauged sites, any of the MOVE, KTRL2, or RLOC
procedures can be used, with WT-KTRL2 and WT-RLOC preferable in the existence of
outliers and WT-MOVE3 and WT-MOVE4 preferable in cases with small sample sizes.

The use of the À Trous-Haar WT as a data preprocessor for record-extension ap-
proaches requires more research, including case studies from various regions and an
assessment of the impact of outliers, their position, intensity, and magnitudes. Further-
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more, analyzing the impact of the period of concurrent records and the level of correlation
between the dependent and independent variables on the use of the À Trous-Haar WT
as a data preprocessing step would provide a clear assessment. In addition, as a natural
extension of this work, other data decomposition techniques such as empirical mode de-
composition (EMD) and ensemble EMD (EEMD) (e.g., [50–53]) would be used instead of
WT and would allow comparing different data preprocessing methods.
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