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Abstract: Streamflow forecasting is of great significance for water resources planning and man-
agement. In recent years, numerous data-driven models have been widely used for streamflow
forecasting. However, the traditional single data-driven model ignores the utilization of different
streamflow regimes. This study proposed an integrated framework for daily streamflow forecast-
ing based on the regime recognition of flow sequences. The framework integrates self-organizing
maps (SOM) for identifying streamflow sub-sequences, the random forests (RF) algorithm to select
input variables for different streamflow sub-sequences, and a deep belief network (DBN) for estab-
lishing complex relationships between the selected input variables and streamflows for different
sub-sequences. Specifically, the integrated framework was applied to forecast daily streamflow at
the Xiantao hydrological station in the Hanjiang River Basin, China. The results show that the devel-
oped integrated framework has higher streamflow prediction accuracy than the single data-driven
model (i.e., the DBN model in this study), with Nash efficiency coefficient (NSE) of 0.91/0.81 and
coefficient of determination (R2) of 0.93/0.89 for the integrated framework/DBN model during the
validation period, respectively. Additionally, the prediction accuracy of the peak flood was also
improved. The relative error of the peak flood derived from the integrated framework was reduced
by 4.6%, compared with the single DBN model. Overall, the constructed integration framework,
considering the complex characteristic of different flow regimes, could improve the accuracy for daily
streamflow forecasting.

Keywords: daily streamflow forecasting; regime recognition; SOM; RF; DBN

1. Introduction

Streamflow forecasting plays an important role in water resources planning and man-
agement in both the short and long term [1,2]. Accordingly, developing a precise and
reliable model for streamflow forecasting is of high significance [3]. To date, a large number
of data-driven models have been developed for streamflow forecasting [4–6]. However,
improving the accuracy and reliability of these data-driven models still remains difficult,
especially for streamflow with dramatic changes. The reason is that streamflow, which is
influenced by various factors such as precipitation, soil moisture and evaporation, is char-
acterized by its nonlinearity and non-stationary status, and the input-output relationship
also changes in different periods [6–9].

Traditional streamflow prediction models are mostly physically based models includ-
ing multiple physical processes establishing the physical relationship between rainfall
and runoff [10–13]. Examples of physically based hydrological models are the SWAT [10],
VIC [11], MIKE-SHE [12], and Xinanjiang models [13]. These models describe the physical
mechanism in explaining rainfall-runoff processes. However, these models have limited
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forecasting capabilities in capturing the non-stationary and non-linear characteristics of hy-
drologic datasets owing to the high variability of spatial and temporal features involved in
streamflow forecasting [1]. In recent years, with the acceleration of information processing
speed, data-driven models have been widely used for streamflow forecasting, making full
use of hydro-meteorological datasets. Compared to the hydrological model, data-driven
models do not need to describe the physical mechanisms of multiple hydrological processes
and have the potential to achieve high accuracy for streamflow forecasting. As a data-
driven model, artificial neural networks (ANN) can extract the characteristics of streamflow
processes by learning and training known information from historical data. ANNs can
be directly used to construct the relationships between inputs and outputs. According to
Sulaiman et al. (2017), ANN models are reliable tools for streamflow forecasting [14]. Com-
pared with most traditional models, ANNs provide acceptable generalization capabilities
and speed [15]. Thus far, ANN models such as the Backpropagation Artificial Neural Net-
work (BPNN), Extreme learning machine (ELM), Multi-Layer Perceptron (MLP), and Deep
Belief Networks (DBN) have been successfully used for streamflow prediction [16–20].
However, efforts at physically interpreting the streamflow process and selecting input
variables for a single data-driven model has limited [21–23].

The process of streamflow generation involves several stages (e.g., rising limbs, falling
limbs, and base flows of a hydrograph). It exhibits distinct characteristics during different
stages [24,25]. For example, the characteristics at the beginning of a rainfall event are
very different from those at the falling limb of the same hydrograph, and even further
from those of the low flows. To consider such distinct characteristics of the streamflow
generation process, data analysis techniques (e.g., self-organizing map (SOM), Fuzzy C-
means (FCM)) for flow regime recognition have been used to group data into clusters, and
separate neural network models have been developed for each cluster [26–31]. Studies
implementing data analysis techniques have focused on performance improvement, while
efforts to physically interpret streamflow processes have been limited [32]. In addition,
the relationship between the input variables and streamflow during different stages has
been determined according to the overall characteristics of the entire basin, largely ignoring
changes in the relationships for different stages. As the parameterization of hydrological
models, the input data belonging to a particular stage is extremely important to obtain
the characteristics of streamflow. Undoubtedly, redundant input variables are likely to
aggravate the underlying complexity of models [22]. Therefore, it is important to set specific
input variables for a particular stage in order to improve the accuracy and reliability of the
model for streamflow forecasting.

In this study, an integrated framework, which incorporates the physical interpretation
of streamflow processes into data-driven streamflow forecasting models and considers
changes in relationships between selected input variables and streamflow of different sub-
processes, is proposed. In this framework, streamflow sub-sequences are identified using
the self-organizing map (SOM), and input variables corresponding to different streamflow
regimes are selected using a random forests (RF) algorithm; complex relationships between
the selected input variables and streamflow for different streamflow sub-sequences are
constructed based on a DBN model. The developed integrated framework was applied to
forecast daily streamflow at Xiantao hydrological station in the Hanjiang River Basin. In
addition, the performance of the framework was compared with a single neural network
model (hereafter referred to as DBN).

This paper is organized as follows. The study area and data are described in Section 2.
The integrated framework, which includes SOM, RF algorithm, and DBN model, is pro-
posed in Section 3. Section 4 presents and discusses the main results for streamflow
forecasting at the Xiantao hydrological station. Finally, the conclusions are presented in
Section 5.
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2. Study Area and Data

The Hanjiang River, the largest tributary of the middle reaches of the Yangtze River,
is the water source for large inter-basin water transfer projects such as the mid-route of
the South-to-North Water Transfer Project and the Hanjiang-to-Weihe River Diversion
Project [33]. It is located at 106◦15′~114◦20′ E and 30◦10′~34◦20′ N, with the basin covering
about 159,000 km2 (Figure 1). The Hanjiang River Basin (HJRB) is divided into three regions
by the Huangjiagang and Huangzhuang hydrological stations: the upper sub-basin, the
middle sub-basin, and the lower sub-basin. The topography in HJRB is high in the west
and low in the east. The HJRB is located in a subtropical monsoon region and the rainfall is
unevenly distributed throughout the year, with rainfall from May to October accounting
for about 75% of the yearly rainfall.
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Figure 1. Location of the study area, showing the hydrological and meteorological stations.

Daily precipitation amounts during 1980–2014 from 66 national meteorological stations
(Figure 1) in the HJRB were obtained from the National Meteorological Information Center
(NMIC) of the China Meteorological Administration (CMA). The daily streamflow data
of the flood seasons (late June to early October) [34] at the Xiantao hydrological station
in the Hanjiang River Basin from 1980 to 2014 were collected from the Changjiang Water
Resources Commission of the Ministry of Water Resources and the hydrological statistical
yearbook. The Thiessen Polygons interpolation method was used to obtain the average
rainfall over the study area. We also collected evaporation and surface soil moisture
datasets from 1980 to 2014 estimated by the Global Land Evaporation Amsterdam Model
(GLEAM) with a spatial resolution of 0.25◦ and a temporal resolution of one day. Table 1
shows the statistical characteristics of the datasets (Rainfall, Streamflow, Soil moisture,
Evaporation) of the flood seasons from 1980 to 2014 over the Hanjiang River Basin.
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Table 1. Statistical characteristics of datasets (Rainfall, Streamflow, Soil moisture, Evaporation) of the
flood seasons from 1980 to 2014 over the Hanjiang Basin.

Datasets MEAN CV SKEW KURT

Streamflow 1260 0.85 2.79 9.94
Rainfall 4.2 1.51 2.41 7.22

Soil moisture 0.3 0.06 0.02 0.09
Evaporation 2.6 0.30 −0.09 −0.67

Note: CV: Coefficient of Variation; SKEW: Coefficient of skewness; KURT: Coefficient of kurtosis. Unit of
Streamflow: m3/s; Unit of Rainfall: mm/d; Unit of Soil moisture: m3/m3; Unit of Evaporation: mm/d.

3. Methodology
3.1. Streamflow Process Clusters Based on Hydro-Meteorological Conditions

The streamflow generation process can be divided into several periods corresponding
to respective streamflow sub-processes, such as base flows, rising limbs, and falling limbs.
The different streamflow sub-processes are dominated by the hydrological and meteorolog-
ical conditions corresponding to different periods [30]. A part of a hydrograph recorded
before, during, and after a rainfall event is shown in Figure 2. Before the rainfall event,
continuous evaporation depleted soil moisture, and the streamflow sub-process presented
a low flow (baseflow). At the beginning of the rainfall event, rainfall replenished the soil
water deficit, and the streamflow rose slowly. As high intensity rainfall continued to occur
and soil moisture became saturated, the streamflow increased rapidly to reach the peak,
and the streamflow sub-process of the period presented a rising limb state. After cessation
of the rainfall event, the streamflow declined sharply, and the streamflow sub-process
presented a falling limb state. In the lower part of the recession limb, the streamflow
decreased slowly to the base flow. Considering this pattern, the hydro-meteorological data
were grouped into several clusters to represent different streamflow sub-processes.
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3.2. Integrated Neural Network Framework (SOM-RF-DBN)

The integrated framework (SOM-RF-DBN) for daily streamflow forecasting was de-
veloped through the following three steps: (i) data cluster analysis; (ii) input variable
selection; and (iii) model development (Figure 3). In the first step, an SOM was used to
identify streamflow sub-processes, and the datasets were partitioned into specific clusters
corresponding to different streamflow sub-processes. Each cluster represented a segment of
the hydrograph (e.g., the rising limbs, falling limbs, and base flows). In the second step, an
RF algorithm was used for selecting input variables corresponding to different streamflow
sub-processes. Finally, separate DBN models were developed for each cluster. Details of
the SOM, RF, and DBN are provided in the following Sections 3.2.1–3.2.3.
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3.2.1. Self-Organizing Map (SOM)

The SOM is an unsupervised learning neural network that used a competitive learning
strategy to map the input data onto a two-dimensional topological map [35]. The SOM
comprises one input layer and one output layer (the topological map): The input layer
contains a node for each of the n variables characterising the unit to classify and the output
layer is a two-dimensional array whose nodes are connected, by weighted connections,
to the input layer. Each input vector “activates” only one output node, representing its
class, using the three processes: the competitive process, the cooperative process, and the
adaptive process.

The competition process seeks an optimal match between the input vector x(t) and
weight vector wi(t). This process can be expressed as

i∗(t) = argmin‖ x(t)− wi(t)‖, i = 1, 2, · · ·m (1)

where ‖ ∗ ‖ is the Euclidean distance commonly used as the similarity measure, m is the
total number of neurons, i∗(t) which is called the winning neuron, is an index used to
identify the neuron that best matches the input data x(t), and t is the discrete time step
corresponding to the iteration of the algorithm.

In the cooperative process, the influence of the winning neuron is delivered to its
neighboring neurons. The amplitude of the influence should decrease monotonically with
the lateral distance. A time-varying topological form is defined by the Gaussian weighted
neighborhood function (2):

hi,i∗(t)(t) = exp

(
−
‖r

i(t) − r
i∗ (t)‖

2

2σ2(t)

)
(2)

where ri(t) and ri∗(t) respectively determine the position of i and i∗ in the output array of
the SOM network and the effective width of neighborhood function σ2 > 0. To ensure the
convergence of the weight vector to a stable state, η(t) and σ(t) should gradually decay
with time. The following exponential attenuation can be adopted:

η(t) = η0

(
ηT
η0

)t/T
, σ(t) = σ0

(
σT
σ0

)t/T
(3)
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η0 and ηT represent the initial and final values of η(t), respectively. σ0 and σT represent
the initial and final values of σ(t), respectively.

The adaptive process sequentially adjusts the weights of the neurons in the neighbor-
hood of the winning neuron, taking the winning neuron as the center. The adjusted weight
at iteration time t + 1 is defined as:

wi(t + 1) = wi(t) + η(t)hi,i∗(t)(t)(x(t)− wi(t)) (4)

where η(t) is the learning rate.
The weight was adjusted until the global sorting became stable. The results maintain

the topology of the input vector, and similar patterns were mapped to adjacent areas of the
network. These topological relationships can be stored.

After the SOM training is done, feeding the trained SOM with all input data can
lead to the feature map (the topological relationship). The way to obtain the feature map
is to label all winning neurons in the output array with the identities of corresponding
input data. Figure 4a shows that the feature map was obtained by feeding the trained
SOM with 20 pieces of data. Each hexagon grid in the feature map represents one neuron.
The numbers in grids are the identities of input data. With the feature map, the relative
topological relationships between input data can be identified. The location of a winning
neuron in the feature map shows the topological location of corresponding input data in
the input space. Data that are close in the input space tend to map onto same or adjacent
winning neuron in a certain place of the feature map. According to this property, the feature
map can reveal the grouping of input data. Thus, a proper number of clusters can be
determined objectively. Figure 4b shows the density map that was obtained by counting the
number of members in each grid of the feature map. The numbers in grids in the density
map represent the amount of input data that was mapped onto the winning neuron. The
blue lines that surround the non-blank grids represent two specific clusters.
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3.2.2. Random Forests (RF)

The RF algorithm was applied to select the optimal input variables corresponding to
different streamflow sub-processes [36]. The RF algorithm uses a combination of indepen-
dent decision trees to model data and measure variable importance. It has good prediction
ability and relatively simple coding with high performance for noisy data. Moreover, it has
unique advantages in the selection and identification of high-dimensional feature factors.
Compared with traditional methods for selecting input factors, such as the correlation
coefficient method and the intelligent search algorithm, the RF algorithm does not require
the number of optimal input factors to be preset, and the amount of calculations is relatively
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small. It can consider the complex nonlinear correlation between factors and quantify the
importance of different input factors to predict variables.

The RF model uses the importance score of input factors to measure the impact
of each input factor on streamflow. The two commonly used indicators for measuring
the importance of factors are the Gini index and the out of bag (OOB) error rate [37].
In this study, the importance of variables was measured on the basis of the OOB error
rate. Firstly, OOB data were used as the test set to test the performance of all regression
trees, and the corresponding mean square deviation was obtained, which is recorded
as {MSEi, i = 1, 2, · · · , b}. Secondly, noise disturbance was added to each characteristic
variable xj of the OOB dataset to generate new OOB data. Subsequently, all regression
trees were retested with the new dataset to obtain the mean square deviation matrix after
random disturbance: 

MSE11 MSE12 · · · MSE1b
MSE21 MSE22 · · · MSE2b

...
. . .

...
MSEm1 MSEm2 · · · MSEmb

 (5)

The variable importance measure (VIM) of the k-th input characteristic variable is
defined as:

VIMk =

1
b ∑b

i=1

(
MSEj −MSEkj

)
SE

(6)

SE is the standard error of b regression trees.

3.2.3. Deep Belief Network (DBN)

The widely used DBN, first proposed by Geoffrey Hinton in 2006, is an effective model-
ing method for mapping non-linear relationships [38]. Compared with other ANN models,
DBN can prevent results from falling into a local optimum and can thereby accelerate the
training process [39]. A typical DBN structure can be decomposed into multiple restricted
Boltzmann machines (RBM). Each RBM contains a hidden layer h = (h1, h2, · · · hn) and
a visual layer υ = (υ1, υ2, · · · υn), where the hidden layer of the former RBM structure is
the input layer of the next RBM structure, and the gradient descent algorithm and back-
propagation algorithm are used to optimize the model. The energy function of the joint
distribution of the visible layer and the hidden layer cells can be defined as:

E(υ, h) = −∑m
j=1 ∑n

i=1 υiwijhj −∑n
i=1 biυi −∑n

j=1 cjhj (7)

where wij is the connection weight matrix, is visual layer unit bias, b = (b1, b2, Lbn) and
c = (c1, c2, · · · cn) is the hidden unit bias.

The joint probability between the visible layer and the hidden layer can be defined as:

ρ(υ, h) = exp
(

−E(υ, h)
∑υ ∑h exp(−E(υ, h))

)
(8)

Given υi and hj defines as the states of visible layer i and hidden layer j, and it can be
seen that the cells of hidden layer are conditionally independent of the cells of visible layer.
Therefore, the probability of each cell in the visual layer can be calculated as:

ρ(υi = 1|h) = 1

1 + exp
(
−∑m

j=1 wijhj − bi

) (9)

The probability of each cell in the hidden layer can therefore be calculated as:

ρ(hi = 1|υ) = 1
1 + exp

(
−∑n

i=1 υiwij − cj
) (10)
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Finally, the parameters θ(wij, bi, · · · cj) are optimized by the logarithm likelihood
function, which maximizes the visible layer ρ(υ).

As a deep network structure, the DBN training process includes two steps: unsuper-
vised pre-training and supervised back-propagation network fine-tuning. In the unsuper-
vised pre-training stage, each layer of the RBM network is trained separately. In order
to extract important feature information, the reconstruction error function is taken as the
objective function to map the unit feature vectors to different feature spaces, and the initial
weights of the pre-training network are then obtained. In the fine-tuning stage, the entire
network is optimized via reverse propagation.

3.3. Experiment Setup

The integrated framework was developed for daily streamflow forecasting and its
applicability to the Xiantao hydrological station in the Hanjiang River Basin was tested.
The daily streamflow forecasting model may be generalized as:

Qt = f (Qt−1, . . . , Qt−m; Rt, Rt−1, . . . , Rt−m; Et, Et−1, . . . , Et−m; St, St−1, . . . , St−m) (11)

where Qt represents current streamflow, Qt−m(m = 1, 2, 3, · · ·) denotes antecedent stream-
flow, Rt denotes current rainfall, Rt−m(m = 1, 2, · · ·) denotes antecedent rainfall in the
study area, Et denotes current evaporation, Et−m(m = 1, 2, · · ·) denotes antecedent evapo-
ration, St denotes current surface soil moisture and St−m(m = 1, 2, · · ·) denotes antecedent
surface soil moisture. The set of candidate inputs usually includes variables which might
be weakly relevant to the problem. Weakly relevant input variables only serve to add
complexity into the model. In this study, according to the tests we carried out, the value of
m was set as 10. Accordingly, 43 sets of hydro-meteorological data were used as initial in-
puts: daily rainfall (Rt), 10 antecedent daily rainfall (Rt−1, Rt−2, · · · , Rt−10), 10 antecedent
streamflow (Qt−1, Qt−2, · · · , Qt−10), current daily evaporation (Et), 10 antecedent evapora-
tion (Et−1, Et−2, · · · , Et−10), current daily evaporation (St), and 10 antecedent surface soil
moisture (St−1, St−2, · · · , St−10). Current daily streamflow (Qt) was set as the sole output
variable. The Xiantao station included 3920 samples. In order to eliminate the influence of
different-scale variables on the training of the model, the hydro-meteorological data were
first normalized to fall within a specified range (from 0 to 1). Through this preprocessing
step, the trained streamflow forecasting model was deemed to be more efficient.

The dimension of SOM is a key parameter for determining the size of the output space,
which affects the number of clustering results. In general, the number of the clustering
results increases with the increasing dimension of SOM. We trained the SOM model with
four dimensions (5 × 5, 7 × 7, 10 × 10, and 15 × 15). The epoch and learning rate of SOM
were 200 and 0.01, respectively. After the cluster results were determined, input variables
were selected for each cluster (streamflow sub-process) using the RF algorithm. Finally, a
DBN model was trained separately using the selected input variables and the streamflow of
different streamflow sub-processes. The number of hidden layers, number of neurons, and
epoch were determined through trial and error. The MAE loss function and the efficient
Adam version of the stochastic gradient descent were used to train the DBN model.

3.4. Performance Evaluation Criteria

Model performance was evaluated in terms of the root mean squared error (RMSE),
Nash–Sutcliffe efficiency coefficient (NSE), coefficient of determination (R2), mean absolute
error (MAE), and error of peak discharge (EQp). These indicators can be defined as follows:

NSE = 1− ∑N
i=1 (yi − ŷi)

2

∑N
i=1 (yi − yi)

2 (12)

R2 =

(
∑N

i−1 (yi − yi)
(
ŷi − ŷi

))2

∑N
i−1 (yi − yi)

2∑N
i−1
(
ŷi − ŷi

)2 (13)
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RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(14)

MAE =
∑N

i=1| ŷi − yi |
N

(15)

EQp =

∣∣ Qp − Q̂p
∣∣∣∣ Qp

∣∣ × 100% (16)

where ŷi and yi represent the streamflow of the predicted and observed hydrographs at
time i, yi denotes the average observed streamflow at time i, ŷi is mean of the predicted
streamflow, n is the number of data points, Q̂p and Qp are the predicted and observed peak
streamflow, respectively. NSE ranges from 1 (a perfect fit) to −∞. Values less than zero
indicate that the observation mean would be a better predictor than the model. The RMSE
may range from 0 (a perfect fit) to +∞ (no fit) based on the relative range of the data. R2

has a range of 0–1, with higher values indicating a higher degree of co-linearity.

4. Results and Discussion
4.1. Data Clustering

The SOM model was firstly used to group the hydro-meteorological data into a cer-
tain number of clusters. The number of clustering results can be objectively obtained.
Figure 5 shows the density maps obtained from SOM with four dimensions (5 × 5,
7 × 7, 10 × 10, and 15 × 15). According to the density maps of Figure 5a–d, the hydro-
meteorological data were clustered into two sub-groups, three sub-groups, seven sub-
groups, and 10 sub-groups, respectively. After the SOM training is done, the members
of each cluster can be also obtained. A DBN model was trained for each cluster. Table 2
shows the values of the performance parameters for the four dimensions of SOM during
the calibration and validation periods. For the 7 × 7 dimension of SOM, all input data were
clustered into three sub-groups, and the performance parameters showed the best values.
With the increasing number of dimensions, the number of clustering results increased
and the performance of the model declined rapidly. With the total number of samples
remaining unchanged and the number of dimensions of SOM increasing, the number of
clustering results increased, and the numbers of each cluster decreased. Consequently, the
model performance deteriorated and the separate DBN model could not learn the sufficient
sample features of each cluster. Therefore, it is very important for streamflow forecasting to
select an appropriate dimension for training the SOM according to the number of samples.

Considering the abovementioned results, the SOM with the 7 × 7 dimension was
adopted. All input data were grouped into three clusters, as shown in Figure 5b. Cluster
B showed the maximum number of members which is 1542 (the sum of the numbers in
all grids surrounded by the blue line of cluster B). Next, the clustering was explored for
streamflow during a typical flood season (Figure 6). During this typical flood season, the
maximum daily streamflow closed to 12,000 (m3/s). It is interesting to note that the hydro-
meteorological data during the stage of base flows (no rainfall or sprinkling rainfall) were
grouped into cluster B. The hydro-meteorological data during the rising limb stage of the
streamflow were grouped into Cluster A, which is influenced by the duration and intensity
of rainfall. The hydro-meteorological data during the stage of the falling limb were grouped
into Cluster C, which is dominated by the sprinkling rainfall and storage characteristics of
the basin. The clustering results suggest that the hydro-meteorological data were grouped
according to the different hydro-meteorological conditions corresponding to respective
streamflow sub-processes.
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Table 2. Performance of the DBN model for four dimensions of SOM during the calibration and
validation periods.

Period Dimension of SOM NSE R2 RMSE MAE

Calibration

5 × 5 0.90 0.90 262.79 140.45
7 × 7 0.94 0.95 256.12 111.71

10 × 10 0.72 0.87 471.45 221.42
15 × 1 5 0.63 0.82 612.35 361.87

Validation

5 × 5 0.89 0.90 263.35 141.98
7 × 7 0.91 0.93 261.66 129.17

10 × 10 0.73 0.86 442.13 241.67
15 × 15 0.65 0.80 601.23 354.13

4.2. Input Variable Selection

The RF algorithm-based input variable selection method was used to determine
the final input variables for streamflow during different stages. The importance scores
of candidate input variables were calculated using the RF algorithm. Candidate input
variables were then sorted according to the importance scores. The input variables at the
top of the order were selected, and the total scores of the selected input variables were
greater than 0.95. Table 3 shows the order of the selected input variables for different
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clusters. According to the results, Qt−1 has a closer relationship with Qt than other inputs.
The selected input variables varied for different clusters to a certain extent. Cluster A,
which represents data during the rising limb stage, has a strong relationship with the
previous streamflow, previous rainfall, and previous surface soil moisture, but has a weak
relationship with evaporation. Cluster B, which represents data during the base flow stage,
shows a strong relationship with previous streamflow, rainfall, surface soil moisture, and
evaporation. Similar to Cluster A, cluster C, which represents data during the falling limb
stage, also shows a poor relationship with evaporation.
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Figure 6. SOM clustering results of streamflow during a typical flood season.

Table 3. Input variables for different clusters selected using the RF algorithm.

Out Variable Group Input Variables and Importance Scores

Q (t)
Cluster A Q (t − 1), 0.67; R (t − 3), 0.10; Q (t − 2), 0.07; R (t − 2), 0.04;

Q (t − 3), 0.04; S (t − 3), 0.04;

Cluster B Q (t − 1), 0.65; R (t − 3), 0.08; Q (t − 2), 0.08; S (t − 3), 0.05;
R (t − 2), 0.04; E (t − 3), 0.04; R (t − 4), 0.03;

Cluster C Q (t − 1), 0.69; Q (t − 2), 0.12; S (t − 3), 0.07; R (t − 3), 0.05;
R (t − 2), 0.02;

Note: Q: streamflow; R: rainfall; S: surface soil moisture; E: evaporation.

4.3. Performance Comparison between the Integrated Framework and Single DBN Model

Figure 7 shows the statistical characteristics of the validation dataset (2005–2014). In
Figure 7a, the upper boundary does not exceed 3500 m3/s. Due to the storage characteristics
and continuous rainfall in the catchment during the flood season, the validation dataset
contained many outliers. In the validation dataset, the upper boundary (3500 m3/s) was
exceeded on 113 days (10.1%), and daily streamflow exceeded 10,000 m3/s on five days.
As shown in Figure 7a, values forecasted by the single DBN model were smaller than those
observed when the daily streamflow exceeded 10,000 m3/s. In contrast, the SOM-RF-DBN
framework provided forecasts more consistent with the observation data. The cumulative
distribution of the modeled and observed data is shown in Figure 7b. When the cumulative
distribution value is less than 0.85, the three curves of cumulative distribution nearly
coincide. However, when the value is greater than 0.85, the curve of DBN deviates from
the other two curves. The single DBN model and SOM-RF-DBN framework exhibited
similar performances in small-volume streamflow forecasting (Figure 7). However, the
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single DBN model showed poorer performance in large-volume streamflow forecasting.
The statistical characteristics of the validation dataset therefore not only showed that the
daily streamflow characteristics of the Xiantao hydrological station are highly complex
and difficult to forecast but also preliminarily showed that the constructed integrated
framework is better than the single DBN model for daily streamflow forecasting.
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The forecasting performance of the two models was also quantitatively analyzed.
Table 4 compares the performances of the single DBN and SOM-RF-DBN models for
streamflow forecasting. The DBN and SOM-RF-DBN models were quantitatively analyzed
according to five performance parameters. The NSE value of the SOM-RF-DBN model was
greater than 0.91, while that of the single DBN model was less than 0.85 for the calibration
and validation periods. Notably, the EQP value of the SOM-RF-DBN model was only half
that of the single DBN model. These results indicate that the SOM-RF-DBN model can
accurately forecast peak flow. The accurate forecasting of flood peak streamflow is critical
for forecasting hydrological processes.

Table 4. Comparison of the performances of the single DBN and the integrated framework (SOM-RF-
DBN) for daily streamflow forecasting during the calibration and validation periods.

Datasets Models NSE R2 RMSE MAE EQp

Calibration

1980–2004
DBN 0.85 0.89 446.20 194.83 9.95%

SOM-RF-DBN 0.94 0.95 256.29 111.71 4.84%

Validation

2005–2014
DBN 0.81 0.89 404.77 197.53 10.34%

SOM-RF-DBN 0.91 0.93 261.66 129.17 5.74%

Figure 8 shows scatter plots of the observed and forecasted streamflow values. The
R2 values of the DBN and SOM-RF-DBN models were 0.89 and 0.93, respectively. The
higher R2 of the SOM-RF-DBN framework indicates its capability in accurately constructing
non-linear relationships between the selected input variables and observed streamflow. As
shown in Figure 8a, the forecasting results of the single DBN model exhibits more scattering
with many abnormal values. In contrast, the results of the SOM-RF-DBN model are less
scattered (Figure 8b). Overall, the integrated framework is more suitable for streamflow
forecasting than the single DBN model, and it also shows a better correlation with the
observation data.
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Figure 9 shows hydrographs of the observed and forecasted streamflow using the
single DBN model and SOM-RF-DBN framework for the validation period. During the
flood seasons throughout the ten years, the peak streamflow in 2005 and 2011 exceeded
10,000 m3/s. The SOM-RF-SOM framework could forecast peak streamflow better than the
single DBN model. In 2009, 2011, and 2014, the EQp values of SOM-RF-SOM framework
were approximately half those of the single DBN model, approximately one-third that
of the single DBN model in 2006. Even for the remaining years, the EQp values of the
SOM-RF-SOM framework remained lower than those of the single DBN model. This
proves that the single DBN model has weaker ability to forecast flood peaks than the
SOM-RF-DBN framework. The forecasted values of the single DBN model fluctuated
abnormally compared to the observed values, irrespective of whether the streamflow
volume was large or small. In contrast, the SOM-RF-DBN framework did not exhibit
such fluctuations. The fluctuations of forecasted values by the single DBN model were
especially more pronounced in 2009, 2012, 2013, and 2014, while the flood hydrograph of
the SOM-RF-DBN framework almost coincided with the hydrograph of the observation
data. The comparison of daily streamflow forecasting between the single DBN model and
SOM-RF-DBN framework proved that the SOM based analysis of hydrological data can
improve the performance of DBN models in simulating and forecasting daily streamflow.

Table 5 presents the results of streamflow forecasting at different lead times (one to
two days) for the single DBN and SOM-RF-DBN models. In general, the SOM-RF-DBN
framework provided better forecasting results than the single DBN model at different lead
times. The values of performance parameters were better for the SOM-RF-DBN framework
than for the single DBN model in both the calibration and validation periods. The EQp
values of the SOM-RF-DBN framework at one and two days lead time were also less than
those of the DBN model to varying degrees. These results further confirm that the SOM-
RF-DBN model has a good performance in flood peak flow forecasting. With the increase
of the forecasting period, the performance of the two models decreased, but the values
of NSE, R2, RMSE, MAE, and EQp did not show very clear trends. Based on the above
results, it can be concluded that the SOM-RF-DBN framework can accurately forecast highly
complex streamflow. Accordingly, the integrated SOM-RF-DBN modeling framework can
be considered suitable for hydrological research.
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Table 5. Performances of the single DBN model and SOM-RF-DBN framework in streamflow
forecasting at different lead times (1–2 d).

Time Period Models NSE R2 RMSE MAE EQp

t + 1
Calibration

DBN 0.80 0.83 474.83 235.13 12.81%
SOM-RF-DBN 0.86 0.88 332.54 154.67 8.42%

Validation
DBN 0.77 0.81 464.30 228.22 12.05%

SOM-RF-DBN 0.87 0.89 324.45 139.27 7.89%

t + 2
Calibration

DBN 0.68 0.70 661.08 323.73 18.30%
SOM-RF-DBN 0.72 0.74 578.45 291.78 15.64%

Validation
DBN 0.64 0.64 658.06 317.03 18.36%

SOM-RF-DBN 0.70 0.71 610.76 301.21 16.81%

Kratzert et al. (2018) used the LSTM model to simulate rainfall-runoff processes and
obtained better results than those based on physical mechanisms [40]. Hu et al. (2018) used
an artificial neural network as well as an LSTM network model to simulate the rainfall
runoff process for flood events, and the LSTM network model provided better results
than the ANN model [41]. We therefore, used the same input data with our model to
train the LSTM model for forecasting streamflow. The NSE values of the LSTM model
were 0.91 and 0.90 for the calibration and validation periods, respectively, which are better
than those of the single DBN model. Compared with the LSTM model, the NSE values
of the SOM-RF-DBN model is also higher. Although the LSTM model has a memory
unit for simulating complex streamflow, it still could not provide deep insight into the
characteristics of streamflow processes.

5. Conclusions

This study proposed an integrated framework (SOM-RF-DBN) for daily streamflow
forecasting by integrating the physical understanding of different flow regimes into the
modelling process. The integrated framework integrates SOM for identifying streamflow
sub-processes, a RF algorithm for selecting input variables, and DBN for constructing the
complex relationships between the selected input variables and streamflow for different
sub-processes. This framework was successfully applied to the forecasting of continuous
daily streamflow at the Xiantao hydrological station in the Hanjiang River Basin. The main
findings are as follows:

(1) The integrated framework can improve the performance of the single neural net-
work model for daily streamflow forecasting. The NSE values of the integrated framework
exceeded 0.9 for both the calibration and validation periods. The relative error of the peak
flood derived from the integrated framework were reduced by 4.6%, compared with the
single DBN model.

(2) The integrated framework, which incorporates the physical interpretation of stream-
flow processes and considers changes of relationships between the selected input variables
and the streamflow of different sub-processes, can provide a better understanding of the
complex characteristics of different flow regimes during streamflow generation processes,
thus improving the forecasting accuracy and reliability of streamflow forecasting based on
data-driven models.

In the future, we will improve the performance of the integrated framework for long-
term prediction by applying more input variables. In addition, we will add rigorous
structural validity to this framework because it is often ignored in neural network models.
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