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Abstract: Sediments are sinks and sources of pollutants, playing a rather important role in metal
migration and transformation. A set of toxic metals of Hg, Pb, Zn, Cr, Cu, Ni and Cd in a subur-
ban river sediment was investigated in the Yangtze River Delta of China, Nantong, and then, the
solidification/stabilization scheme and resource-oriented utilization for heavy metal-contaminated
sediment were explored. The results showed that all of the metals were apparently higher than the
background values. The geo-accumulation index indicated that Ni, Cr, Pb, Cu, Zn and Cd exhibited a
none–moderately polluted degree, while Hg corresponded to the moderately contaminated grade.
A correlation analysis showed that the contents of metals were not strongly affected by the pH and
organic matter content (p > 0.05), but they were associated with each other (p < 0.05) and might
have common natural and anthropogenic sources. Moreover, the leaching experiment revealed that
the concentration of Ni exceeded the national standard of China for groundwater, which might
cause environmental contamination. Thus, three effective solidification/stabilization formulations
for amendments were developed: (1) zero valent iron (9.5% w.w.) and sodium carboxymethylcel-
lulose (0.5% w.w.); (2) sulphate aluminum cement (1% d.w.) and sodium carboxymethylcellulose
(0.3% d.w.) and (3) sulphate aluminum cement (1% d.w.), zero valent iron (0.5% d.w.) and sodium
carboxymethylcellulose (0.3% d.w.). The findings can provide an effective approach and theoretical
basis for the treatment of heavy metal pollution in river sediments.

Keywords: sediment; heavy metal; geo-accumulation index; stabilization

1. Introduction

With the acceleration of industrialization and urbanization, the concentrations of
heavy metals caused by human activities have dramatically increased in recent years [1,2].
Owing to its abundance, persistence and environmental toxicity, the contamination of
heavy metals has attracted worldwide attention.

As the largest sinks and sources of heavy metals, sediment is an important medium
for metal transformations. In the aquatic environment, heavy metals can be deposited in
sediment by adsorption, hydrolysis and coprecipitation processes [3]. In some cases, even
more than 99% of heavy metal entering into river can be enriched in sediments [4]. However,
heavy metals are not always fixed in the sediment. Their mobility usually depends on
various conditions, such as hydrodynamic disturbance, causing sediment re-suspension [5]
or bioturbation and chemical factors (temperature, salinity, pH, redox potential, etc.),
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generating their desorption from sediment and release into overlying water [6]. In addition,
sediments are habitats and food sources for benthic fauna, so that heavy metals may
be bioaccumulated and bioamplified through the food chain and end up in the diet of
humans [7]. Heavy metals are persistent in river sediment and cannot be degraded by
microorganisms, which pose a potential threat to ecological systems and human health [8].
Therefore, it is necessary to investigate the transformation and distribution mechanisms of
heavy metals in sediments.

As for soil remediation, ex situ remediation and in situ remediation were adopted
for remedying the sediment contaminated by heavy metals. Ex situ remediation can ef-
fectively reduce the contents of nutrients, heavy metals and persistent organic matter in
sediments [9]. Since the polluted sediment is dredged from the river bed, heavy metal is
extracted from or stabilized in the sediment through a series of chemical; physical and
biological methods, including washing, electrochemical remediation, flotation, ultrasonic-
assisted extraction and immobilization [10]. Though the immobilization methods cannot
remove metal from sediment, they are still popularly applied. Common amendments
include alkaline agents, phosphate agents, clay minerals, sulfides, heavy metal chelating
agent, organic agents, slag, etc. They focus on improving metal stabilization by enhancing
metal sorption, precipitation and complexation capacity on sediment. For instance, mont-
morillonite (MMT) is a good sorbent towards heavy metals via a cation exchange or the
formation of inner-sphere complexes through the Si–O and Al–O groups [11]. Lime (LM)
affects the adsorption, precipitation and complexation of heavy metals by changing the
soil pH, cation exchange capacity, microbial community composition, redox potential and
other processes [12]. Zero valent iron (ZVI) metal interactions are based on the corrosion
of ZVI by surface complexation, reduction, coprecipitation and cementation [13]. Sodium
carboxymethyl-cellulose (CMC) is rich in adsorptive groups such as hydroxyl and carboxyl,
and it can also be coordinated with heavy metal ions such as salt materials [14]. Addition-
ally, stabilization/solidification (S/S) involves the addition of cement and cementitious
materials (lime, fly ash, blast furnace slag, etc.) for encapsulating the contaminants and
improving the engineering properties of sediments [15,16]. The process is associated with
cement hydration, cation exchange, flocculation and agglomeration and carbonation [17].
Portland cement has an important hydration product of C-S-H gel that has an extremely
high specific surface area adsorption energy and ion exchange capacity, and sulphate
aluminum cement (SAC) is hydrated to form large amounts of ettringite that can stabilize
particular metallic ions within the ettringite structure [18]. Soil/sediment amendments
above (modification or complex formulation) were frequently used in many studies, but
the efficient and environmentally friendly heavy metal amendments are still worthy of
further exploration.

Nantong (31◦41′06′′ N–32◦42′44′′ N, 120◦11′47′′ E–121◦54′33′′ E) is one of the impor-
tant cities in the center of the Yangtze River Delta, covering more than 100 rivers. According
to the Nantong Water Resources Bulletin (2019), about 59% of cross-sections of rivers will
belong to the water quality standards of grade IV (slight polluted), V (moderate polluted)
and inferior V (severe polluted). Among the main seagoing rivers, the water quality of
Rutai Canal, Bencha Canal and Beiling River was classified as grade IV, and the Jueqie River
was grade V. Thus, the water pollution situation of Nantong is not optimistic. The Public
River, as one of the important tributaries, heavy metal pollution in sediment has been
rarely reported. Therefore, this study focused on (1) the investigation of the distribution
characteristics of heavy metals: (2) assessment of the pollution status of heavy metals and
(3) exploration of an effective method for heavy metal stabilization.

2. Materials and Methods
2.1. Study Area

Rudong County (32◦12′ N–32◦36′ N, 120◦42′ E–121◦22′ E) is located in the north wing
of the Yangtze River Delta, in the northeast of Nantong City (Jiangsu Province, China).
This region belongs to the northern subtropical marine monsoon climate with the annual
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average temperature of 15.10 ◦C. Abundant rainfall averaged more than 1000 mm per year.
The landform is a typical coastal plain, spreading in the south of Yellow Sea shore. The
river basin is bounded by the Rutai Canal, which runs through the county. To the south of
the canal is the Yangtze River Basin that includes Tai Canal, Jiuwei Port, Youwang Port and
Jianghai River, accounting for about one thirds of the total basin. To the north of the canal
is the Huaihe River Basin that includes Bencha Canal, Nanling River, Yangkou Canal and
Juekan River, which accounts for about two thirds of the total basin.

The Public River, as a primary tributary of the Juekan River, is a drainage channel of
Rudong suburban area. The contradictions between high-speed development of township
enterprises and environmental protection facilities result in quite serious environmental
pollution and ecological damage [19]. On the other hand, agricultural non-point sources
with the use of chemical fertilizers and pesticides in agricultural production are also the
important sources of environmental pollution [19]. Moreover, the disorderly arrangement
of houses around the river channel encroaches on the river channel, playing serious impact
on flood discharge and waterlogging removal.

2.2. Sample Collection

Twice sampling campaigns were taken in the period of April to May in 2020. The
sampling stations on Public River are shown in Figure 1. In order to explore the overall
pollution status of the Public River, six sampling sites (from S1 to S6) were selected by
equidistance to collect surface sediment (box grab method) for the first sampling campaign.
Collected sediment was packed in a self-sealing bag and frozen at −20 ◦C until analysis.
Based on the results of this investigation, encrypted sampling sites (from G1 to G8) were
selected between S1 and S3 for the second sampling campaign. 8 sediment cores were
obtained by column sediment sampler. The length of sampled sediment cores was about
25~30 cm, dividing into two layers, namely superstratum sediment (sr, 0~15 cm) and
sub-sediment (sb, >15 cm). In the laboratory, sediment samples were dried at 60 ◦C and
grounded to pass through 200-mesh sieve in an agate mortar.
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2.3. Solidification/Stabilization Experiment

Two hundred grams of dredged up sediment and the corresponding ratio of amend-
ments were fully stirred and evenly mixed in glass vessels, cured at room temperature for
72 h.

2.4. Chemical Analysis

Mercury (Hg) were analyzed by Atomic Fluorescence Spectrometry after microwave
dissolution of aqua regia (HCl:HNO3 = 3:1) [20]. Copper (Cu), zinc (Zn), lead (Pb), nickel
(Ni) and chromium (Cr) were digested with HCl–HNO3–HF in microwave digestion system
and then detected by flame atomic absorption spectrophotometry [21]. Total cadmium (Cd)
was extracted by mixed acid digestion of HNO3, perchloric acid (HClO4), hydrofluoric acid
(HF) and HCl, and Graphite Furnace Atomic Absorption Spectrophotometry was used to
measure it [22].

The method of HJ/T299-2007 (solid waste-extraction procedure for leaching toxicity-
sulphuric acid and nitric acid method) [23] and HJ766-2015 (solid waste-determination of
metals-inductively coupled plasma mass spectrometry (ICP-MS)) [24] were adopted to test
the leaching behavior of the heavy metals in sediment. The ratio of sediment and leaching
agent was 1:10 (L/kg). The pH of leaching agent was 3.20 ± 0.05. The solid-liquid mixture
was rotated and oscillated for 18 ± 2 h with speed of 30 ± 2 r/min at the temperature
of 23 ± 2 ◦C. The leachate was filtered and digested with HNO3 and HCl. Then, the
supernatant was detected by ICP-MS.

Sediment pH was measured in sediment-water suspension (the ratio of sediment
to water was 1:2.5) [25]. Soil moisture was calculated by weight difference method, that
dry weight was the samples oven-dried for four hours at 105 ◦C to constant weight [26].
Soil organic matter (OM) was quantified by oxidation with potassium dichromate in the
presence of sulfuric acid, followed by titration with ammonium Fe (II) sulfate [27].

All reagents used in this study were analytical reagent grade. Ultra-pure water (Milli-Q
Millipore 18.2 MΩ/cm resistivity) was used for all dilutions. All the plastic and glassware
were acid-cleaned (20%HNO3) for 24 h and rinsed by deionized water for three times. The
element standard solutions used for calibration were supplied by Sigma Aldrich.

2.5. Quality Assurance and Quality Control (QA/QC)

Accuracy was checked by concurrent analysis of the standard reference materials,
repeated test and method blank; the recovery ranged from 94 to 106%. The information on
method assurance and analytical facilities are listed in Supplementary Materials Table S1.

2.6. Statistical Analysis

The correlations were determined using the simple Pearson correlation coefficient
(SPSS software, version 25).

3. Results and discussion
3.1. Distribution of Heavy Metals in Sediment

Concentrations of heavy metals in public rivers are shown in Table 1. The av-
erage concentrations for twice sampling campaigns were 0.737 ± 0.290 mg/kg (Hg),
85.8 ± 23.22 mg/kg (Pb), 431 ± 144 mg/kg (Zn), 303 ± 166 mg/kg (Cr), 137 ± 41.2 mg/kg
(Cu), 149 ± 81.6 mg/kg (Ni) and 0.830 ± 0.500 mg/kg (Cd), respectively. Levels of heavy
metals were apparently higher than the background values (supplementary materials
Table S2) in local soil [28]. Heavy metals for Pb, Zn, Cr, Cu, Ni and Cd were 4 to 10 times
greater than the background values. Even, the content of Hg was about 30 times the
background value. In comparison with other lakes and reservoirs worldwide, the concen-
trations of Pb, Cr, Cu and Ni were obviously lower than some man-made lakes (Sabalan
dam reservoir, Chah Nimeh, Three Gorges Reservoir, etc.) and freshwater lakes (Lake
Manzala, Hamahara, East Dongjing Lake, etc.), while the concentration of Zn was far
greater than these lakes [29–34].
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Table 1. Concentrations of heavy metals (n = 22) in Public River (mg/kg).

Hg Pb Zn Cr Cu Ni Cd

average 0.737 85.8 431 303 137 149 0.826

SD 0.290 23.22 144 166 41.2 81.6 0.500
min 0.095 54 202 138 71 59 0.53
max 1.26 112 708 753 193 373 2.18

The different concentrations of heavy metals at different sites can be attributed to the
changes in terrestrial inputs, hydrodynamic processes and deposition conditions [35]. In the
sampling sites from S1 to S6, the highest Hg and Zn levels were observed in S4 (1.26 mg/kg
and 413 mg/kg, respectively, Figure 2), and the peak values for Pb, Cr, Cu, Ni and Cd
were all shown in S2. In the sampling sites from G1 to G8, the highest concentrations
for Zn, Cr and Ni were found at G6, while the lowest levels were recorded at G1. The
concentrations of Hg and Pb peaked at G7 and G6, respectively. The maximums of Hg, Pb,
Zn, Cr and Ni were about two to three times the minimums. The highest concentration of
Cd was 2.18 mg/kg, which was about 4 times as many as the minimal value. Nevertheless,
the concentration ranges of Cu (122–193 mg/kg) had small variation. In terms of spatial
distribution (Figure 3), almost all heavy metals had no obvious variations between two
spatial layers (sr and sb). Particularly, concentrations of Cd at G8, Cr and Ni at G6 differed
a lot between sr and sb, which could be attributed to anthropogenic sources [36].
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Figure 2. Distribution of heavy metals in Public River for the first sampling campaign. Figure 2. Distribution of heavy metals in Public River for the first sampling campaign.

In general, the mobility and availability of heavy metals have been demonstrated to
be associated with soil properties, including pH and organic matter content [37]. Sediment
in Public River was alkalescent with pH ranging from 7.78 to 8.12. Organic matter (OM)
content in sediment ranged 42.10 g/kg to 80.90 g/kg with average of 61.32 ± 12.83 g/kg.
Correlation analysis showed that contents of Hg, Pb, Zn, Cr, Cu, Ni and Cd were not
strongly affected by the pH and OM contents (p > 0.05), implying that the concentration
of trace metals in sediment cannot be interpreted simply by changes of these two aspects.
Other factors, such as the cation exchange capacity (CEC), oxidation-reduction potential
(Eh), the contents of clay minerals, calcium carbonate, Fe and Mn oxides and terrestrial
inputs, maybe more important to the distribution of heavy metals [38,39]. However, strong
positive correlations were observed for Hg, Pb, Zn, Cr, Cu and Ni (p < 0.05), indicating that
these metals were associated with each other and may have a common anthropogenic and
natural sources [35].
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3.2. Geo-Accumulation Index (Igeo)

Geo-accumulation index (Igeo) is a quantitative index for evaluating the pollution
status of heavy metals in water environment sediments, which was calculated using:

Igeo = log2[Cn/(1.5× Bn)] (1)

where Cn is the measured concentration of the metal in the sediment; Bn is the background
or pristine value of the metal, and the value was suggested in Supplementary Materials
Table S2 [28]; the constant coefficient of 1.5 was used to assess the natural fluctuations
in the content of a given substance in the environment with minimum anthropogenic
influence [40]. Igeo were classified for seven classes, which were shown in Supplementary
Materials Table S3 [40,41].

The Igeo results were shown in Figures 4 and 5. The average Igeo values for the observed
elements were in the increasing order of Cr (0.39) < Pb (0.41) < Ni (0.44) < Cu (0.58) < Zn
(0.63) < Cd (0.79) < Hg (1.24) in both sampling campaigns. It implied that Ni, Cr Pb, Cu, Zn
and Cd contaminated river sediment mildly, while Hg contaminated the river sediment
moderately. All of the Igeo values for Ni, Cr, Pb, Cu and Zn, 95% of Igeo numbers for Cd,
as well as 14% of Igeo numbers for Hg ranged from 0 to 1, revealing none-moderately
polluted degree. Percentages of Igeo values between 1 and 2 for Cd and Hg were 5% and
84%, respectively, corresponding to moderately contaminated grade. The Igeo values of
Hg were higher than the values (Hg: −0.57) of street deposited sediment in metropolitan
region (Shanghai) of China which bears the largest traffic volume, whereas the Igeo values
of Cr, Cd, Pb, Zn and Cu were obviously lower than it (Cr: 1.11; Cd: 2.23; Pb: 2.32; Zn: 2.44;
Cu: 2.48) [40]. As a large industrial city–Porto Alegre, the Igeo values of Cr in sediment here
even reached up to 5.93 [41], much higher than it in current study. Despite sediment of
Sabalan dam reservoir was demonstrated higher metal concentrations, Igeo values generally
showed no polluted with metals except for Cu (Points A to C, Igeo ∼= 0.05) [29].

3.3. Comparison with Relevant Screening Levels

In comparison with critical limits for some foreign countries (Supplementary materials
Table S4) [42], 100%, 77.3% and 59.1% of sampling sites for Pb overtopped the critical
limits of 50 mg/kg (Eastern Europe, Ireland, Canada, Switzerland, Denmark, Sweden and
Finland); 70 mg/kg (Czech Republic) and 85 mg/kg (The Netherlands), respectively. As for
Cd, 100%, 45.5% and 13.6% of sampling sites showed a higher concentration than the critical
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limits of 0.5 mg/kg (Denmark, Finland, Czech Republic and Canada); 0.8 mg/kg (The
Netherlands) and 1 mg/kg (Eastern Europe and Ireland), respectively. Hg concentrations
from 86.4% and 45.5% of sampling sites exceeded the critical limit of 0.4 mg/kg in Czech
Republic and 0.8 mg/kg in Switzerland. Only 13.6% of the sampling sites for Hg were over
the mark of 1 mg/kg in Ireland, whereas all were lower than 2.1 mg/kg in Eastern Europe.
However, heavy metals for Zn, Cr, Cu and Ni were all greater than the critical limits for
foreign countries in Table S4.
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The United States Environmental Protection Agency (USEPA) issued the Ecological
Soil Screening Levels (Eco-SSLs) that are the protective concentrations of contaminants for
ecological receptors such as plants, soil invertebrates, birds and mammals (Supplementary
materials Table S5) [43–48]. More than half of Ni (63.6%) posed a threat to mammalians, but
only a few (<10%) overstepped the maximum acceptable toxicant concentration (MATC)
value of soil invertebrates and avian. The heavy metals of Pb and Cd were higher than the
Eco-SSLs of avian and mammalian, respectively, while both were far less than the Eco-SSLs
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of plant and soil invertebrates. All sapling sites for Zn exceeded the Eco-SSLs for four
ecological receptors, and so did Cu (95.5%).

The heavy metal levels were evaluated in accordance with national standards of China
(Supplementary Materials, Table S6) to seek an appropriate resourced approach for the
dredged sediment [49–51]. Cr concentrations in S1 and S2 slightly exceeded the limit value
(250 mg/kg) of planting soil for greening (CJ/T 340–2016, Class III, pH > 6.5) (PSG) and
Soil Environmental Quality: Risk Control Standard for Soil Contamination of Agricultural
Land (GB15618–2018, other pH > 7.5) (SEQA). The Zn concentrations in S2, S3 and S4
were higher than the screening value (300 mg/kg) of SEQA, but lower than the limit value
(500 mg/kg) of PSG. However, the concentrations of Zn in the second sampling campaign
(site from G1 to G8) were all over than the screening value (300 mg/kg) of SEQA, and even
in some sampling sites (G6 to G8), the Zn levels exceeded the limit of value (500 mg/kg) of
PSG. In almost of all sampling sites (except for G1-sr and G8-sr), the concentrations of Cr
went beyond the limit value (250 mg/kg) of PSG and SEQA. The highest value (753 mg/kg)
was indeed about three times more than the threshold (250 mg/kg). Similarly, the contents
of Ni were all well above the limit value (150 mg/kg) of PSG with the exception of G1-sr,
G2-sr, G5-sb, G6-sb and G8-sr, in which three (G3-sr, G4-sb and G6-sr) were higher than the
screening value (190 mg/kg) of SEQA. Apart from sampling sites G1, G3 and G4-sr, the
concentrations of Cd were all over the mark (0.6 mg/kg) of SEQA, and only G8 overtopped
the limit value (1.2 mg/kg) of PSG. However, all of the heavy metals in study area were
lower than the threshold of the soil environmental quality: Risk control standard for soil
contamination of development land (GB36600-2018; screening value; type II land) (SEQD).
Thus, compared with green soil and agriculture soil, development land was a better option
for dredged sediment in the Public River to recycling application.

3.4. Leaching Behavior of Heavy Metals

The leaching concentrations of metals that exceeded the threshold of PSG and SEQA
(Section 3.3 were analyzed, and the results are shown in Table 2. National standards of
China for groundwater and surface water (Supplementary Materials, Table S7) were used
to assess the risk of leaching behavior in sediment [51,52]. The leaching concentrations
of Cr (6+) in sites from S1 to S2 and from G1 to G8 and Zn in the sites from G6 to G8,
as well as Cd in site G8, were below the limit value of the Standard for Groundwater
Quality (GB/T 14848-2017; grade IV) (SGQ) and Standard for surface water quality (GB
3838-2002; grade IV) (SSQ). However, leaching concentrations of Ni in G2 (125 µg/L) and
G6 (120 µg/L) have already surpassed the threshold (100 µg/L) of SGQ, posing a serious
threat to water environment. Thus, the dredged sediment shall be solidified/stabilized for
construction use.

Table 2. Leaching concentration (µg/L) of metals in sediment.

Species S1
G1 G2 G3 G4

sr sb sr sb sr sb sr sb

Zn - - - - - - - -
Cr (6+) 4.7 - <2.0 <2.0 3.8 <2.0 <2.0 <2.0 <2.0

Ni - 25.5 - 125 99.5 43.4 76.7 51.6
Cd - - - - - - - -

Species S2
G5 G6 G7 G8

sr sb sr sb sr sb sr sb

Zn - - <6.4 <6.4 19.7 <6.4 <6.4 12
Cr (6+) 3.8 2.7 <2.0 <2.0 <2.0 <2.0 <2.0 - 6.9

Ni 43.5 - 120 - 61 56.3 - 59.4
Cd - - - - - - <1.2 <1.2

Note: “-” was not detected.
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3.5. Preliminary Exploration of Solidification/Stabilization Scheme

Montmorillonite (MMT), lime (LM), zero valent iron (ZVI)) and sodium carboxymethyl-
cellulose (CMC) were selected to mix each other in different proportions to stabilize heavy
metals in this study. Two sediment samples (G2-sb and G6-sr) that the leaching concen-
tration exceeded the threshold was studied, and the results are exhibited in Table 3. It can
be seen that amendments formula for ZVI + CMC (9.5% + 0.5%) effectively reduced the
leaching concentration of Ni in both sediment samples. The leaching concentration of Ni in
sites G2-sb and G6-sr decreased by 57.04% and 93.16%, respectively, after treatment, far
below the threshold (100 µg/L) of SGQ. CMC and its derivatives can be coordinated with
polyvalent metal ions to form three-dimensional cross-linked structures with a retention
effect [53]. Wu et al. [54] found that the complexes of CMC with Ni (II) were synthesized
by the coordination reaction that the organic functional groups mainly are carboxymethyl
and hydroxyl groups. The organic metal compound shows an octahedral geometry around
the nickel, and the probable formula is NiM·4H2O. IR also has been evidenced to remove
Ni ions from water quickly and efficiently; the mechanism mainly included displacement,
adsorption, complexation and other possible or several actions [55]. Similarly, Franco
et al. [56] used ZVIcol (colloidal zerovalent iron) that synthesized with CMC and an ultra-
sound to remedy the fractions of Cr VI) (labile, exchangeable and insoluble) in soil, more
than 98% of these species were reduced.

Table 3. Leaching content of heavy metals after adding stabilized reagents.

No. Regents Adding
Proportions

G2-sb G6-sr

Ni (µg/L) Ni (µg/L)

1 MMT + LM 2% + 8% 1.19 × 103 1.59 × 103

2 MMT + LM 4% + 6% 530 1.05 × 103

3 MMT + LM 8% + 2% 68.5 437
4 MMT + ZVI 2% + 8% 50.1 331
5 MMT + ZVI 4% + 6% 57.0 484
6 MMT + ZVI 8% + 2% 158 705
7 MMT + CMC 9.5% + 0.5% 221 1.56 × 103

8 LM + ZVI 2% + 8% 23.3 192
9 LM + ZVI 4% + 6% 51.5 135

10 LM + ZVI 8% + 2% 404 1.96 × 103

11 LM + CMC 9.5% + 0.5% 315 1.94 × 103

12 ZVI + CMC 9.5% + 0.5% 53.7 8.2
Note: Adding proportions were the wet base ratio (w.w.). The moisture content of the sediment was about 65%.

Cement treatment is an effective method for enhancing the engineering behaviors
of sediments and encapsulating contaminants [15]. Sulphate aluminum cement (SAC),
CMC, ZVI and monopotassium phosphate (KP) were chosen to solidify/stabilize heavy
metals in this study, and the results are shown in Table 4. The leaching concentration
of Ni in site G2-sb and G6-sr decreased by 42.2% and 46.6%, respectively, after adding
SAC + CMC (1% + 0.3%), and decreased by 73.3% and 34.1%, respectively, after adding
SAC + ZVI + CMC (1% + 0.5% + 0.3%). These two amendments formulas could effectively
draw down the leaching concentration of Ni, making it under the limit value (100 µg/L) of
SGQ. The solidification of SAC was in no small part because of ettringite and aluminum
glue generated in the early hydration stage, which solidified heavy metals mainly by means
of ion replacement and chemical physical adsorption [57]. Al3+ in ettringite was conformed
to be substituted by Cr3+, Mn3+ and Fe3+, and Ca2+ can be replaced by Cd2+, Pb2+, Zn2+,
Mn2+, Ni2+ and Fe2+ in ettringite [58]. Chen [59] found that the curing rates of ettringite
for Ni2+ could reach 87.9%. However, regent formulation incorporating KP did not appear
to be effective for heavy metal fixation. Zhong et al. [60] discovered that the precursor
of ettringite (Ca-Al,-OH,-SO4) could combine with phosphate to form stable phosphate
ettringite, whether this process influenced its stability to heavy metals is unknown.
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Table 4. Leaching content of heavy metals after adding cement curing reagents.

No. Reagents Adding
Proportions

G2-sb G6-sr

Ni (µg/L) Ni (µg/L)

1 SAC + CMC 1% + 0.3% 72.3 64.1

2 SAC + ZVI +
CMC 1% + 0.5% + 0.3% 33.4 79.1

3 SAC + KP +
CMC 1% + 0.5% + 0.3% 239 758

Note: Added proportions were the dry base ratio (d.w.). The moisture content of the sediment was about 65%.

4. Conclusions

The heavy metal levels in the public river sediment were apparently higher than
the background value. The distribution of metals was not strongly affected by the pH
and OM contents, whereas they were associated with each other and may have common
anthropogenic and natural sources. Igeo of Hg showed moderately contaminated grade
and other metals exhibited a none–moderately polluted degree. In comparison with the
relevant national standards of China, the concentrations for all metals were below the
threshold of SEQD, but the concentrations of Zn, Cr, Ni and Cd exceeded the limits of
PSG and SEQA. The leaching experiment showed the concentration of Ni overtopped the
threshold of SGQ. Thus, the dredged sediment could be reused for development land after
solidification/stabilization. Three amendments formulations were ZVI and CMC, SAC and
CMC, as well as SAC, ZVI and CMC, which effectively reduced leaching concentrations of
heavy metals.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w14142247/s1, Table S1: The information on method assurance; Table S2:
Soil background values (Bn) in Jiangsu Province (mg/kg); Table S3: Pollution levels associated with
the geoaccumulation index (Igeo) of the metals in sediment; Table S4: Critical limits (mg/kg) for heavy
metals in soils in some foreign countries; Table S5: Ecological Soil Screening Levels (Eco-SSLs, mg/kg
dry weight) for heavy metals in soil from USEPA; Table S6: Screening values (mg/kg) for heavy
metals in soil in the national standard of China; Table S7: Screening values (µg/L) for heavy metals
in water in the national standard of China.
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