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Abstract: The damage caused by floods is increasing worldwide, and if floods can be predicted,
the economic and human losses from floods can be reduced. A key parameter of flooding is water
level data, and this paper proposes a water level prediction model using long short-term memory
(LSTM) and a gated recurrent unit (GRU). As variables used as input data, meteorological data,
including upstream and downstream water level, temperature, humidity, and precipitation, were
used. The best results were obtained when the LSTM–GRU-based model and the Automated Synoptic
Observing System (ASOS) meteorological data were included in the input data when experiments
were performed with various model structures and different input data formats. As a result of the
experiment, the mean squared error (MSE) value was 3.92, the Nash–Sutcliffe coefficient of efficiency
(NSE) value was 0.942, and the mean absolute error (MAE) value was 2.22, the highest result in all
cases. In addition, the test data included the historical maximum water level of 3552.38 cm in the
study area, and the maximum water level error was also recorded as 55.49, the lowest result. Through
this paper, it was possible to confirm the performance difference according to the composition of the
input data and the time series prediction model. In a future study, we plan to implement a flood risk
management system that can use the predicted water level to determine the risk of flooding, and
evacuate in advance.

Keywords: water level prediction; long short-term memory (LSTM); gated recurrent unit (GRU);
meteorology data

1. Introduction

Around the world, damage from natural disasters is increasing due to the abnormal
climate caused by global warming, and it is expected that the frequency and intensity of
natural disasters will continue to increase [1,2]. Compared to the 20 years from 1980 to
1999, both the number of and amount of damage caused by natural disasters during the
20-year period from 2000 to 2019 has increased. In particular, the increase in damage from
floods and storms was higher than that of other natural disasters. Figure 1 compares the
amount of damage caused by natural disasters during the period from 1980 to 1999 and
from 2000 to 2019 [3]. In the case of the United States, the loss due to natural disasters
occurred at an all-time high in 2017, with more than $306 billion in losses due to hurricanes
and heavy rains [4].

In order to reduce the damage caused by flooding, it is necessary to accurately predict
the flood and evacuate people and property located in the flood-damaged area at an
appropriate time [5,6]. However, flood prediction has many difficulties in forecasting
because there are many variables to consider, and each element has spatial and temporal
correlations. Methods for flood prediction are continuously being studied, and there are
mainly hydrological models and data-driven intelligent models.
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Figure 1. Total disaster events by type: 1980–1999 vs. 2000–2019 from Ref. [3]. 2020, Centre for Re-
search on the Epidemiology of Disasters (CRED) & UN Office for Disaster Risk Reduction 
(UNDRR). 

In the case of the hydrological model, it is a model that analyzes the characteristics 
of the hydrological gate and physically describes the discharge confluence point. It is 
based on the theory of fluid mechanics and is a method for researchers to derive a conflu-
ence equation by combining physical laws such as mass, momentum, and conservation of 
energy. It has been used in the past for flood prediction and management even before 
studies through machine learning and deep learning were actively conducted, and vari-
ous studies have been conducted using the model [7–12]. However, the model requires a 
deep hydrological knowledge of the researcher, and there is variability due to erosion of 
the topography over time, so it is difficult to use it in the long term. In addition, it is diffi-
cult to construct input data with various variables, and low prediction accuracy is ob-
tained due to non-linearity. Furthermore, since each river has different characteristics of 
the watershed, it is necessary to create an individual model applied to each river, so there 
is a lack of versatility [13]. 

In the case of a data-based intelligent model, it is a method of predicting water level 
and runoff through data analysis based on observed data. Data analysis and data mining 
technologies are being researched in many fields and are rapidly developing [14]. Regard-
less of fields such as medicine [15], economy [16,17], environment [18], and tourism 
[19,20], a great deal of research is being conducted by applying machine learning and deep 
learning, and it has been confirmed that it shows excellent performance. One of the data-
based intelligent models applied in the hydrological field for predicting and managing 
floods is the artificial neural network (ANN) model. The ANN model developed by [21] 
uses water level and meteorological data as input data and estimates the water flow by 
applying harmony search (HS) [22] and differential evolution (DE) [23]. By utilizing HS 
and DE, overfitting was prevented by updating the parameters of the architecture and 
selecting important features. Compared with the radial basis function neural network 
(BRFNN) [24] and multi-layer perceptron (MLP) [25] models, ANN with HS and DE was 
confirmed to show good performance, and it was proved that the ANN model can be used 
for water flow prediction. In addition, many studies have been conducted to predict key 
factors of flooding using models such as ANN-based water level prediction models and 
runoff prediction models [26–30]. However, most of the related studies utilize hydrologi-
cal data and meteorological data, which are categories of time series data, as input data 
[31,32]. In the case of the ANN model, there is a problem of insufficient memory when 
operating on sequential data and time series data and it is difficult to find an optimal 
parameter in the learning process [33,34]. 

Recently, deep neural network (DNN) data-based intelligent models with two or 
more hidden layers that have improved some problems of the ANN model have been 
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In the case of the hydrological model, it is a model that analyzes the characteristics of
the hydrological gate and physically describes the discharge confluence point. It is based
on the theory of fluid mechanics and is a method for researchers to derive a confluence
equation by combining physical laws such as mass, momentum, and conservation of
energy. It has been used in the past for flood prediction and management even before
studies through machine learning and deep learning were actively conducted, and various
studies have been conducted using the model [7–12]. However, the model requires a deep
hydrological knowledge of the researcher, and there is variability due to erosion of the
topography over time, so it is difficult to use it in the long term. In addition, it is difficult to
construct input data with various variables, and low prediction accuracy is obtained due to
non-linearity. Furthermore, since each river has different characteristics of the watershed,
it is necessary to create an individual model applied to each river, so there is a lack of
versatility [13].

In the case of a data-based intelligent model, it is a method of predicting water level
and runoff through data analysis based on observed data. Data analysis and data mining
technologies are being researched in many fields and are rapidly developing [14]. Regard-
less of fields such as medicine [15], economy [16,17], environment [18], and tourism [19,20],
a great deal of research is being conducted by applying machine learning and deep learning,
and it has been confirmed that it shows excellent performance. One of the data-based
intelligent models applied in the hydrological field for predicting and managing floods
is the artificial neural network (ANN) model. The ANN model developed by [21] uses
water level and meteorological data as input data and estimates the water flow by applying
harmony search (HS) [22] and differential evolution (DE) [23]. By utilizing HS and DE,
overfitting was prevented by updating the parameters of the architecture and selecting
important features. Compared with the radial basis function neural network (BRFNN) [24]
and multi-layer perceptron (MLP) [25] models, ANN with HS and DE was confirmed to
show good performance, and it was proved that the ANN model can be used for water
flow prediction. In addition, many studies have been conducted to predict key factors
of flooding using models such as ANN-based water level prediction models and runoff
prediction models [26–30]. However, most of the related studies utilize hydrological data
and meteorological data, which are categories of time series data, as input data [31,32]. In
the case of the ANN model, there is a problem of insufficient memory when operating on
sequential data and time series data and it is difficult to find an optimal parameter in the
learning process [33,34].

Recently, deep neural network (DNN) data-based intelligent models with two or more
hidden layers that have improved some problems of the ANN model have been extensively
studied. In this case, LSTM and GRU models based on recurrent neural networks (RNN),
which show excellent performance in time series data processing, are being widely used.
Le et al. [35] proposed an LSTM model for flood forecasting. In this study, daily runoff
and rainfall data were used as input datasets, and a performance comparison experiment
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was conducted according to the input data of the model. An experiment was conducted
in the Da River basin of Vietnam, and the performance comparison experiment of the
model according to the input data was conducted using the runoff and precipitation data
sets. The output of the model was configured to predict the amount of runoff for 1, 2, and
3 days into the future. The performance evaluation was conducted using the Nash–Sutcliffe
efficiency (NSE) and root mean squared error (RMSE) indicators [36]. Finally, the NSE value
of the first day data was around 99.1%, the NSE value of the second day was 94.9%, and
the 3rd day NSE value was 87.2%, so it was possible to obtain more than 87.2% accuracy
for all output data. Through this study, it was confirmed that the LSTM model, which is
widely used for time series data processing, performed well enough for flood prediction.
In addition, RNN-based LSTM and GRU models are continuously being studied for flood
prediction and are showing good performance as they are specialized models for time series
data prediction [37–42]. In addition, there are many studies using artificial intelligence such
as ANN and RNN for flood management which consider the ratio of training data and
validation data [43] or which compare the performance according to the size of the input
data of the model [44]. All of these studies greatly affect the performance of the model, and
the difference in the current paper is that other types of meteorological data are used to
conduct a performance comparison experiment according to the meteorological data. As a
result of the experiment, the best data set for the study area obtained the best results when
water level data and ASOS data were used. There are two or more types of meteorological
data measured in most research areas. Therefore, as suggested in this paper, it is considered
that there is a possibility that the performance of the model will be improved if appropriate
meteorological data are used in the papers related to water level prediction.

In this paper, we propose an LSTM-GRU-based water level prediction model using
water level data and meteorological data as input data. In addition, two types of weather
data provided by the Korea Meteorological Administration, the Automated Synoptic
Observing System (ASOS) data set and the Automatic Weather System (AWS) data set, are
used to test which data are more suitable for the study area. In addition, for water level data,
data from upstream and downstream of Yeojubo, Icheon-si, Gyeonggi province, Republic
of Korea were used, and performance comparison experiments of the multi-LSTM model,
multi-GRU model, and LSTM-GRU model were conducted. A total of three evaluation
indicators were used: MSE, NSE, and MAE, and the maximum water level prediction error
was additionally used. The LSTM-GRU model proposed in this paper showed the best
performance among all cases. The mean squared error (MSE) value of the LSTM-GRU
model was 3.92, the Nash–Sutcliffe coefficient of efficiency (NSE) value was 0.942, the
mean absolute error (MAE) value was 2.22, and the maximum water level error was 55.49,
confirming the best performance in all indicators.

Section 2 describes the study area, training data, and deep learning techniques used in
model development. Experimental scenarios and model design are described in Section 3,
and a model performance comparison is conducted in Section 4. Finally, Section 5 reviews
and concludes the results of this study.

2. Methodology
2.1. Study Area

One of the main causes of flooding is localized heavy rain which is accompanied by
a large amount of rainfall in a short period of time. To select a test area where extensive
damage occurred due to rainfall, the data on the current situation of heavy rain damage by
region, published by the Ministry of Public Administration and Security of the Republic
of Korea, were used. The Ministry of Public Administration and Security is the central
administrative agency of the Republic of Korea in charge of affairs related to disaster
prevention, such as establishing, generalizing, and co-ordinating safety and disaster policies.
The current status of heavy rain damage by region over the past 30 years was investigated.
Figure 2 shows the amount of rain damage and the frequency of occurrence of rain damage
for each city in Korea.
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Figure 2. Number of rain damage events and total rain damage recovery amount (1988–2017).

In Gyeonggi province, the amount of rain damage recovery amount was the second
highest among all cities, and in the case of occurrence frequency, rainfall occurred with the
highest frequency among all cities. In addition, due to the geographical characteristics of
the Gyeonggi province region, it surrounds the capital of the Republic of Korea, which has
the highest population density, and a large population is also distributed in Gyeonggi-do.
Figure 3 shows the population density and total population of each city as of 2020.
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As described above, the Gyeonggi-do region, which is expected to receive extensive
damage in case of heavy rain and flood, was selected as the test bed area. Due to the
nature of rivers and the water flows from upstream to downstream, excessive runoff due to
rainfall occurs, causing flooding in the downstream area. Yeojubo, in Gyeonggi-do, was
selected as the final test bed for this study because there are measuring stations upstream
and downstream of the city.

2.2. Meteorological Dataset and Water Level Dataset

For the water level dataset, the Korea Water Management Information System
(WAMIS) [45] was referred to, and the water level measurement station used data from
upstream and downstream water level measurement stations in Yeojubo. The water level
dataset and the meteorological dataset are used as input data for the water level prediction
model in this paper, and data were measured at 1 h intervals from 2 October 2013 to
9 June 2022. The total dataset for upstream and downstream consists of 71,136 rows each
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and can be confirmed by visualizing the entire dataset upstream and downstream through
Figure 4.
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The upstream and downstream datasets maintain an appropriate water level except in
the summer when there is high rainfall; nevertheless, they have the same characteristic in
that the water level increases rapidly in the summer when there is high rainfall. However,
in the case of upstream of Yeojubo, it was confirmed that the amount of increase when
rainfall occurred compared to the water level in the period when there was little rainfall
was significant compared to the downstream recordings.

In this paper, two types of data provided by the Korea Meteorological Administration
were used for meteorological training data for the model. The Korea Meteorological
Administration uses a variety of meteorological equipment to observe the weather in
the field, such as ground, high-rise, marine, and aviation. In this paper, data from the
Automatic Weather System (AWS) and the Automated Synoptic Observing System (ASOS)
were used to observe the weather on the ground. In the case of the AWS, it is a device
designed for automatic observation without human observation, and it automatically
handles all processes such as real-time measurement, calculation, storage, and display. The
items to be observed include air pressure, temperature, humidity, wind direction, wind
speed, precipitation, etc., and are observed in real time. Both ASOS and AWS datasets
used temperature, humidity, and precipitation parameters as input data. Furthermore,
as with the water level data set, data measurements were carried out at 1-h intervals.
Figure 5 shows the quality information of AWS and ASOS data provided by the Korea
Meteorological Administration [46]. Korea has a hot and humid climate in summer, which
causes high rainfall and a large number of typhoons, and it can be seen that the accuracy
of AWS data operated unattended during the corresponding period is lower than that of
other periods or ASOS observation equipment. However, the location of the nearest AWS
observatory is located about 8 km away from Yeojubo, the actual test area, and the location
of the nearest ASOS observatory is about 20 km away from Yeojubo. Figure 6 shows the
locations of the water level and meteorological data stations in the test area.
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In the case of torrential downpours in summer, there is a characteristic that a large
amount of rainfall continues in a narrow range. Due to these characteristics, it was deter-
mined that the distance between the actual test bed and the meteorological data observation
point would affect the model performance. Therefore, we intend to conduct a performance
comparison experiment of the model according to the type of meteorological data used as
input data. Table 1 shows the information of the hydrology and meteorology stations used
and the datasets used.

Table 1. Information of meteorological station and hydrological station.

Stations Type Latitude Longitude Measurement Variable Period
(Measured Hourly)

Yeojubo
upstream Hydrology 37◦19′56 127◦36′34 Water level

2 October 2013~
9 June 2022

Yeojubo downstream Hydrology 37◦19′12 127◦36′43 Water level

AWS Yeoju Meteorology 37◦16′07 127◦38′22 Temperature, humidity,
precipitation

ASOS Icheon Meteorology 37◦15′50 127◦29′03 Temperature, humidity,
precipitation
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2.3. LSTM (Long Short-Term Memory)

LSTM is one of the recurrent neural network (RNN) architectures used in many fields
for time series data processing [47]. RNN is mainly used for temporally correlated data. It
considers the correlation between previous data and current data and predicts future data
through past data while having a structure in which signals cycle to predict future data.
However, there is a problem that the past data cannot be remembered for a long time [48,49].
LSTM is an architecture that has emerged to compensate for these problems. There are
a total of six parameters, and through the structure of four gates, not only short-term
memory but also long-term memory can be resolved, and the structure of the LSTM can be
confirmed in Figure 7.
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Figure 7. Structure of Long Short-Term Memory (LSTM).

The LSTM network has the same chain structure as the RNN, but the repeating
modules of the RNN are structured to exchange information with each other through four
layers, not just one tanh layer. The state in the LSTM cell is divided into two vectors,
where ht means a short-term state and Ct means a long-term state. Data can be added to or
removed from the cell state through sigmoid gates, each gate having an individual weight,
similar to a layer or series of matrix operations. It is designed to solve the problem of
long-term dependencies, as gates can also retain information from long-term historical data.

The first step in an LSTM network is to identify and decide which unnecessary infor-
mation to omit from the cell. The corresponding cell is called a forget gate, and the process
determines the output of the last LSTM cell (ht−1) at t− 1 and the current input (xt) at the
current time t by a sigmoid function. In this instance, the value that comes out through
the sigmoid function has a value between (0~1). In this case, the larger the value, the more
intact is the information of the previous state that is memorized. The smaller the value,
the more information about the previous state is forgotten, and the part to omit from the
previous output is decided.

After going through the forget gate, it goes through the process of selecting information
to store. Through the forget gate, the memory cell (ct−1) of the previous time is forgotten,
new information to be remembered is added, and the value of each element is determined
as newly added information. In this case, appropriate choices are made rather than
unconditionally accepting new information. A gate that performs a corresponding role
is called an input gate. In this instance, the sigmoid function is taken through the last
LSTM cell (ht−1) and the current value (xt), and the tanh function, which is an activation
function, is added. In this instance, after going through the sigmoid layer, the value is
between (0~1) and represents the degree to which new information is updated, and the
value after going through the tanh function has a value between (−1~1) and has a weight
representative of the importance given to it. Finally, the input gate performs the Hadamard
product operation on the two values, and the corresponding new memory is added to the
previous cell state (Ct−1) to become Ct.
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After judging the value of new information through the input gate and selecting
the information to remember, the next process is to select the output information. The
corresponding gate is called an output gate, and a sigmoid function is obtained through
the value of the current time (xt) and the value of the last LSTM cell (ht−1). The result
value through the sigmoid function performs the operation of the current cell state (Ct) and
Hadamard product, and the effect of filtering the value occurs and it becomes a hidden state.

ft = σ
(

xtW f + ht−1W f + b f

)
, (1)

gt = tanh
(
xtWg + ht−1Wg + bg

)
, (2)

it = σ(xtWi + ht−1Wi + bi), (3)

ct = ft � ct−1 + gt � it, (4)

ot = σ(xtWo + ht−1Wo + bo), (5)

ht = o� tanh(ct), (6)

Here, σ denotes a sigmoid function, W denotes a weight matrix, and b denotes a bias.
ct denotes the cell state of the current time, ct−1 denotes the cell state of the previous time,
and � means Hadamard product operation. Equation (1) refers to the process of going
through the forgetting gate, and in the process of going through the input data, the cell
state is updated through Equations (2)–(4). Next, it goes through the output gate indicated
by Equation (5), and the LSTM operates in a structure in which the final hidden layer state
is updated through Equation (6).

2.4. GRU (Gated Recurrent Units)

As one of the RNN architectures, GRU is a model inspired by LSTM. It is a model
that improves the problem of RNN and reduces the computation of updating the hidden
state while maintaining the solution to the long-term dependency problem of LSTM. The
performance is similar to that of LSTM [50]. In the case of LSTM, there is a problem that
overfitting occurs when there is insufficient data, because more parameters are required
compared to the existing RNN to solve the long-term dependency problem. GRU improved
this shortcoming through a LSTM structure change. GRU improved this shortcoming
through the structural change of LSTM. The structure of GRU is shown in Figure 8.
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In Figure 8 it can see that the structure is more concise than the LSTM structure of
Figure 7. The main difference from the LSTM is that GRU integrates the LSTM’s forget gate
and input gate and replaces it with an update gate. In addition, it has a simpler structure
than the LSTM by integrating the cell state and the hidden state, and the calculation cost is
low because the number of parameters is smaller than that of the LSTM.

The process corresponding to r in Figure 8 means the reset gate, and the hidden state
of the network is calculated through this process. The result of going through the reset
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gate is calculated with the information of the past hidden layer to calculate the candidate
group for the hidden state. Next, the part corresponding to z means the update gate.
Through this part, the functions of forget gate and input gate of LSTM are performed,
and how much current information is used is decided. The value calculated through the
corresponding gate is calculated with the candidate of the previously calculated hidden
state to determine the final hidden state. Equation (7) below corresponds to a reset gate,
Equation (8) corresponds to an update gate, and Equations (9) and (10) are equations for
determining hidden state candidates and the final hidden state.

rt = σ(xtWr + ht−1Wr + br), (7)

zt = σ(xtWz + ht−1Wz + bz), (8)

h̃t = tanh(xtWx + (r� ht−1)Wh + b), (9)

ht = (1− zt)� ht−1 + zt � h̃t, (10)

Since it cannot be concluded that either GRU or LSTM is better in terms of model
performance, in this paper, we conduct an experiment based on LSTM and GRU, and
compare their performance.

2.5. Performance Indicators

In this paper, three types of performance comparison indicators of the water level
prediction model are MSE (mean squared error), NSE (Nash–Sutcliffe coefficient of effi-
ciency), and MAE (mean absolute error). MSE is a widely used method for evaluating the
performance of a regression model. It is the square of the difference between the actual
observed value and the predicted value. The indicator is sensitive to outliers because
the difference between the observed and predicted values is squared. In the case of the
hydrologic model, the MSE index was selected because it can cause human casualties if
an outlier occurs in the prediction. In the case of NSE, it is a widely used indicator to
evaluate the performance of hydrological models. NSE has a value of (−∞~1) as an index
frequently used to evaluate the performance of hydrological models. A value closer to
1 means better model performance. In the case of MAE, it means the average of all absolute
errors of the observed and predicted values and has the advantage of intuitively checking
the performance of the model. The equations for the performance comparison metrics are
given as follows:

MSE =
1
N ∑N

i=1(OBSi − SIMi)
2, MSE > 0. (11)

NSE = 1−
(

∑N
i=1 OBSi − SIMi)

2

∑N
i=1 OBSi −OBS)2

)
,−∞ < NSE ≤ 1, (12)

MAE =
1
N ∑N

i=1|OBSi − SIMi|, MAE > 0, (13)

In this paper, performance evaluation is performed according to LSTM, GRU model,
and meteorological data through three indicators. Information on each piece of experiment
is described in Section 3.

3. Experiment and Model Design
3.1. Preliminary Experiment

A preliminary study was conducted on the LSTM–GRU-based water level prediction
model proposed in this paper. A preliminary experiment was conducted in three main ap-
proaches. First, for comparison with the LSTM–GRU model, an experiment was conducted
to find the optimal configuration of the model using only the LSTM and the model using
only the GRU. The second experiment was conducted to find the optimal number of units
for each LSTM layer and GRU layer of LSTM–GRU, and finally, the optimal input data size
was determined by comparing the performance according to the size of the input data. All
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factors have a great influence on the performance of the model, and the value that gives the
optimal result is used as the model parameter for this experiment through the preliminary
experiments. In this case, the water level prediction model is a regression model and
performance comparison is performed through the MSE value, which is a loss function.

3.1.1. Model Composition Experiment for Selecting a Performance Comparison Model

A comparison experiment was conducted according to the number of layers to find
the most suitable layer configuration of the water level prediction model composed of only
LSTM and the water level prediction model composed only of GRUs. This approach was
used because the model composed of LSTM and GRU is already showing good results in
the field of time series data processing. A large number of hidden layers in the model does
not necessarily show good performance, and if it is configured with excessive hidden layers
there may be side effects such as overfitting. Therefore, to compare with the LSTM-GRU
model proposed in this paper, a performance comparison experiment was performed on a
model composed of 1 to 3 hidden layers to determine the appropriate number of layers for
the LSTM and GRU models. Figures 9 and 10 show the experimental results according to
the number of hidden layers of LSTM and GRU.

Water 2022, 14, x FOR PEER REVIEW 11 of 23 
 

 

 
Figure 9. Train and validation loss values according to the number of LSTM layers. (a) Train loss on 
the number of LSTM layers; (b) validation loss on the number of LSTM layers. 

 
Figure 10. Train and validation loss values according to the number of GRU layers. (a) Train loss on 
the number of GRU layers; (b) validation loss on the number of GRU layers. 

In the case of the LSTM 1-layer model, the number of hyperparameters was 268,545 
and the training time was 1578.38 s. The final training loss value was 0.39 and the valida-
tion loss value was 1.68. In the case of the LSTM 2-layer model, the number of hyperpa-
rameters was 793,857 and the training time was 2315.98 s. The final training loss value was 
0.18 and the validation loss value was 0.59. In the case of the LSTM 3-layer model, the 
number of hyperparameters was 1,319,169 and the training time was 3401.99 s. The final 
training loss value was 0.21 and the validation loss value was 0.88. The LSTM 3-layer 
model had a slower learning rate and more hyperparameters than the LSTM 2-layer 
model but showed lower performance than the LSTM 2-layer model due to overfitting. 

Figure 9. Train and validation loss values according to the number of LSTM layers. (a) Train loss on
the number of LSTM layers; (b) validation loss on the number of LSTM layers.

In the case of the LSTM 1-layer model, the number of hyperparameters was 268,545
and the training time was 1578.38 s. The final training loss value was 0.39 and the validation
loss value was 1.68. In the case of the LSTM 2-layer model, the number of hyperparameters
was 793,857 and the training time was 2315.98 s. The final training loss value was 0.18
and the validation loss value was 0.59. In the case of the LSTM 3-layer model, the number
of hyperparameters was 1,319,169 and the training time was 3401.99 s. The final training
loss value was 0.21 and the validation loss value was 0.88. The LSTM 3-layer model had a
slower learning rate and more hyperparameters than the LSTM 2-layer model but showed
lower performance than the LSTM 2-layer model due to overfitting. Therefore, the model
composition that showed the best performance was the LSTM 2-layer model and it is used
as a comparative model in the experiments in Section 4.
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In the case of a model with GRU 1-layer, the number of hyperparameters was 202,241
and the training time was 1372.81 s. The final learning loss value was 0.39 and the val-
idation loss value was 2.03. In the case of the model with GRU 2-layers, the number of
hyperparameters was 596,993 and the training time was 211,319 s. The final learning loss
value was 0.34 and the validation loss value was 0.18. In the case of the model consisting
of GRU 3-layers, the number of hyperparameters was 991,745 and the training time was
3009.27 s. The final learning loss value was 0.36 and the validation loss value was 1.91. The
model composed of GRU 2-layers showed the best performance among the GRU models.
Although it was confirmed that the GRU 1-layer showed the lowest performance, it was
confirmed that the difference according to the number of layers was smaller than that of the
LSTM. GRU 2-layer is also used as a comparative model in the experiments in Section 4.

3.1.2. Comparative Experiment according to the Size of the Number of Units in the
LSTM-GRU Model

The number of units in the LSTM and GRU is also an important factor in learning the
model. Experiments were conducted to find the optimal number of units in the LSTM–
GRU. In order to find the optimal number of units, a result comparison experiment was
conducted when the number of units was set to 16, 32, 64, 128, and 256. Figure 11 shows
the experimental results according to the number of units of LSTM and GRU.

When comparing the results according to the number of units of five types, the best
results were obtained when the number of units was 256. It was confirmed that the
learning time was somewhat proportional to the number of units. As a result, there was no
significant difference in training loss values for the other four types except when the number
of units was 16. With a slight difference, it was confirmed that the best performance was
shown when the number of units was 256 and the second-best performance was confirmed
when the number of units was 32. When the number of units were 128 and 64, the training
loss value was the same.

The validation loss value also obtained the best performance when the number of
units was 256, performance then followed the order of 64, 32, 128, and 16 units. When the
number of units was 256, it was confirmed that both learning and verification showed the
best performance, and when the number of units was 16, it was confirmed that the worst
performance was shown. According to the experimental results, the number of units was
finally determined to be 256.
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3.1.3. Comparative Experiment according to Input Data Size

The size of the input data used for water level prediction is also one of the factors that
greatly affects the performance of the model. In order to find the appropriate size of input
data, we conducted a performance comparison experiment according to the size of various
input data. The size of the input data was composed of the past 5 h, 10 h, 15 h, 20 h, and
30 h, and the performance was compared according to each input data. The experimental
results can be seen in Figure 12.
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Finally, the case with the best performance used the past 20 h of data as input data.
The learning time increased as the size of the input data increased. There was no significant
difference in training loss values in all cases. However, when the size of the input data was
5 and 10, the loss value increased due to overfitting in the model. The learning loss value
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had a slight difference, and the best performance was obtained when using the past 20 h
of data.

Furthermore, in the case of the verification loss value, it was possible to check the
performance difference according to the input data. Similarly, when the input data size
was 5 and 10, a phenomenon in which the loss value bounced due to overfitting was
found. Even when the size of the input data was 30, the final convergence loss value was
high. Among the five types, it was confirmed that excellent performance was shown when
the input data size was 20 and 15, with the input data size of 20 showing slightly better
performance. Therefore, the size of the final input data was selected as 20.

3.2. Experimental Design

In this paper, an experiment was conducted according to the input data using the
LSTM model and the GRU model. There were three model configurations to be used in the
experiment as follows: 1. the multi-LSTM model with 2 LSTM layers; 2. the multi-GRU
model with 2 GRU layers; 3. the LSTM–GRU model with LSTM and GRU layers. As for
the dataset to be used for model training, a total of three datasets were used: a dataset
consisting of water level data only, a dataset consisting of water level data and AWS
meteorological data, and a dataset consisting of water level data and ASOS meteorological
data. We compared the performance of a total of nine models for three models and three
datasets. Table 2 shows the details of the experiment.

Table 2. Experiment Details.

Model Case Details of
Input Variable Meteorology Data Type

Multi LSTM

S1_LSTM Upstream water level, downstream water level —

S2_LSTM Upstream water level, downstream water level,
temperature, humidity, rainfall AWS

S3_LSTM Upstream water level, downstream water level,
temperature, humidity, rainfall ASOS

Multi GRU

S1_GRU Upstream water level, downstream water level —

S2_GRU Upstream water level, downstream water level,
temperature, humidity, rainfall AWS

S3_GRU Upstream water level, downstream water level,
temperature, humidity, rainfall ASOS

LSTM-GRU

S1_LSTM_GRU Upstream water level, downstream water level —

S2_LSTM_GRU Upstream water level, downstream water level,
temperature, humidity, rainfall AWS

S3_LSTM_GRU Upstream water level, downstream water level,
temperature, humidity, rainfall ASOS

S1 means a scenario using the water level dataset as training data, S2 means a scenario
using the water level dataset and AWS weather dataset as training data, and S3 uses the
water level dataset and the ASOS dataset as training data. Therefore, we conducted a
performance comparison experiment according to nine scenarios.

3.3. Model Structures

There are three structures of the water level prediction model used in this paper, and
the overall model configuration can be confirmed through Figure 13.

All three models commonly use data from the past 20 h as input data. In this instance,
when the learning data corresponding to scenario S1 is used, the form of the input data
consists of [None,2], and in the case of S2 and S3, it consists of [None, 5]. Finally, it goes
through the dense layer and eventually predicts the data of the 21st hour through the



Water 2022, 14, 2221 14 of 21

data of the past 20 h. In the case of the multi-LSTM, all hidden layers are composed of
LSTM layers, and in the multi-GRU, both layers are composed of GRUs. In the LSTM–GRU
model, the first hidden layer is composed of an LSTM layer and the second hidden layer is
composed of a GRU layer. The performance comparison results according to the input data
through the three models are described in Section 4.
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4. Results

The water level and meteorological data sets described in Section 2 were used for
the data for the experiment, and the experiment was conducted using the input data and
model consisting of nine types of input data using the three models described in Section 3.

The total collection period of all training and test data was measured at 1-h intervals
from 2 October 2013 to 9 June 2022. Of the data consisting of a total of 76,152 rows,
57,114 rows (75%) were used as training data and validation data, and the remaining
19,018 rows (25%) were used as test data. In the case of a flood prediction model, it
is important to predict a high-water level due to a rapid increase. In this instance, the
maximum value among all the measured water levels exists in the test data, so that the
validity of the model can be verified.

4.1. Training and Validation Result

MSE was used as the basic loss function for model training, and NSE and MAE
indicators were used as auxiliary indicators for actual test data to compare observed
values and predicted values. In addition, Adam was used as the optimization function,
the number of units of the LSTM and GRU models was 256, and the number of training
iterations (epoch) was 200, which was performed under the same conditions. The reason for
selecting the parameters of the model was to derive the optimal values through preliminary
experiments. In the case of the learning model, a total of nine cases were carried out as
in the case summarized in Table 2, information on each model training and validation
can be checked in Table 3, and the change in loss value according to epoch during model
training is shown in Figure 10. In the case of the learning model, a total of nine cases were
performed as in the case summarized in Tables 2 and 3 and shows information about each
model learning and validation. Figure 10 shows the change in loss value according to epoch
during model training.

According to the characteristics of the LSTM model, the multi-LSTM model had the
largest number of hyperparameters, and the multi-GRU model had the smallest number
of hyperparameters. In the case of training time, the GRU model took the least amount
of time, but it was confirmed that the number of hyperparameters and the training time
were not proportional. In addition, looking at Figure 14, the loss value converges to close
to 0 according to the epoch in all cases, and it was determined that the learning was well
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accomplished. It was considered that overfitting occurred, but for equality with other
models, the epochs were maintained at 200 and the experiment was conducted. In the case
of the MSE value used as the loss function, differences were found according to the input
data characteristics for each model. In the case of the multi-LSTM model, there was no
significant difference depending on the input data; however, in the case of multi-GRU and
LSTM–GRU, it was confirmed that the performance difference occurred depending on the
input data. In the case of the multi-GRU model, it was confirmed that the performance of
the S2 and S3 cases, including the weather data in the training data, was lower than that
of the S1 case, and it was confirmed that the performance was poor among the nine cases.
When checking the training and validation results, it was confirmed that GRU showed
good performance for S1 data with a small number of dimensions, but poor performance
for S2 and S3 with a large number of dimensions. However, in the case of the LSTM–GRU
model, it was confirmed that the verification MSE of the S1 model with a small dimension
of training data showed the lowest performance. Finally, the worst performing case was
S3_GRU which showed the worst results with 0.39 for training and 1.80 for validation, and
the case with the best performance showed the best results with S3_LSTM_GRU, 0.15 for
training and 0.19 for validation.

Table 3. Training and validation results.

Case Hyperparameter Training Time Train MSE (cm) Validation MSE (cm)

S1_LSTM 790,785 2510.91 s 0.22 0.31
S2_LSTM 793,857 2492.76 s 0.19 0.38
S3_LSTM 793,857 2606.77 s 0.18 0.34
S1_GRU 594,689 2072.76 s 0.22 0.49
S2_GRU 596,993 2141.85 s 0.48 1.75
S3_GRU 596,993 2305.55 s 0.39 1.80

S1_LSTM_GRU 660,225 2331.33 s 0.60 1.74
S2_LSTM_GRU 663,297 2343.19 s 0.17 0.28
S3_LSTM_GRU 663,297 2493.50 s 0.15 0.19
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4.2. Test Result

The data set for the test has the highest water level data during the entire data collection
period, and the performance of the model is judged by comparing the MSE, NSE, and MAE
indicators with the highest water level prediction error. In this instance, the highest water
level in the observed data was 3552.38 cm. The test results are shown in Table 4, and the
difference between the observed value and the predicted value according to the training
data for each model are shown in Figures 15–17.

Table 4. Test results.

Case Test MSE (cm) Test NSE Test MAE (cm) Maximum
Prediction(cm)

Highest Water Level
Prediction Error (cm)

S1_LSTM 5.02 0.917 2.74 3461.11 91.27
S2_LSTM 4.73 0.834 3.32 3434.51 117.87
S3_LSTM 4.88 0.905 2.35 3458.91 93.47
S1_GRU 7.73 0.835 3.93 3467.36 85.02
S2_GRU 5.65 0.430 3.36 3457.38 95
S3_GRU 5.89 0.315 6.22 3340.61 211.77

S1_LSTM_GRU 3.95 0.864 2.84 3466.67 85.71
S2_LSTM_GRU 5.02 0.920 2.88 3466.74 79.64
S3_LSTM_GRU 3.92 0.942 2.22 3490.36 55.49
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The test results are similar to the model training and validation results. In the multi-
LSTM model, no significant difference was found depending on the input data, but the
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NSE value obtained the best result when the data corresponding to the S1 case were used as
the input data. In addition, it was confirmed that the difference in the predicted maximum
water level included in the test data was 91.27 cm in the S1 case, which obtained the best
result. Among the LSTM models, when the S2 case data were used, the NSE was 0.834,
which was slightly lower than those of the S1 and S3 cases, and the maximum water level
prediction error was also the lowest at 117.87 cm.

In the case of the multi-GRU model, the lowest performance was confirmed in all cases
compared to other models. Similarly, in the results of verification it was confirmed that the
GRU-based water level prediction model effectively learned S1 with a small number of
dimensions from the experimental results but showed poor performance when the input
data had a large number of dimensions. When the data of S1 case were used, the best
results were obtained in the GRU model, but it was confirmed that the results were inferior
compared to other models. For S2 and S3, the NSE values were 0.2 and 0.3, respectively,
which were the lowest among the nine cases. Furthermore, in the case of S3, it was
confirmed that the maximum water level prediction error was 211.77, being the lowest
result among all scenarios.

The LSTM–GRU model showed the best performance on average among the three
models, and in the case of S1, it was confirmed that the NSE was slightly lower than that of
the LSTM model. However, in the case of S2 and S3, the NSE values were 0.920 and 0.942,
respectively, and the maximum water level error was 79.64 and 55.49, which showed much
better performance than other models.

Of these, when the S3 case was used, the best results were obtained among the nine
models in all evaluation indicators, including MSE, NSE, MAE, and maximum water
level prediction error. Therefore, it is determined that the most suitable weather data
for the test bed, Yeojubo, is the ASOS data corresponding to the S3 case in view of the
model’s performance.

5. Discussion

Due to global warming and abnormal climate changes, the frequency of and damage
from floods are steadily increasing. Therefore, many studies are being conducted for flood
management to minimize flood damage. Hydrological models and data-based intelligent
models are mainly used to predict the water level, the most important parameter of flooding.
In this paper, we propose the LSTM–GRU water level prediction model included in the
data-based intelligent model. In this study, Yeojubo in Gyeonggi-do, Korea was selected as
the test area, and the water level datasets upstream and downstream of Yeojubo were used.
In addition, using meteorological data, comparison experiments between ASOS data and
AWS data were conducted.

First, we conducted two experiments to find the most suitable parameters for the
LSTM–GRU model. The two experiments were as follows: 1. experiment according to the
number of units of the LSTM and GRU layers; and 2. performance comparison experiment
according to input data size. As a result of the experiment, the best results were obtained
when the number of units was 256, and the best performance was obtained when the
size of the input data was used for the past 20 h. Next, to select a comparative model, a
model composed of LSTM and GRU, which shows good performance in time-series data
processing, was used. In this case, a performance comparison experiment was conducted
according to the number of hidden layers to find the most suitable model configuration.
When both LSTM and GRU were composed of two hidden layers, the best performance
was shown, and multi-LSTM and multi-GRU models were selected as comparative models.

Next, a comparison experiment was conducted according to the three input data sets,
and the three data sets consist of the following: 1. water level dataset; 2. water level
dataset + AWS dataset; and 3. water level dataset + ASOS dataset. Experiments were
conducted on nine scenarios using three datasets for a total of three models, and the model
performance was evaluated using MSE, NSE, MAE, and maximum water level error. In the
case of MSE, as an evaluation index sensitive to outliers, it was selected because a fatal error
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can occur if an outlier occurs in response to a rapidly rising water level. In the case of NSE,
it is a model widely used for performance evaluation of hydrological models, and MAE
has the strength of intuitively checking errors. Lastly, the reason for using the maximum
water level error is that the historical highest water level of Yeojubo in the test data set
occurred, so it was used as an evaluation index to check to what extent the water level
can be predicted. In this instance, the LSTM–GRU model proposed in this study obtained
the best results among nine scenarios when the water level dataset and the ASOS dataset
were combined as input data. If the LSTM–GRU model proposed in this paper is used, it is
considered that it can be used as a preliminary study of a flood management system that
can predict the water level in advance, and evacuate through risk assessment.

6. Conclusions

In this paper, we propose an approach for data-based water level prediction using
actual observation data. In order to predict the data of the 21st hour using the data of the
past 20 h through the data of the upstream and downstream of Yeojubo in Gyeonggi-do,
Republic of Korea, a model was constructed using the LSTM and GRU models, and a
performance comparison experiment was conducted according to the input data. For
comparative experiments, a model composed of LSTM and GRU was used. In this instance,
the optimal model configuration was selected through experiments, and LSTM composed of
two layers and GRU composed of two layers were selected as final comparative models. The
existing hydrological method used for flood prediction has a problem in that it is difficult
to build a model because various factors, including soil and watershed characteristics, must
be considered, and there is a disadvantage that requires high hydrological competence of
the researcher. The water level prediction model proposed in this paper has the advantage
of being able to predict the water level more easily by using only the meteorological
data set and the water level data set. Multi-LSTM, multi-GRU, and LSTM–GRU models
were used to conduct a performance comparison experiment according to a total of nine
cases, and it was confirmed that there was a significant performance difference when the
input data was configured differently according to each model. The three types of input
data are: S1 case using water level data only, S2 case using water level data and AWS
data provided by the Korea Meteorological Administration, and ASOS data provided by
the Korea Meteorological Administration. When looking at the data quality information
provided by the Korea Meteorological Administration, the quality of the ASOS data was
higher, but due to the concentrated heavy rain that fell in a narrow range in a short period
of time in summer due to the seasonal nature of Korea, the AWS data were used in the
comparative experiment. The LSTM and LSTM–GRU-based models confirmed good results
for all three data types, but in the case of the GRU model, it was confirmed that the results
were slightly inferior when the data of S2 and S3 cases with large input data dimensions
were used. It was determined that the GRU, which reduced the number of parameters
by simplifying the LSTM, did not effectively learn the characteristics of the training data
used in this paper. In this instance, the case that obtained the best results used ASOS data
and water level data, which are S3 cases, as training data, and the water level prediction
model learned through the LSTM–GRU model obtained the best results. The test MSE of
this model was 3.92, NSE was 0.942, and MAE was 2.22, showing the best performance
in all evaluation indicators, and the maximum water level prediction error was 55.49 cm,
which was the best result. In order to predict floods, the ability to predict a sudden rise in
water level due to heavy rainfall, etc. is a very important factor, so the model is judged to
be the most suitable among the nine cases. The NSE of the LSTM–GRU model proposed
in this paper confirmed a high score of 0.942, and it is considered that it can be used for
flood management.
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