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Abstract: The step-type energy dissipator is widely used to construct small- and medium-sized
reservoirs with its high energy dissipation rate. In order to further improve its air entrainment
characteristics and energy dissipation, and reduce the influence of cavitation, in this paper, we added
a trapezoidal energy dissipation baffle block at the convex corner of the traditional step to form a
trapezoidal energy dissipation baffle block-step combination energy dissipator. We used a combina-
tion of hydraulic model experiments and numerical simulation to study the hydraulic characteristics.
The results showed that the trapezoidal energy dissipation baffle block-step combination energy
dissipator initial entrainment point, with the increase in flow rate, gradually moved backward. A step
horizontal surface pressure change in the cavity recirculation area showed a prominent “V” shape; in
front of the trapezoidal energy dissipation baffle block, there was a rising trend, and in the energy
dissipation baffle block gap, there was a declining trend. The step vertical surface pressure showed a
decreasing trend, and negative pressure appeared near the convex angle. The cross-section velocity
distribution presented a trend of being small at the bottom and large at the surface, with a large
velocity gradient in the longitudinal section of the energy dissipation baffle block and a small velocity
gradient in the longitudinal section of the nonenergy dissipation baffle block. The energy dissipation
rate reached more than 70% within the test range, and the energy dissipation rate gradually decreased
with the increase in the flow rate. The combined energy dissipator is conducive to reducing the
cavitation hazard and improving the energy dissipation effect, providing a reference for engineering
design and existing step energy dissipators to remove risks and reinforcement.

Keywords: step dissipator; trapezoidal energy dissipation baffle block; air entrainment characteristics;
energy dissipation characteristics

1. Introduction

More than 98,000 reservoirs have been built in China, among which more than 94,000
are small reservoirs, accounting for more than 90% of the total [1]. In the construction of
small reservoirs, to solve the problem of energy dissipation of the downstream flow, it is
imperative to choose an energy dissipation method with good effect and low engineering
cost. The step-type energy dissipator is one of the better forms.

The step-type energy dissipator changes the water flow structure, generates an en-
ergy dissipation vortex at the step, and promotes the energy dissipation of the water flow
through the internal turbulence of the water flow, which effectively increases the energy
dissipation effect. Researchers have conducted a series of studies on the hydraulic charac-
teristics of traditional step dissipators. In terms of the water flow pattern, Chanson [2] and
Ohtsu et al. [3] proposed the boundary equations of the step nappe flow and skimming flow
regime. In terms of step pressure characteristics, Mator et al. [4], Sanchez-Juny et al. [5], and
Amador et al. [6] analyzed the pressure variation law on the horizontal and vertical surfaces
of the steps, and found that negative pressure is generated on the vertical surface of the step
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near the convex corner position, and this area of negative pressure is prone to producing
cavitation hazards, which was verified in the experiments of Frizell et al. [7]. In actual
projects, cavitation has also occurred to varying degrees in step spillways, such as the New
Croton Dam in the United States, the Dona Francisca Dam in Brazil [8], the Danjiangkou
Hydropower Station [9], and the step spillway in the Suofengying Hydropower Station [10]
in China. In terms of air entrainment characteristics, Chanson et al. [11] and Bung [12]
analyzed the inception point of aeration and the sectional entrained air concentration of
the step spillway, and proposed a calculation formula. Ghaderi et al. [13] compared the
experiment and simulation results to verify the RNG k-ε turbulence model simulation
analysis of the step spillway flow air entrainment characteristics. Raza et al. [14] studied
the effect of slope on the initial air entrainment point, and they found that the steeper the
slope, the shorter the length of the nonentrained flow zone. In terms of energy dissipation
characteristics, the energy dissipation rate of the step spillway is much higher than that
of the traditional smooth spillway, so the size of the downstream dissipation basin can
be reduced [15]. Salmasi et al. [16] studied the effect of the step slope and number on the
energy dissipation characteristics of the step spillway, and the results showed that the
energy dissipation rate increased with the increase in the step slope number. Moreover,
some researchers have proposed the use of a pool step-type spillway to increase the energy
dissipation effect of the step spillway [17–19].

In summary, a lot of research has been conducted at the domestic and international
levels on the flow pattern, pressure characteristics, air entrainment characteristics, and
energy dissipation rate of the step-type energy dissipator. However, it has been found that
the negative pressure near the convex corner of the vertical surface of the step is larger
and easily able to produce cavitation damage, which when serious will affect the spillway
flood dissipation effect, and even affect the safety of hydraulic buildings. Based on this,
in this paper, we designed a combined trapezoidal energy dissipation baffle block-step
energy dissipator; that is, the trapezoidal energy dissipation baffle block was arranged
at the convex corner of the step. We used model tests and numerical simulation to study
the effect of adding a trapezoidal energy dissipation baffle block on the air entrainment
effect, pressure distribution, flow rate characteristics, and energy dissipation rate of the
step energy dissipator. The main purpose was to reduce the negative step pressure, reduce
the cavitation hazard, improve the energy dissipation rate, and provide a reference for
the structural design of the trapezoidal energy dissipation baffle block-step combination
energy dissipator.

2. Construction of Mathematical Models

The computational framework used by the Flow-3D software is a hybrid framework
that dynamically tracks the free water surface using the Tru-VOF technique, which avoids
the calculation of the gas phase and reduces the computational time [20]. Therefore, in this
paper, Flow-3D software was used, and the RNG k-ε turbulence model was selected for
numerical simulation. It has been shown that the RNG k-ε turbulence model can consider
the effect of small-scale vortex motion and has better accuracy for the simulation of the step
dissipator flow characteristics compared with the standard k-ε model [21,22]. The finite
difference method was used to solve the algebraic equations iteratively; the VOF method
was used to track the free water surface; the air entrainment model, density evaluation
model, and drift-flux model were used to simulate the water–air two-phase flow.

2.1. Turbulence Model

The controlling equation for the RNGk-εmodel is as follows:
Continuity equation:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (1)
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Momentum equation:

∂(ρui)

∂t
+

∂
(
ρuiuj

)
∂xj

= − ∂ρ

∂xi
+

∂

∂xj

[
(µ + µt)

(
∂ui
∂xj

+
∂uj

∂ui

)]
(2)

k equation:

∂(ρk)
∂t

+
∂(ρkui)

∂xi
=

∂

∂xj

[
σk(µ + µt)

∂k
∂xj

]
+ Gk − ρε (3)

ε equation:

∂(ρε)

∂t
+

∂(ρεui)

∂xi
=

∂

∂xj

[
σε(µ + µt)

∂ε

∂xj

]
+ C1ε

ε

k
Gk − C2ερ

ε2

k
(4)

where ρ is density; t is time; ui and uj are velocity components; xi and xj are coordinate
components; µ is the molecular viscosity coefficient; µt is the turbulent viscosity coefficient,
taken as 0.0845; σk and σε are the Prandtl numbers corresponding to the turbulent kinetic
energy k and the turbulent kinetic energy dissipation rate ε, respectively; Gk is the turbulent
kinetic energy generation term due to the average velocity gradient; C1ε and C2ε are constant
terms, C1ε = 1.42 and C2ε = 1.68.

2.2. Air Entrainment Related Models

In this paper, we used the air entrainment model, the density evaluation model, and
the drift-flux model to simulate the air entrainment in water. The air entrainment model
was used to simulate the process of air entrainment at the free water surface. After the
air was entrained into the water body, its diffusion and movement were controlled by the
density evaluation and drift-flux models [23].

Air entrainment model: It was assumed that the air entrainment on the free surface
of the water flow is controlled by the destabilizing force linearly related to the turbu-
lent kinetic energy and the stabilizing force related to both surface tension and gravity.
The air entrainment phenomenon occurs when the destabilizing force is larger than the
stabilizing force.

LT =
µ

3
4
T k
ε

(5)

Pt = ρmk (6)

Pd = ρmgnLT +
σ

LT
(7)

Sa =

{
Kair As

[
2(Pt−Pd)

ρm

]
Pt > Pd

0 Pt ≤ Pd
(8)

where LT is the turbulence length scale; ρm is the mixed-phase density; gn is the gravitational
normal component to the water surface; σ is the surface tension coefficient; Sa is the volume
of gas admixed into the mesh per unit time; Kair is the scaling factor and the default value
is 0.5.

Density evaluation model: After air entrainment occurs, the bubbles are transported
and turbulently diffused by the water column, and the controlling equation is:

∂c
∂t

+
∂

∂xi
(Uaic)−

∂

∂xi

(
Dc

∂c
∂xi

)
=

Sa

Vc
(9)

where c is the air admixture density; Uai is the velocity of motion of the air phase [10,24];
Dc is the diffusion coefficient; Sa is the air admixture source term in Equation (8); Vc is
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the mesh volume. The average density of the two-phase flow is calculated using the
following equation:

ρb = (1− c)ρw + cρa (10)

where ρa is the air density; ρb is the average density of the two phases of water and air; ρw
is the density of water.

Drift-flux model: This reflects the buoyancy force, interphase drag, and interaction
between bubbles in the motion of the water–air two-phase flow. The model assumes that
the slip velocity between the two phases of water and air is a constant, and the equation of
motion of the air in water is:(

1
ρw
− 1

ρa

)
∇p =

(
(1− c)ρw + cρa

c(1− c)ρwρa

)
KUr (11)

where Ur is the slip velocity, and K is the interphase drag coefficient, calculated by the
following equation:

K =
α

2Vp
Apρc

(
CdUr +

12µc

ρcRp

)
(12)

where Ap is the cross-sectional area of the bubble; Cd is the custom resistance coefficient; ρc
is the density of the continuous phase; µc is the dynamic viscosity of the continuous phase;
Vp is the volume of a single bubble; Rp is the bubble radius.

2.3. Meshing and Boundary Conditions

The mathematical model was divided into three parts: the diversion channel, the step
stage, and the tailwater channel. In order to speed up the computational convergence, the
mesh block was divided into three mesh blocks according to the diversion channel, the step
stage, and the tailwater channel; a structured mesh was used, and the mesh refinement
process was carried out for the mesh of the step stage, which was the significance study,
with a grid size of 3 mm, as shown in Figure 1.
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Figure 1. Meshing pattern in the computational domain.

2.4. Sensitivity Analysis of Grids

To determine the correctness of the mesh size, a mesh sensitivity analysis was per-
formed for the step stage mesh using a square mesh of 8 mm, 6 mm, 4 mm, 3 mm, and
2 mm. In Figure 2, a comparison of the average water depth of the section at the 5th step
convex angle position for the same flow condition is given for the five mesh sizes. From
Figure 2, it can be seen that there are differences in the water flow section’s water depth
under different mesh sizes. The average water depth gradually decreases with the decrease
in the mesh size, and gradually stabilizes when the mesh size is 3 mm and 2 mm. The
maximum difference was only about 0.7%; a further reduction in the mesh size had little
effect on improving the calculation accuracy. In addition, the computation time significantly
increased when performing simulations with a mesh size of 2 mm, so a square mesh of
3 mm was used for this simulation.
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3. Experimental Validation of Mathematical Models
3.1. Experimental Systems

The experimental system in this paper mainly consisted of an upstream water tank, a
diversion channel, a step stage, a tailwater channel, a water cistern, and an underground
reservoir to form a circulatory system. A schematic diagram of the experimental device
and model arrangement profile is shown in Figure 3. The length of the diversion channel
was L1 = 1 m and the width was W = 0.2 m. The step stage consisted of six steps, the
slope ratio was 1:3, the length of a single step was L2 = 0.18 m, the height was h = 0.06 m,
and the width was s = 0.2 m. The model arrangement of two experimental schemes is
shown in Figure 4: type I for the traditional step energy dissipator scheme; type II for the
trapezoidal energy dissipation baffle block-step combination energy dissipator scheme.
In the horizontal plane of the step at the convex angle position, the trapezoidal energy
dissipation baffle block was placed. The trapezoidal energy dissipation baffle block lower
bottom length was la1 = 0.02 m, the upper bottom length was la2 = 0.01 m, the width was
lb = 0.02 m, and the height was lc = 0.02 m.
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dissipator; (b) Type II: trapezoidal energy dissipation baffle block-step combination energy dissipator.

The experiment used the dimensionless parameter ζ = hk/h to characterize the flow
rate, where hk is the critical water depth:

hk = 3

√
q2

g
(13)

where q is the water discharge per unit width, m2/s; g is the gravity acceleration constant,
m/s2. This paper selected four working conditions with ζ of 0.714, 0.936, 1.134, and 1.316
for the experiment.

3.2. Model Validation

The experimental and simulated values of the water surface lines of the two types
of step water flow at ζ = 1.316 were compared to ensure the reliability of the numerical
simulation calculation, and the results are shown in Figure 5. We took the bottom plate
downstream section 0-0 of the step as the reference plane. The vertical coordinate was the
relative elevation head d/dc, where d is the elevation head of the water flow and dc is
the total elevation of the step dissipator. The horizontal coordinate was position x1 from
the upstream of the step (see Figure 6 for the schematic diagram). As shown in Figure 5,
the simulation calculation results were in good agreement with the experimental results.
The maximum relative error along the water depth was 8.1%, proving that the simulation
method was reasonable and the calculation results reliable.
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4. Results and Discussion
4.1. Air Entrainment Characteristics

Water flows on the steps under the effect of strong turbulence and the boundary layer
development to the water surface. When the water surface is broken, the water quality
points leap away from the surface of the water, and then, due to gravity, move back down,
involving a large amount of air, such that the water is mixed with gas. The aerated flow
can reduce the cavitation damage of the step dissipator. Therefore, it is crucial to study the
air entrainment characteristics of the step dissipator.

Figure 7 compares the numerically simulated concentration of entrained air for type I
and type II at different ζ. The figure shows that the initial air entrainment point of both
types of step energy dissipator moves down with the increase in the relative critical water
depth. This is in conformity with the results obtained by [11]. Under each ζ working
condition, the initial air entrainment point of type II is about one step ahead of type I; the
entrained air concentration of type II is significantly larger than that of type I. Therefore,
installing additional trapezoidal energy dissipation baffle blocks on the steps can reduce
the length of the nonaeration flow region, increase the water-entrained air concentration,
and reduce the cavitation damage risk of the steps.

The initial air entrainment point distance Lc from the diversion channel was measured
for both types of steps. Considering the steps as rough bodies, their roughness is expressed
as k* = hcosα, and the friction coefficient f is expressed as:

f =
q√

gk3∗sinα
(14)

where α is the step slope and q is the water discharge per unit width. The relationship
between the step relative initial air entrainment point Lc/h and f is shown in Figure 8. The
figure shows that the initial air entrainment point of both type I and type II gradually moves
backward with the increase in the flow rate. The initial air entrainment point of type II is
more forward than type I. The difference Lc/h between the initial air entrainment point of
the two step energy dissipators gradually increases as the flow rate increases. Therefore, the
trapezoidal energy dissipation baffle block-step combination energy dissipator, compared
with the traditional step energy dissipator, can make the water flow in advanced aeration
and slow down the increased flow so the initial air entrainment point location moves
backward. The correlation equation between the initial air entrainment point location and
the flow rate for two step-type dissipators was fitted using simulated data, as follows:

Type I:
Lc

h
= 9.1556 f 0.6482 (15)

Type II:
Lc

h
= 7.4226 f 0.6981 (16)
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creases. Therefore, the trapezoidal energy dissipation baffle block-step combination en-

ergy dissipator, compared with the traditional step energy dissipator, can make the wa-

ter flow in advanced aeration and slow down the increased flow so the initial air en-
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Figure 7. Step air entrainment concentration: (a) Type I, ζ = 0.714; (b) Type II, ζ = 0.714; (c) Type I,
ζ = 0.936; (d) Type II, ζ = 0.936; (e) Type I, ζ = 1.134; (f) Type II, ζ = 1.134; (g) Type I, ζ = 1.316; (h) Type
II, ζ = 1.316.
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4.2. Pressure Distribution

Figure 9 shows the horizontal and vertical surface pressure distribution of both step
types at ζ = 0.936. In the legend, x2 indicates the horizontal surface distance from the
concave angle of the step, z1 indicates the vertical surface distance from the concave angle
of the step, and y indicates the different longitudinal profiles of the step. From Figure 9a, it
can be seen that in the region of 0–0.6 L2, the pressure variation pattern in the horizontal
plane is basically the same, with an obvious “V” shape. This is in conformity with the
results obtained by [5]. In the longitudinal section without the energy dissipation baffle
block (y = 0.1 m), the maximum pressure values of type I and type II are the same. However,
the minimum pressure value of type I is smaller than that of type II, and the position of the
peak and trough of type I appears backward. For type II without the energy dissipation baffle
block longitudinal section (y = 0.1 m) and with the energy dissipation baffle block longitudinal
section (y = 0.075 m), the peak and trough appear at the same location. The minimum pressure
value is the same, but the maximum pressure value is greater with the energy dissipation
baffle block longitudinal section (y = 0.075 m). At 0.6–1 L2, the pressure of type I decreases
uniformly; the pressure of type II decreases slowly in the region of 0.6–0.8 L2. After 0.8 L2, the
pressure of the longitudinal section without the energy dissipation baffle block (y = 0.1 m)
decreases rapidly and generates negative pressure in the region of 0.93–1 L2. In contrast,
the longitudinal section with the energy dissipation baffle block (y = 0.075 m) makes the
pressure increase from 0.8 L2 to the headwater surface of the energy dissipation baffle
block, due to the obstruction of the water flow by the energy dissipation baffle block. From
the cloud diagram of the step pressure distribution (Figure 10), it can be seen that by
arranging the energy dissipating baffle blocks at the convex corner of the step, the pressure
distribution on the horizontal surface of the step can be made more uniform. The impact
damage of water flow on the horizontal surface of the step can be reduced.
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block produces a sizeable positive pressure on the headwater surface. The top and 
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the phenomenon of water flowing off the wall at low flow rates. Therefore, trapezoidal 
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gy dissipation baffle blocks is less costly and more efficient. 

Figure 9. Pressure distribution on the horizontal and vertical surfaces of the step: (a) horizontal
surface pressure distribution graph; (b) vertical surface pressure distribution diagram.

From Figure 9b, it can be seen that the pressure of both types tends to decrease on
the vertical surface of the step. This is in conformity with the results obtained by [5]. In
the interval of 0–0.8 h, the pressure of type II is greater than that of type I; in the interval of
0.9–1 h, the pressure of type II is less than that of type I. The negative pressure range of
type II is smaller than that of type I, but the type II negative pressure maximum is larger
than that of type I. The pressure intensity of the longitudinal section of type II without the
energy dissipation baffle block (y = 0.1 m) and with the energy dissipation baffle block
(y = 0.075 m) is basically the same in the 0–0.6 h interval. After 0.6 h, the pressure is higher
in the longitudinal section of the nondissipated baffle block (y = 0.1 m), but the same
pressure value is found in the step convex angle position. As can be seen from the cloud
diagram of the step distribution (Figure 10), the arrangement of the energy dissipation
baffle block at the convex corner of the step can increase the pressure on the vertical surface
of the step and reduce the negative pressure area, thus reducing the cavitation area on the
vertical surface of the step. However, a larger negative pressure will be generated near
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the convex corner of the step, and corresponding measures need to be taken to prevent
cavitation damage in the project.
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Figure 10. Cloud diagram of the pressure distribution on the step surface of different types: (a) Type
I, y = 0.1 m; (b) Type II, y = 0.1 m; (c) Type II, y = 0.075 m.

The pressure change near the trapezoidal energy dissipation baffle block is shown in
Figure 11. Due to the obstructing effect of the trapezoidal energy dissipation baffle block
on the water flow in the mainstream area, the trapezoidal energy dissipation baffle block
produces a sizeable positive pressure on the headwater surface. The top and backwater
surfaces are prone to negative pressure, and the backwater surface is prone to the phe-
nomenon of water flowing off the wall at low flow rates. Therefore, trapezoidal energy
dissipation baffle blocks reduce the impact and cavitation damage to the steps. At the same
time, they will be subject to cavitation damage. However, compared to the repair costs after
impact and cavitation damage to the steps, replacing trapezoidal energy dissipation baffle
blocks is less costly and more efficient.
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4.3. Flow Velocity Distribution

Figure 12 shows the section flow velocity distribution at the convex angle position
for different types of steps at ζ = 0.936, where z2 is the water depth perpendicular to the
virtual bottom plate, zmax is the maximum water depth of the section, V is the section flow
velocity, and Vc is the critical flow velocity. It can be seen that the flow velocity of the two
types of step dissipators tends to increase gradually from the convex angle of the step to
the water surface and decreases near the water surface position. This is in conformity with
the results obtained by [19]. The flow velocity variation of type I from the convex corner
of the step to the water surface is slight. The flow velocity at all water depths is greater
than that of type II, so type II is more fully dissipating energy. Type II in the longitudinal
section with the trapezoidal energy dissipation baffle block (y = 0.075 m) flow velocity
variation is largest. In the longitudinal section without the trapezoidal energy dissipation
baffle block (y = 0.1 m), the flow velocity variation is smaller; in 0.2–0.4, the water depth
appears to be an abnormal region of higher flow velocity. The flow around the blunt-body
principle suggests that the trapezoidal energy dissipation baffle block blocks the flow in
the mainstream area, so the energy dissipation baffle block side of the water flow velocity
increases, resulting in an abnormally larger flow velocity area. The backwater surface of
the energy dissipation baffle block produces backflow and the flow velocity is lower, which
makes the section flow velocity vary in a wide range.
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Figure 13 shows the longitudinal section flow velocity vector and cloud diagram for
different types of steps at ζ = 0.936. It can be seen that the concave angle of the steps forms
an extensive range of vortex areas, and the vortex reduces the energy of the mainstream by
producing strong turbulent shear and momentum exchange with the upper mainstream,
achieving energy dissipation. The size of the vortex area of the two types of step energy
dissipators in the figure is basically the same. However, the range of low flow velocity
(V < 0.5 m/s) in the vortex area of type II is more extensive than that of type I, and the flow
velocity is lower, so the energy dissipation effect is better.

To further study the vortex structure of the trapezoidal energy dissipation baffle
block-step combination energy dissipator, this paper used the Q-criterion [25] for vortex
identification. The Q-criterion approach is based on the characteristic equation of the
gradient tensor and identifies the region where the second matrix invariant Q > 0 as a
vortex. Q is defined as follows:

Q =
1
2

(
‖B‖2

F − ‖A‖2
F

)
(17)

where A is the symmetric part of the velocity gradient tensor, corresponding to the de-
formation in the flow field; B is the anti-symmetric part, corresponding to the rotation in
the flow field. The symmetric tensor A has the effect of counteracting the rotation of the
anti-symmetric tensor B rigid body, so the physical meaning of the Q-criterion is that the
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vorticity of the rotational motion in the flow field is greater than the deformation motion,
which dominates.
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Figure 14 shows the Q-equivalent surface of the two types of step dissipators for
ζ = 1.134. It can be seen that a large number of vortex structures exist near the convex angle
of the step dissipator of type I. This is due to the sudden change of step boundary, which
causes the separation of the water flow boundary layer and the formation of the return flow
spin-roll zone and the upper mainstream zone on the step. The junction area between the
mainstream zone and the spin-roll zone produces a strong shear layer because of the large
flow velocity gradient, thus forming a vortex structure of greater strength [26]. Furthermore,
due to the development of boundary layers, a small number of vortex structures are present
near the sidewalls on both sides of the steps. The vortex structure near the convex corner
of the step dissipator of type II consists of two parts. One is the same as type I, formed
by the strong shear layer between the mainstream and spin-roll zones. The second is
the vortex structure formed around the dissipation baffle block due to the flow around
bluff bodies generated when the water passes through the trapezoidal dissipation baffle
block [27]. Therefore, the trapezoidal energy dissipation baffle block is arranged at the
convex corner position of the step, which makes the distribution of the step vortex structure
change greatly, and helps the energy dissipation of the step energy dissipator.
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4.4. Energy Dissipation Rate Analysis

In order to compare and analyze the energy dissipation effect of two types of steps,
two sections near the end of the upstream diversion channel and the downstream of the
last step were selected, and the energy dissipation rate was calculated using the following
formula with the downstream bottom plate as the reference surface:

η =
E0 − E1

E0
× 100% (18)

where E0 is the total upstream energy and E1 is the total downstream energy. The calculation
results are shown in Figure 15.
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Figure 15. Energy dissipation rate of two types of step dissipators.

The results showed that within the experimental range, the energy dissipation rate
of both types of step energy dissipators was above 70%. Under each flow condition, the
energy dissipation rate of type II was significantly larger than that of type I, and the
maximum increase in its energy dissipation rate was up to 6.67%. The energy dissipation
rate of both types of step energy dissipators decreased with the increase in flow, but the
decreasing energy dissipation rate of type II was lower than that of type I. Therefore,
arranging trapezoidal energy dissipation baffle blocks at the convex corners of the steps
can enhance the effect of step energy dissipation, and reduce the scouring damage of water
flow downstream.
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5. Conclusions

(1) Compared with the traditional step energy dissipator, the trapezoidal energy dissipa-
tion baffle block-step combination energy dissipator can increase the energy dissipa-
tion rate by about 6.67%, with better energy dissipation characteristics. The use of a
trapezoidal energy dissipation baffle block to improve the hydraulic characteristics of
the step energy dissipator is feasible.

(2) The trapezoidal energy dissipation baffle block-step combination energy dissipator has
a better air entrainment effect. Compared with the traditional step energy dissipator,
the trapezoidal energy dissipation baffle block-step combination energy dissipator can
advance the initial aeration point by one step and increase the air entrainment volume
of the flow. We also proposed the calculation formula of the initial aeration point of
the trapezoidal energy dissipation baffle block-step combination energy dissipator.

(3) The trapezoidal energy dissipation baffle block-step combination energy dissipator
has a lower risk of cavitation. By adding trapezoidal energy dissipation baffle blocks
at the convex corner of the step, the pressure variation law of the horizontal and
vertical surfaces of the traditional step is changed, which reduces the extreme value
of the pressure on the horizontal surface of the step and reduces the distribution area
of the negative pressure on the vertical surface of the step, thus reducing the risk of
cavitation of the step. The top and the backwater surface of the trapezoidal energy
dissipation baffle block have negative pressure, which can easily cause cavitation
damage, and certain protective measures will be needed for the actual project.

(4) The trapezoidal energy dissipation baffle block-step combination energy dissipator
has a lower flow velocity. The trapezoidal energy dissipation baffle block-step com-
bination energy dissipator mainstream cross-sectional flow velocity still follows the
law of a small bottom layer and large surface layer. However, compared with the
traditional step energy dissipator, the trapezoidal energy dissipation baffle block-step
combination energy dissipator mainstream section flow velocity change amplitude
is higher, the flow velocity is lower, the concave angle roll area low-flow-velocity
range is higher, and the energy dissipation effect is better. The trapezoidal energy
dissipation baffle block-step combination energy dissipator makes the vortex structure
more distributed in the vicinity of the trapezoidal energy dissipation baffle block,
which helps the energy dissipation of the step energy dissipator.
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Nomenclature

Ap the cross-sectional area of the bubble (m2)
C1ε constant terms (-)
C2ε constant terms (-)
Cd the custom resistance coefficient (-)
c the air admixture density (-)
Dc the diffusion coefficient (-)
d the elevation head of the water flow (m)
dc the total elevation of the step dissipator (m)
f friction coefficient (-)
Gk the turbulent kinetic energy generation term (kg/m/s−3)
gn the gravitational normal component to the water surface (m/s2)
h step height (m)
hk critical water depth (m)
K interphase resistance coefficient (-)
Kair scale factor (-)
K* roughness (m)
L1 length of diversion channel (m)
L2 step length (m)
Lc initial air entrainment point distance (m)
LT turbulence length scale (m)
la1 energy dissipating baffle block bottom length (m)
la2 energy dissipating baffle block upper length (m)
lb energy dissipating baffle block width (m)
lc energy dissipating baffle block height (m)
q single wide flow (m3/s)
Rp air bubble radius (m)
Sa volume of gas blended into the grid per unit time (-)
t time (s)
Uai velocity of motion of gas phase (m/s)
Ur slip speed (m/s)
ui i-direction velocity component (m/s)
uj j-direction velocity component (m/s)
V cross-sectional flow rate (m/s)
Vb grid volume (-)
Vc critical flow rate (m/s)
Vp volume of a single bubble (-)
W width of diversion channel (m)
x1 location upstream from the step (m)
x2 distance from the horizontal plane of the concave angle of the step (m)
xi i-directional coordinate components (-)
xj j-directional coordinate components (-)
y steps in different longitudinal sections (m)
z1 distance from the vertical plane of the concave angle of the step (m)
z2 water depth perpendicular to the virtual substrate (m)
zmax maximum water depth at section (m)
α slope (-)
ζ dimensionless parameters (-)
η energy dissipation (-)
µ molecular viscosity coefficient (-)
µc power viscosity of continuous phase (N·s/m2)
µt turbulent viscosity coefficient (-)
ρ density (kg/m3)
ρa density of air (-)



Water 2022, 14, 2239 16 of 16

ρb average density of water and gas phases (kg/m3)
ρc density of continuous phase (-)
ρm mixed-phase density (kg/m3)
ρw density of water (kg/m3)
σ surface tension coefficient (-)
σk the Prandtl number corresponding to the k (-)
σε the Prandtl number corresponding to the ε (-)
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