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Abstract

:

Damage prevention from the local storms and typhoons in Korea, the development of a rainfall-runoff model reflecting local geological, meteorological and physical characteristics is necessary. The accuracy of the rainfall-runoff model is influenced by the various uncertainty factors that can occur in the modeling processes, including input data, model parameters, modeling simplification, and so on. Thus, the objectives of this study are (1) to estimate runoff for two rainfall events using Grid Rainfall-Runoff Model (GRM); (2) to quantify the uncertainty of the GRM model using the Generalized Likelihood Uncertainty Estimation (GLUE) method, and (3) to assess the uncertainty ranges of the GRM based on different likelihood functions. For this, two rainfall events were implemented to the GRM in the Cheongmicheon watershed, and informal likelihood functions (LNSE, LPBIAS, LRSR, and LLOG) based on the fitness indices (NSE, PBIAS, RSR, and Log-normal) were used for uncertainty analysis and quantification using GLUE method. As a result, the GRM parameters varied according to the different rainfall patterns even in the same watershed. In addition, among the GRM parameters, the CRC (Channel Roughness Coefficient) and CSHC (Correction factor for Soil Hydraulic Conductivity) characteristics are the most sensitive. Moreover, this study showed that the uncertainty range of the GRM model can be changed with the subjective selection of likelihood functions and thresholds. The GRM model is open source and has good accessibility. Especially, this open-source model allows various approaches to disaster prevention plans such as flood forecasting and flood insurance policies. In addition, if the parameter range of GRM is quantified and standardized at domestic watersheds, it is expected that the reliability of the rainfall-runoff simulation can be increased by the reduction of the uncertainty factors.
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1. Introduction


Unpredictable changes in weather have frequently occurred in recent years due to climate change. These abnormalities have led to numerous of natural disasters worldwide, indicating an urgent need to reduce and mitigate such disasters. Recent cases of natural disasters, such as flooding, in South Korea have exhibited damage patterns different from the long-lasting monsoons of the past, resulting in enormous damage due to localized heavy rainfall. Predicting damage due to runoff from localized heavy rainfall is challenging. Since there is an increasing risk of this runoff worldwide, however, numerous studies have been conducted to ensure the accuracy of predictions regarding short-term rainfall runoff [1,2,3,4,5].



Various hydrological models are used to predict the short-term rainfall-runoff process. Rainfall-runoff models, which reflect the runoff characteristics of watersheds, are widely used. These runoff characteristics can be conceptually or physically represented, and recent developments in geographic information systems have enabled the frequent application of physical models. In particular, despite various interpretations depending on its grid size, a distribution model can represent the runoff characteristics of an entire watershed by combining grids, as each grid (corresponding to a certain part of the watershed) includes runoff characteristics. If the combination of grids in a physical model accurately reproduces the actual hydrological phenomenon of the watershed by using the governing equation, and the parameters constituting the governing equation perfectly reflect the physical hydrological characteristics of the watershed, such a model could accurately predict short-term runoff without calibration or validation. However, the governing equation includes many uncertainties, as it interprets hydrological phenomena through parameters, simplifying natural phenomena in the process. Thus, more accurate prediction could be ensured by analyzing the uncertainty of the employed parameters [6,7,8].



In an event-based rainfall-runoff model, the parameters constituting the model depend on the type of rainfall. For example, the parameter reflecting the initial saturation of soil is greatly affected by the type of rainfall, which in turn affects the prediction of runoff [9,10]. It is difficult to perform calibration and validation for the model, as the rainfall, which provides the input data, continuously changes over time. However, the parameters that have been calibrated are frequently applied to predict other rainfall events [11]. A parameter corrected for one event may deviate from the adjusted confidence interval in its application to another rainfall event, so it may be a cause of uncertainty [12]. Thus, we can seek understanding of the uncertainties in parameters depending on the model prediction results by applying various types of rainfall to the model to secure its reliability [13].



Various methods have been used to analyze the uncertainties in rainfall-runoff models: Monte Carlo simulation (MCS) [6,14], Latin hypercube sampling [15,16], state-space filtering [17,18], and first-order second-moment [19,20]. In particular, uncertainty analysis of these models has been widely conducted by utilizing the various likelihood estimators, in which the relationship between model results and observations by parameter combinations is defined as a Bayesian-based function [21].



Compared to other uncertainty analyses, generalized likelihood uncertainty estimation (GLUE) [6] is a flexible and simple uncertainty analysis technique that can apply both formal and informal likelihood. For this reason, it is among the most widely used methods for uncertainty analysis in many rainfall-runoff models [22]. The parameters of a rainfall-runoff model generated from the prior distribution in a GLUE simulation process based on Bayes’s theorem can be utilized to form a posterior distribution in the uncertainty analysis process by the critical point for the likelihood, which is obtained from the relationship between the model results and the observation values. The posterior distribution of these parameters provides important information that can accurately link rainfall, which is the input data, and runoff, which is the model prediction value. However, this posterior distribution may vary depending on the type and threshold of likelihood, and this subjective selection may become a negative factor in ensuring consistent analysis of uncertainty in a rainfall-runoff model. Thus, for a smooth uncertainty analysis, it is important to find a likelihood that can best reflect the error characteristics between the predicted value and the observed value of the rainfall-runoff model by the combination of parameters [21]. There has been controversy over the use of formal and informal likelihood in the selection of likelihood for the analysis of uncertainty in rainfall-runoff models [18,23,24]. Typically, formal likelihood is applicable to the uncertainty analysis, in which the statistical structure of error is established. However, because it is difficult to quantify the individual errors that may occur in the input data and the model structure, informal likelihood can be usefully applied to uncertainty analysis, in that uncertainty analysis is frequently conducted after combining these individual errors into a total error term [25].



Uncertainty may occur when predicting runoff by applying the parameters of the grid-based rainfall-runoff model (GRM) corrected for one rainfall event to another rainfall event. Furthermore, the results of uncertainty analysis may vary depending on subjective selection of likelihood. Thus, this study evaluated how the type of rainfall and the selection of likelihood affect the parameters of the GRM. For this purpose, an uncertainty analysis of parameters in a rainfall-runoff model using GLUE was conducted to compare and analyze the posterior distribution of parameters for two rainfall events. In addition, this study conducted uncertainty analysis utilizing three values of informal likelihood, aiming to determine their effect on the model results.




2. Materials and Methods


2.1. Study Area


The Cheongmicheon Watershed is part of the Han River water system in South Korea, which is an important basin supplying water to Seoul and Incheon. It is located upstream of the Namhan River. The watershed is showed in Figure 1. In addition, the Cheongmicheon Watershed is a test basin selected by the International Hydrological Program to explore the hydrological water cycle in South Korea. In this regard, various hydrological and water-quality studies have been conducted because the hydrological and topographical data on the Cheongmicheon Watershed have been well established over a relatively long term.




2.2. Grid-Based Rainfall-Runoff Model (GRM) Definition


The GRM was developed as a physically based distribution model to simulate runoff for rainfall events [26]. The GRM can be utilized to predict surface and lateral runoff, infiltration, and subsurface flow due to rainfall events, and to evaluate the effect of rainfall on the flow rate adjusted by artificial structures at the watershed. Moreover, the GRM is designed to visualize a watershed by using geospatial data composed of a grid format, and to use average rainfall or distributed rainfall data in grid format. In the GRM, the kinetic wave equation is applied to analyze surface and lateral flow, and infiltration is calculated through the Green-Ampt model. Each grid constituting the watershed is set as a control volume, and the finite volume method is applied to perform a runoff simulation. The governing equations of the GRM are represented as Equations (1)–(3) [27].


    ∂ h   ∂ t   +   ∂ q   ∂ x   = r − f +    q r    Δ y    



(1)






    ∂ A   ∂ t   +   ∂ Q   ∂ x   = r Δ y −  q L  +  q  S S   +  q b   



(2)






   S 0  =  S f   



(3)







In the equations, h is flow depth, q is flow rate per unit width, r is rainfall intensity, f is infiltration rate, qr is return flow,  Δ y is the width of control volume, A is cross-sectional area, Q is discharge, qL is lateral flow, qss is subsurface flow, qb is baseflow, S0 is surface slope, and Sf is friction slope.



The GRM is an event-based rainfall-runoff model. It simulates overland flow, channel flow, infiltration, subsurface flow, percolation, and baseflow (Figure 2) [26].




2.3. Rainfall-Runoff Analysis


A rainfall-runoff simulation using the GRM requires rainfall data and a map spatially representing land use, soil type, and elevation. Furthermore, observational runoff data are needed for calibration and validation of the GRM model. This study utilized 90 m * 90 m Digital Elevation Model of the National Geographic Information Institute (https://www.ngii.go.kr; accessed on 10 February 2022), as well as the precise soil map and soil depth data of the Rural Development Administration (http://www.naas.go.kr; accessed on 10 February 2022), and the large classification land use map in the Environmental Geographic Information System of the Ministry of Environment (ME, http://www.me.go.kr; accessed on 10 February 2022), as shown in Figure 3.



In addition, this study used the meteorological data of 11 meteorological stations of the ME located near the target area of this study: Beopcheon, Samjuk, Seolseong, Saenggeuk, Anseong, Yeoju Bridge (Yeoju), Oryu, Wonsam, and Eumseong, Namgok, and Geumdang Elementary School (Taepyeong) stations. To consider the spatial influence on meteorological data, this simulation was performed by calculating the Thyssen weights through the Thiessen network depending on the location of the station and utilizing the average rainfall of the corresponding area. The general formula for obtaining the Thiessen network is shown in Equation (4).


   P ¯  =     ∑   i = 1  N   P i   A i   A  =   ∑   i = 1  N   P i     A i   A   



(4)




where    P ¯   , N, Ai, and Pi refer to the average rainfall in the watershed, the number of stations, the effect area for each station, and the measured precipitation for each point, respectively.



The highest Thiessen weight was 26.13% at the Samjuk Meteorological Station, exhibiting the greatest influence. The ratios of weights for each station are ranked in the order of Samjuk, Taepyeong, Beopcheon, Yeoju, Wonsan, Seolseong, Saenggeuk, Eumseong, Namgok, Angseong, and Oryu. Table 1 summarizes the weights of each station affecting the Cheongmicheon Watershed.



The rainfall events applied in this study had rainfall higher than 35.6 mm, which was the hourly rainfall of the Cheongmicheon Watershed for 50 years. For the validation of the GRM model, this study utilized the data on the flow rate per 10 min from Janghowon Bridge of the Han River Flood Control Office of the ME, a flow observation station in the Cheongmicheon Watershed. In addition, the flow data for validation were collected during the period until the flow rate analyzed in the model returned to the normal flow rate. Furthermore, regarding each period and event, data were collected; the comparative validation periods are presented in Table 2.




2.4. Uncertainty Analysis Using Generalized Likelihood Uncertified Estimation (GLUE)


The method for uncertainty analysis using GLUE is based on the Hornberger-Spear-Young global sensitivity analysis [28,29], and a combination of random variables, which are generated from a specific probability density function (PDF) within the feasible range, is applied to the MCS. In GLUE, it is essential to select a behavioral model that matches the combination of random variables. The results from the MCS using the combination of random variables are weighted by a likelihood measure. Typically, a likelihood measure is employed to determine how well a simulated result fits an observation. The concept of GLUE is based on the Bayesian equation (Equation (5)), and an informal likelihood function can be utilized to estimate the likelihood measure used in GLUE [30].


  P  [  θ | O  ]  = c ⋅ L  [  ε | θ  ]  ⋅ P  [ θ ]   



(5)




where θ, ε, and c refer to the parameter combination, the error between the observed value (O) and the simulated value, and the scaling constant, respectively. P[θ|O], P[θ], and P[θ] refer to the posterior PDF, likelihood, and prior PDF, respectively.



A likelihood measure represents the goodness of fit (GoF) between observed values and model values, and typically, high likelihood measures indicate high GoF. A likelihood measure is divided into a behavioral model (or accepted dataset) and a nonbehavioral model (or non-accepted dataset), depending on the threshold value. A behavioral model refers to a combination of variables, in which the likelihood measure satisfies the threshold value. Here, a combination of variables refers to a combination of parameters in the model randomly selected within a given range, and the uncertainty calculation generates a cumulative density function (CDF) by weighting only the likelihood measure derived by the behavioral model. The median of the CDF is typically utilized as a representative value of the model’s predicted results, and the uncertainty is quantified by a 90% confidence interval selected with 5% and 95% confidence levels [6,24,31].



The GLUE method is utilized to analyze uncertainty using MCS based on Bayesian theory (Equation (6)). The likelihood used in GLUE can be determined by several likelihood functions. This study selected three GoF indicators, namely Nash-Sutcliffe efficiency (NSE), PBIAS, and rank-sum ratio (RSR), which are formal likelihood estimators, to calculate the likelihood function, as well as a log-normal index, which is the informal likelihood.


  P  (  M / y  )  =   L  (  y / M  )  P  ( M )      ∫     L  (  y / M  )  P  ( M )  d M   ∝ L  (  y / M  )  P  ( M )     



(6)




where M, y, P(M), P(M|y), and L(y|M) are a combination of model parameters, a set of observed values, a prior distribution of the model, posterior distribution, and likelihood by model evaluation, respectively.



The purposes of the GLUE method are to classify a behavioral model among the combinations of random variables, weight the results from MCS using the combinations of random variables by likelihood, and determine how suitable the simulated results are for the observed values.



NSE is Nash–Sutcliffe model efficiency coefficient that determines the relative magnitude of residual variance (“noise”) in comparison to the variance of the measured data (“information”) [32]. NSE is calculated as shown in Equation (7).


  NSE = 1 −     ∑   i = 1  N     (   O t  −  P t   )   2      ∑   i = 1  N     (   O t  −  O ¯   )   2     



(7)




where N refers to the number of observations, Ot and Pt refer to the actual and predicted flow at time t, and    O ¯    refers to the average value of the actual flow.



Percent bias (PBIAS) refers to the average trend of simulated data and the degree to which it is larger or smaller than that of the observed data [33]. The optimal value of PBIAS is 0.0, and low values indicate that the model simulation is accurate. Positive values correspond to underestimation bias in the model, whereas negative values correspond to overestimation bias in the model, which are represented as shown in Equation (8).


  PBLAS =  [      ∑   i = 1  N   (   Y t  o b s   −  Y t  s i m    )  ∗ 100     ∑   i = 1  N   (   Y t  o b s    )     ]   



(8)




where N refers to the number of data, and    Y t  o b s     and    Y t  s i m     refer to the actual and predicted flow at time t.



The RSR (RMSE-observations standard deviation ratio) standardizes the root mean square error (RMSE) by utilizing the observed standard deviation [34] and combines additional information with the error index recommended by Legates and McCabe [35]. Simply, this means we constrained the values between 0–1. The RSR is calculated as the ratio of the RMSE to the standard deviation of the measured data, as shown in Equation (9).


  RSR =   RMSE   S T D E  V  o b s     =    [      ∑   i = i  N     (   Y t  o b s   −  Y t  s i m    )   2     ]     [      ∑   i = i  N     (   Y t  o b s   −  Y  m e a n    )   2     ]     



(9)




where N refers to the number of data,    Y t  o b s     and    Y t  s i m     refer to the actual and predicted flow at time t, and    Y  m e a n     refers to the average value of the actual flow.



Log-normal (log-likelihood function) is the log of the likelihood function, measuring the GoF between model parameters and observed data through the natural logarithm, for convenience in calculating the maximum likelihood estimate. Since the behavioral model can be determined by selecting a part of the upper values if there is no criterion for the threshold, as in log-normal, this study has assumed that the upper 30% values represent the behavioral model [6,36]. Log-normal is shown in Equation (10).


  Log − normal = −  N 2  ln  (  2 π  )  −  N 2  ln  σ 2  −  N 2   σ  − 2   ×   ∑   i = 1  N   ε i     (   θ t   )   2   



(10)




where N refers to the number of observed values, σ2 refers to the variance of the simulated and observed values, as shown in Equation (11), and εi(θ) refers to the vector value of the residual, which corresponds to the difference between the simulated and observed values at time t, as indicated in Equation (12).


   σ 2  =     ∑   i = 1  N     (   P i  −  O i   )   2   N   



(11)






   ε i   ( θ )  =  P i  −  O i       i  = 1 , 2 , 3 … . N  



(12)







The likelihood measure was analyzed by utilizing the previously described four GoF indices: NSE, PBIAS, RSR, and log-normal. Typically, as the likelihood value becomes higher, the GoF is determined to be higher. Thus, this study, to calculate the likelihood measure, conducted an analysis by applying Equation (13) corresponding to NSE, Equation (14) corresponding to an inverse of absolute value of PBIAS, Equation (15), a formal likelihood function corresponding to a reciprocal of the RSR, and Equation (16), an informal likelihood function corresponding to log-normal (log-likelihood function).


   L  NSE   = NSE  



(13)






   L  PBIAS   =  1   |  PBIAS  |     



(14)






   L  RSR   =  1  RSR    



(15)






   L  LOG   = Log − normal  



(16)







The analysis proceeded by dividing into nonbehavioral models and behavioral models according to the likelihood measure values obtained by using Equation (13) through (16) [24,31]. Here, the behavioral model refers to a combination of variables randomly selected within the given range, and the uncertainty calculation is performed by using the behavioral model, in which a CDF is generated by utilizing weights for each likelihood. A quantitative analysis was conducted with a 90% confidence interval by using the 5% and 95% confidence interval analysis utilizing the CDF [31].




2.5. Automation Analysis and Parameter Setting of the GRM


To evaluate the uncertainty of GRM parameters, a combination of random parameters was generated through MCS within each range for eight parameters out of nine in the GRM. Automated coding using Python was applied to the analysis in the order of rainfall-runoff simulation using the GRM, likelihood calculation for uncertainty analysis, and selection and evaluation of the behavioral model; a flowchart is provided in Figure 4.



The applied parameters were IniSaturation, MinSlopeOF, ChRoughness, CalCoefLCRoughness, CalCoefSoilDepth, CalCoefPorosity, CalCoefWFSuctionHead, and CalCoefHydraulicK, and the range for each parameter was determined by setting the minimum and maximum ratios for each GRM parameter [27]. The range and definition of each parameter are presented in Table 3. In addition, regarding the target watershed, simulations were performed 10,000 times for each of the two events, and additional simulations on the primary analysis results were performed 5000 times within the range that satisfied the likelihood. Table 3 shows the allowable range for parameters.





3. Results


3.1. Distribution of Parameters According to Likelihood


Analyzing the distribution of the formal likelihood calculated through the log-normal function, and the informal likelihood depending on the three types of NSE, PBIAS, and RSR, behavioral models were determined with the threshold values of the upper 30% for formal likelihood, and with the cases where the NSE value was 0.65 or higher [37], PBIAS < |25|, and RSR < 0.7 [34].



3.1.1. Event 1 Dotty Plot


Figure 5 presents the result of dot plot analysis on Event 1. LNSE was represented by a blue circle, and CRC was sensitive. LPBIAS was represented by an orange circle, and ISSR and CRC were sensitive. LRSR was represented by a yellow circle, and ISSR and CRC were sensitive. LLOG was represented by a green circle, and ISSR and CRC were sensitive. In particular, CRC exhibited a tendency of satisfaction within a specific range for all likelihood estimators. Thus, the sensitivity of each parameter varied in the parameter sensitivity analysis for each likelihood, showing that the sensitive range of each parameter type differed.




3.1.2. Event 2 Dotty Plot


Figure 6 shows the results of the dot plot analysis on Event 2. LNSE was indicated by a blue circle, and CRC and CSHC were sensitive. LPBIAS was indicated by an orange circle, and all parameters exhibited a uniform distribution. LRSR was indicated by a yellow circle, and ISSR, CRC, and CSHC were sensitive. LLOG was indicated by a green circle, and ISSR, CRC, and CSHC were sensitive. In particular, CRC exhibited a tendency of satisfaction within a specific range.



The sensitive parameters revealed by the dot plot analysis of the two rainfall events were determined to be ISSR, CRC, and CSHC. In particular, CRC exhibited a tendency of satisfaction within a specific range. The behavioral model of the selected parameters is skewed to one side, meaning that the parameters are sensitive to the GRM result. In contrast, the likelihood for the remaining four parameters, including MSLS, is evenly distributed in the range of the given parameter. This phenomenon could be attributed to the random generation of the parameters in a uniform distribution, as well as their insignificant effect on the GRM results.





3.2. Posterior Distribution of GRM Parameters


The posterior distributions of the GRM parameters for each likelihood were visualized as histograms (Figure 6). The posterior distribution of a parameter is obtained by a product of likelihood and prior distribution. Since the prior distribution is a uniform distribution, the posterior distribution can be considered to have the same shape as the likelihood. Thus, this study utilized the CDF, rather than the PDF, according to the value of each parameter for the histograms to enhance understanding. In addition, to present the results by likelihood, LNSE, LPBIAS, LRSR, and LLOG were represented in blue, red, green, and brown, respectively.



3.2.1. Event 1 Parameter Sensitivity


According to Figure 7, LNSE showed the better results. As the value of ISSR increased, CRC indicated good results only in a specific range on the left side, and CSHC showed the better results as the value of ISSR decreased. LPBIAS, the second likelihood, became more sensitive as the value of ISSR increased. CRC indicated a tendency of being highly sensitive in a specific range on the left side, and CSHC became sensitive in the range where the value of ISSR was low. LRSR, the third likelihood, became more sensitive as the value of ISSR increased. CRC showed good results only in a specific range on the left side, and CSHC indicated the better results as the value of ISSR decreased. Lastly, LLOG displayed better results as the value of ISSR increased. CRC indicated good results only in a specific range on the left side, and CSHC showed better results in a range where the value of ISSR was relatively low.




3.2.2. Event 2 Parameter Sensitivity


According to Figure 8. LNSE showed better results as the value of ISSR increased; CRC indicated good results only in a specific range on the left side, CSP displayed relatively better results as the value of ISSR decreased, and CSHC indicated good results in a range on the left center. LPBIAS, the second likelihood, showed better results as the value of ISSR decreased, while CRC indicated better results as the value of ISSR increased; CSP showed better results as the value of ISSR became relatively lower, and CSHC indicated good results in a range on the left center. LRSR, the third likelihood, exhibited better results as the value of ISSR decreased; CRC indicated good results only in a specific range, CSP showed better results as the value of ISS became relatively lower, and CSHC indicated good results in a range on the left center. Lastly, LLOG displayed better results as the value of ISSR decreased; CRC showed good results only in a specific range, CSP showed better results as the value of ISS became relatively lower, and CSHC indicated good results in a range on the left center.



As shown in the point distribution, regarding the posterior distribution for each likelihood, the lateral tidal coefficient had a concentrated probability in a certain range. The probability for hydraulic conductivity and soil wetting front became higher as their values decreased, as did the probability for initial saturation profile. In contrast, the posterior distribution of the remaining four parameters, which are insensitive, showed a uniform distribution shape similar to that of the prior distribution. This study found similar posterior distributions according to the four likelihood estimators. However, some parameters showed a similar trend of LPBIAS, whereas some parameters indicated different ranges of CRC parameters.





3.3. Quantied Uncertainty in the GRM Model


This study applied formal likelihood (NSE, RSR, PBIAS) and informal likelihood (log−normal) to evaluate the uncertainty of the GRM. Despite the application of different types of likelihood, there was a similar trend in the uncertainty range of the runoff by the GRM between LNSE and LRSR in the case of Event 1 (Figure 9). Moreover, there was a similar trend in the uncertainty range of the runoff by the GRM among the likelihood in the case of Event 2, except for LPBIAS (Figure 10). Figure 9 and Figure 10 show the uncertainty range of the GRM depending on likelihood. Here, the uncertainty range refers to 95PPU (percent prediction uncertainty), which is the difference between the cumulative distributions of 2.5% and 97.5%.



3.3.1. Event 1 95PPU


Based on the analysis results for Event 1, the number of behavioral models satisfying the threshold for each likelihood was determined to be 406, 1136, and 533 for LNSE, LPBIAS, and LRSR, respectively. Furthermore, the results satisfying the threshold for likelihood were utilized to construct a CDF of each hourly flow rate in conducting 95PPU analysis.



Regarding the 95PPU analysis results for each likelihood in the case of Event 1, there was a significant similarity in shape and range between the 95PPU ranges of LNSE and LRSR, whereas LPBIAS and LLOG showed different uncertainty distributions. In particular, the uncertainty distribution curves in the rising interval are located in the middle of the range of the observed values in the case of LNSE and LRSR, whereas the uncertainty distribution curves are located in the upper part of the uncertainty range in the case of LPBIAS and LLOG. This result suggests that the simulated flow rate in the rising interval may be slightly underestimated when LPBIAS and LLOLG are used as GoF indices. In contrast, the observed values are located in the lower part of uncertainty range for all likelihood values in the descending interval. These results suggest that the simulated flow rate for all likelihood values can be overestimated in the descending interval. Moreover, these results suggest that a high value of one likelihood with a certain combination of parameters does not necessarily lead to the high values of other likelihood estimates. In this regard, the combination of parameters with the highest LNSE value does not result in that the high values of LPBIAS, LRSR, and LLOG.



In the uncertainty analysis using LPBIAS, the simulated flow rate was determined to be highly similar to the observed flow rate. In addition, 95PPU included the observed flow rate. In this case, the highest value of the calculated LNSE was found to be 0.98. However, when different likelihood values were calculated with a combination of parameters with an LNSE of 0.98, the likelihood values were determined as follows: LBIAS: 5.95, LRSR: 6.56, and LLOG: −1546. The 95PPU for the uncertainty constructed with LNSE is represented by the green area, as shown in Figure 9, and the flow rate simulated with a combination of parameters with an LNSE of 0.98 is indicated by a red dotted line, as shown in Figure 9, which corresponds to the optimal value at 95PPU.




3.3.2. Event 2 95PPU


Based on the analysis results for Event 2, the number of behavioral models satisfying the threshold for each likelihood was determined to be 752, 3721, and 1007 for LNSE, LPBIAS, and LRSR, respectively. Furthermore, the results satisfying the threshold for likelihood were utilized to construct a CDF of each hourly flow rate in conducting 95PPU analysis.



Regarding the 95PPU analysis results for each likelihood in the case of Event 2, there was a significant similarity in shape and range between the 95PPU ranges of LNSE, LRSR, and LLOG, whereas LPBIAS showed different uncertainty distributions. In particular, the uncertainty distribution curves in the rising interval were located in the middle of the range of the observed values in the case of LNSE and LRSR, whereas the uncertainty distribution curves were located in the upper part of the uncertainty range in the case of LPBIAS. This result suggests that the simulated flow rate in the rising interval may be slightly underestimated when LPBIAS is used as the GoF index. In contrast, the observed values were located in the lower part of the uncertainty range for all likelihood estimators in the descending interval. These results suggest that the simulated flow rate for all likelihood models can be overestimated in the descending interval.



In the uncertainty analysis using LNSE, the simulated flow rate was determined to be highly similar than the observed flow rate. In addition, 95PPU included the observed flow rate. In this case, the highest value of the calculated LNSE was found to be 0.97. However, when different likelihood estimates were calculated with a combination of parameters with an LNSE of 0.97, the values were determined as follows: LBIAS: 67.25, LRSR: 5.43, and LLOG: −1215. The 95PPU for the uncertainty constructed with LNSE is represented in the green area, as shown in Figure 10, and the flow rate simulated with a combination of parameters with an LNSE of 0.97 is indicated by a red dotted line, as shown in Figure 10, which corresponds to the optimal value at 95PPU.






4. Discussion


This study used the GRM model developed in South Korea, rather than conventional models, to apply a rainfall−runoff model to flood prediction and model validation, quantify the uncertainty of the domestic model for rainfall−runoff analysis, and evaluate its applicability and reliability. Log−normal formal likelihood was available for this study because a statistical structure for simulation error was established by performing flood case analysis for the same target watershed. Moreover, the uncertainty of parameters in the GRM model was quantified by utilizing informal likelihood estimators such as NSE, RSR, and PBIAS. However, this selection of likelihood estimators resulted in the calculation of different uncertainty ranges, which suggests the intervention of subjective factors. The GoF of models using NSE, RSR, and PBIAS has been discussed in copious literature. In particular, Moriasi [34] stated the reliability of the hydrologic model by classifying thresholds for various GoF indicators, including NSE, and proposed the NSE value of 0.5 or higher as the level satisfying the GoF of the model. However, there has been no previous study on the log−normal threshold for the reliability of the GRM model based on log−normal likelihood. Since the range of log−normal likelihood is from 0 to −∞, it is difficult to select a threshold. Considering this issue, in the case of informal likelihood, this study analyzed the GRM uncertainty for log−normal likelihood by selecting an upper 30% value based on the high likelihood value, as in the method proposed by Beven [36,38]. In this study, there were similar results regarding the distribution of parameters by the behavioral model selected by the threshold for both formal and informal likelihood. However, there is debate that different outcomes can be calculated according to subjective selection of likelihood and threshold [39,40]. This study has revealed the difference between the point distribution and the posterior distribution for each parameter. Since the prior distribution is uniform, if the posterior distribution is not uniform and is distorted, the parameter can be considered sensitive to the simulation results of the GRM model in this distorted portion. In addition, if the posterior distribution of the parameter is utilized to adjust the range of its prior distribution and the uncertainty analysis is repeated, the uncertainty range of a more robust GRM can be specified. Furthermore, rainfall−runoff analysis using commercial models has low financial accessibility, while models developed outside Korea may exhibit low utility due to data that do not fit domestic circumstances. In this respect, the GRM model, which has been domestically developed as open source, provides good accessibility and usability for analyzing domestic rainfall runoff. If users upgrade the GRM model and closely share related information with other users, this model will greatly contribute to the establishment of various disaster prevention plans and policies, such as those involving flood analysis, hydrologic curve analysis, and flood forecasting.




5. Conclusions


This study identified the effect of GRM parameters on simulated rainfall−runoff results for the Cheongmicheon Watershed, and quantified (95PPU) the uncertainty of the runoff values, which are the simulated results of the GRM, for the observed values. In particular, because in the uncertainty analysis using GLUE the uncertainty range can vary depending on the effect of the likelihood function, this study used formal and informal likelihood to calculate the uncertainty of the parameters, and conducted a comparative analysis. All eight parameters constituting the GRM model were selected for both formal and informal likelihood. This study revealed that the commonly sensitive parameters among the GRM parameters were CRC and CSHC, thereby identifying the ranges showing good results. Although the prior distributions of parameters were uniform, behavioral models were determined with the threshold values of the upper 30% for formal likelihood, and with the cases where the NSE value was 0.65 or higher, PBIAS < |25|, and RSR < 0.7, as proposed by Moriasi [34]. Behavioral models generated from both formal and in formal likelihood showed a skewed distribution to the left (CRC), or the left center (CSHC) in the posterior distribution. For LNSE, LRSR, and LLOG, there was a skewed distribution to the left in both CRC and hydraulic conductivity, while for PBAIS, there was a skewed distribution to the right (CRC), or to the left (CSHC). Uncertainties were quantified by using three types of informal likelihood—LNSE, LPBIAS, and LRSR—and formal likelihood—LLOG. Despite the difference in sensitivity across the parameters for each likelihood, there was a similar distribution in the likelihood values for the ranges according to the LNSE, LRSR, and LLOG parameters. In addition, the uncertainty range revealed through the 95PPU analysis indicated a similar shape. In contrast, the distribution of the behavioral model in LPBIAS differed from that of other likelihoods, suggesting that the observed value was not included in 95PPU. The change of parameters for each rainfall pattern varied, showing a different runoff depending on circumstances. Furthermore, based on the results of evaluation using LNSE, LRSR, LPBIAS, and LLOG, it was confirmed that uncertainty for each parameter can be differently calculated depending on likelihood. According to the results from the 95PPU analysis under the likelihood conditions given in this study, LNSE and LRSR likelihood, rather than LPBIAS, estimators were determined to be appropriate for evaluation via runoff model. In addition, if the range of LLOG can be defined, evaluation of uncertainty using formal likelihood becomes appropriate. However, these results suggest that it is important to secure consistency in the uncertainty range by applying various likelihood estimates and thresholds.
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Figure 1. Hydrologic network of Study area. 
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Figure 2. Schematic of the grid-based rainfall-runoff model (GRM). 
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Figure 3. Spatial data of study site (a) Digital Elevation Model; (b) Land cover map; Attributes 1 to 7 represent city/dry area, agricultural area, forest area, meadow, wetland, bare land, and water; (c) Land cover map; Attributes 1 to 8 represent silty clay loam, silt loam, sandy loam, sand, clay loam, clay, loamy sand, loam, respectively; (d) Soil depth map; Attributes 1 to 4 represent very shallow, shallow, moderately deeper, deep, respectively. 






Figure 3. Spatial data of study site (a) Digital Elevation Model; (b) Land cover map; Attributes 1 to 7 represent city/dry area, agricultural area, forest area, meadow, wetland, bare land, and water; (c) Land cover map; Attributes 1 to 8 represent silty clay loam, silt loam, sandy loam, sand, clay loam, clay, loamy sand, loam, respectively; (d) Soil depth map; Attributes 1 to 4 represent very shallow, shallow, moderately deeper, deep, respectively.



[image: Water 14 02210 g003]







[image: Water 14 02210 g004 550] 





Figure 4. GRM parameter uncertainty estimation method. 
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Figure 5. Event 1 Dotty plot of behavioral parameters based on formal and informal likelihood. (a1-1–a1-8) LNSE results; (b1-1–b1-8) LPBIAS results; (c1-1–c1-8) LRSR results; (d1-1–d1-8) LLOG results. 
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Figure 6. Event 2 dotty plot of behavioral parameters based on formal and informal likelihood. (a2-1–a2-8) LNSE results; (b2-1–b2-8) LPBIAS results; (c2-1–c2-8) LRSR results; (d2-1–d2-8) LLOG results. 
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Figure 7. Event 1 parameter sensitivity (histogram/CDF). (a3-1–a3-8) LNSE results; (b3-1–b3-8) LPBIAS results; (c3-1–c3-8) LRSR results; (d3-1–d3-8) LLOG results. 






Figure 7. Event 1 parameter sensitivity (histogram/CDF). (a3-1–a3-8) LNSE results; (b3-1–b3-8) LPBIAS results; (c3-1–c3-8) LRSR results; (d3-1–d3-8) LLOG results.
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Figure 8. Event 2 parameter sensitivity (histogram/CDF). (a4-1–a4-8) LNSE results; (b4-1–b4-8) LPBIAS results; (c4-1–c4-8) LRSR results; (d4-1–d4-8) LLOG results. 
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Figure 9. Event 1 95PPU. (e1-1) LNSE results; (e1-2) LPBIAS results; (e1-3) LRSR results; (e1-4) LLOG results. 
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Figure 10. Event 2 95PPU. (e2-1) LNSE results; (e2-2) LPBIAS results; (e2-3) LRSR results; (e2-4) LLOG results. 
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Table 1. Rainfall Station and Thiessen Weight.
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Rainfall Station Name

	
Rainfall Station Location

	
Station Weight (%)




	
Latitude

	
Longitude






	
Samjuk

	
37°4′36.36″ N

	
127°22′7.03″ E

	
26.13




	
Geumdang Elementary School

	
37°12′3.45″ N

	
127°36′21.74″ E

	
17.51




	
Beopcheon

	
37°12′16.31″ N

	
127°44′52.87″ E

	
15.78




	
Yeoju Bridge

	
37°17′43.27″ N

	
127°38′31.92″ E

	
14.03




	
Wonsam

	
37°10′6.32″ N

	
127°18′15.06″ E

	
9.01




	
Seolseong

	
37° 8′45.33″ N

	
127°31′17.97″ E

	
7.24




	
Saenggeu

	
37° 2′4.37″ N

	
127°36′3.93″ E

	
4.56




	
Eumseong

	
36°56′13.82″ N

	
127°41′32.14″ E

	
2.18




	
Namgok

	
37°13′53.30″ N

	
127°16′41.07″ E

	
1.71




	
Angseong

	
37° 5′11.35″ N

	
127°44′43.87″ E

	
1.50




	
Oryu

	
36°58′21.40″ N

	
127°28′40.99″ E

	
0.35
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Table 2. Duration of Rainfall Event.
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	Num
	NAME
	Start Date
	End Date





	1
	Event 1
	29 June 2011 (10:00:00)
	1 July 2011 (17:30:00)



	2
	Event 2
	31 July 2017 (3:00:00)
	1 August 2012 (07:30:00)
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Table 3. GRM Parameters Description and Range.
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Num

	
Parameters

	
Description

	
Range

	
Change Range




	
Lower

	
Upper

	
Lower

	
Upper






	
1

	
IniSaturation (ISSR)

	
Initial soil saturation ratio

	
0

	
1

	
0

	
0.5




	
2

	
MinSlopeOF (MSLS)

	
Minimum slope of land surface

	
0.0001

	
0.01

	
0.0001

	
0.007




	
3

	
ChRoughness (CRC)

	
Channel roughness coefficient

	
0.008

	
0.2

	
0.008

	
0.14




	
4

	
CalCoefLCRoughness (CLCRC)

	
Correction factor for land cover roughness coefficient

	
0.6

	
1.3

	
0.6

	
1.3




	
5

	
CalCoefSoilDepth (CSD)

	
Correction factor for soil depth

	
0.8

	
1.2

	
0.9

	
1.1




	
6

	
CalCoefPorosity (CSP)

	
Correction factor for soil porosity

	
0.9

	
1.1

	
0.25

	
4




	
7

	
CalCoefWFSuctionHead (CSWS)

	
Correction factor for soil wetting front suction head

	
0.25

	
4

	
0.05

	
8




	
8

	
CalCoefHydraulicK (CSHC)

	
Correction factor for soil hydraulic conductivity

	
0.05

	
20

	
0.8

	
1.2

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file4.png
Rainfall

Land surface l
Infiltration excess flow Overland
Saturation excess flow flow
Layeri i Return flow v
Infiltration —s= Streamflow

Subsurface flow — ~

LayerB

Percolation Baseflow






media/file30.png
eundNy

EEE585858558
g 88888 ¢8R -°

025 QRS 1000 L5 1750 2128 2500 248 nso 1625 4000
Parameter Range

Auanbos g
dewndNy
EEE588888¢8¢
e
s
SEeseaee——
g
8
3 g .m.
g3
.
z
&
&

eINUINIDYY
EE5 58855888«
===
= —— 1
Esia——— "I
g
g @
& £}
o
$3
g
g
g
g

- e e e e

(d4-5) CSP (d4-6) CSWS

(d4-4) CLCRC

CSHC

23E|NWIN2DY

Ess88888858E%

8 8 8 R 8 8 8 ¢

B e R = ]

Asuanbauy

23| NWINDY

Aduanbauy

0.050 0.845 1640 2435 3.230 4.025 4820 5615 6.410 7.205 8000

Parameter Range

Parameter Range

(d4-8) CSD

(d4-7) CSHC





media/file26.jpg





media/file18.png
Range of LRSR

0.25
Parameter Range

0.5

Range of LRSR

0.00355
Parameter Range

0.007

(c2-1) ISSR

(c2-2) MSLS

Range of LRSR

0.074
Parameter Range

(c2-3) CRC

0.14

Range of LRSR

0.6 0.95 1.3
Parameter Range

(c2-4) CLCRC

Range of LRSR

Range of LRSR

0.25 2.125

Range of LRSR

Range of LRSR

4 0.05 4,025 8
Parameter Range Parameter Range Parameter Range Parameter Range
-1200 -1200 -1200 -1200
-1250 -1250 -1250 -1250
-1300 -1300 : -
& i o 1300 © 1300
S 1350 S -1350 S 1350 S 1350
| —d - P ]
6 -1400 S -1400 ‘G -1400 G -1400
[ a () Q
> 1450 2 1450 & 1450 & 1450
& & & &
-1500 -1500 -1500 -1500
»
-1550 -1550 -1550 -1550
-1600 -1600 -1600 -1600 =
0.0001 0.00355 0.007 0.008 0.074 0.14 0.6 0.95 1.3
Parameter Range Parameter Range Parameter Range Parameter Range
-1200 -1200 -1200 -1200
-1250 -1250 -1250 -1250
-1300 -1300 2 -1300
8 W o 1300 @
S 1350 S 1350 © 1350 S 1350
- - — - )
N
S -1400 S -1400 G -1400 G -1400
$ % ) )
c -1450 c -1450 € -1450 c -1450
& & & &
-1500 -1500 -1500 -1500
-1550 -1550 -1550 -1550
-1600 -1600 -1600 TmRTeTS -1600

Parameter Range

0.25 2.125
Parameter Range

Parameter Range

Parameter Range

(d2-5) CSP

(d2-6) MSLS

(d2-7) CSHC

(d2-8) CSD





media/file35.jpg
P PPl o097

PP L Lo 56433

(e2-1) 95PPU of LNSE

(22) 95PPU of LPBIAS
o S5PPU L s | [ wn 95990t [

H

(€2:3) 95PPU of LRSR (€24) 95PPU of LLOG





media/file21.jpg
e T
ST e

3EsRsIRTg

il

Fr000020002

T

(d3-2) MSLS

(d3-7) CSHC





media/file13.png
Range of LPBIAS

Range of LRSR

Range of LRSR

Range of LLOG

Range of LNSE
Range of LNSE

0.9 1 11 0.25 2.125 4

Parameter Range Parameter Range

(al-5) CSP (a1-6) CSWS

.
A -
2 < 3
@ @ -
o a .
- — A
- N .
[5) 5) -
o o 5
Qo Qo .,
5 5
[« o

0.0001 0.00355 0.007

Parameter Range Parameter Range

(b1-1) ISSR (b1-2) MSLS

Range of LPBIAS

Parameter Range Parameter Range

(b1-5) CSP (b1-6) CSWS

Range of LRSR

0.0001 0.00355 0.007

Parameter Range Parameter Range

(c1-1) ISSR (c1-2) MSLS

Range of LRSR

0.25 2.125 4

Parameter RAnge Parameter Range

(c1-5) CSP (c1-6) CSWS

-1500 -1500

-1600 -1600

-1700 -1700
U]

-1800 Q -1800

-1900 %‘ -1900

-2000 o -2000
Qo

-2100 & -2100
o

-2200 'S -2200

2% avie ‘o h
-2300 -2300
-2400 -2400
0.00 0.25 0.50 0.0001 0.00355 0.007

Parameter Range Parameter Range

(d1-1) ISSR (d1-2) MSLS

Range of LNSE

0.05 4.025
Parameter Range

(a1-7) CSHC

Range of LPBIAS

0.008 0.074 0.14

Parameter Range

(b1-3) CRC

Range of LPBIAS

Parameter Range

(b1-7) CSHC

o

Range of LRSR
w =y wv

N

0.008 0.074 0.14

Parameter Range

(c1-3) CRC

Range of LRSR

0.05 4.025 8

Parameter Range

(c1-7) CSHC

-1500
.
-1600 {8
-1700 A
-1800

Range of LLOG

0.074 0.14
Parameter Range

(d1-3) CRC

Range of LNSE

0.8 1 1.2
Parameter Range

(a1-8) CSD

Range of LPBIAS

Parameter Range

(b1-4) CLCRC

Range of LPBIAS

Parameter Range

(b1-8) CSD

Range of LRSR

0.6 0.95 1.3
Parameter Range

(c1-4) CLCRC

Range of LRSR

Parameter Range

(c1-8) CSD

-2100
-2200 $&

Range of LLOG

0.6 0.95 1.3
Parameter Range

(d1-4) CSD





media/file27.jpg





media/file3.jpg
Rainfall

Land surface 1

Infiltration excess flow Overland
Saturation excess flow flow
Layerhs Return flow >
Infiltration ¥ streamflow
Subsurface flow — "

LayerB

Percolation Baseflow






media/file22.png
Frequency

Frequency

10

Frequency
S & & ¥ 8

S

o

Frequency

ISSR

0 005 01 015 02 025 03 035 04
Parameter Range

(a3-1) ISSR
CLCRC

060 06 OM 081 Q8 Q% 102 100 1%
Parameter Range

005 o8

0.45

(a3-4) CLCRC

164

CSHC

0 005 01

L4

i3

a0

AR AR 64

Parameter Range

(a3-7) CSHC

015

0.2

ISSR

025

0.3

0.35

0.4

Parameter Range

(b3-1) ISSR

mm

045

05

&00

0.5

5

RN

55

3
Accumulate

2F3FS

Accumulate

Accumulate

Accumulate

Frequency
8

Frequency

Frequency

Frequency

MSLS

Accumulate

0.0001 0.0008 0.0015 0.0022 0.0029 0.0036 0.0042 0.0049 0.0056 0.0063 0.0070

Parameter Range

(a3-2) MSLS

csp

0% a% om 0% 0%

100

1w

L4

106

Parameter Range

L08

(a3-5) CSP

Q%0 o o088 o

CsD

9%

100

104

108

Parameter Range

(a3-8) CSD

MSLS

12

116

10

120.00%

100.00%

80.00%

g

00%

40.00%

20.00%

0.00%

353

EEE

10

Accumulate

Accumulate

100%

90%
80%
0%
60%
50%
40%
30%
20%

0.0001

Parameter Range

(b3-2) MSLS

Accumulate

Frequency
£ 8 8§ 8 8 8 8

CRC

0008 Q02! 0034 Q048 0051 0074 0087 Q200 Q114 QN7 Q40

Frequency

20

<

Frequency
E ¥ 8 8 E B

g

0% 08

Parameter Range

(a3-3) CRC

CSWS

100

(a3-6) CSWS

13

17

PAL

250

Parameter Range

CRC

Q008 002! 0034 Q048 0061

18

1%

16

400

535853
Accumulate

g ¥

55535

§
Accumulate

5335353
Accumulate

FFFF

0074 0087 0100 Q114 Q27 Q30

Parameter Range

(b3-3) CRC





media/file20.jpg
34 cicre s csne






media/file19.jpg
(a3-4) CLCRC

(a3 CSHC

(b3) 1S5k

il

(@3)Csp (a36) CSWS.

(38)CsD

(632) MSLS. (b33) CRC





media/file7.jpg
Generate random Parameters

!

Rainfall-Runoff simulation using GRM

!

Likelihood estimation for uncertainty analysis

!

Behavioral Model Selection and Uncertainty Evaluation

uonjewony






media/file28.png
Frequency
~ E=3 L=a) oo
(=] o o o

o

Frequency
oS 8 &8 & 88 32 8

Frequency
& g z

~
<

g 8

Frequency
N
2

Frequency
—_ e ws
2 8 5 8 8

g

ISSR MSLS CRC
100.00% 90 100.00% 4%
80 400
75.00% 7° 5.00% 3%
g 5. 60 g 5. 30
s g = ¢
5 g 50 5 £ 2%
5000% £ 2 5000% £ -
23 @ 40 3 g 20
I e S e
< 30 < 19
25.00% 2 25.00% 100
10 0
0.00% 0 0.00% -
0 005 01 015 02 025 03 035 04 045 05 0.0001 0008 0021 Q034 QO 0061 0.074 Q087 0100 0114 0127 0340
Range of Parameter Parameter Range Parameter Range
100.00% 120 100.00% 100
%
100 0
75.00% 75.00%
70
s » ¥ s >
5 4 8 v &0
£ g 2 ¢
s000% E 3 6 s000% € 3 %
- 4 o g
v 4 el - &0
< = $ &
40
3
25.00% 25.00%
2 20
10
0.00% 0 0.00%
0600 Q670 0740 0810 0880 0.950 1020 1050 1160 1230 1300 0900 0920 0940 0960 0980 1.000 1020 1040 1060 1080 1300 0.250 0625 1000 1375 1750 2125 2500 2875 3250 3625 4000
Parameter Range Parameter Range Parameter Range
100.00% 100 100.00%
80
75.00% 75.00%
70
o v
s000% £ $ @ sa00% £
g ¢ w g
< = <
30
25.00% 25.00%
20
10
0.00% 0 0.00%
0.050 0845 1640 2435 3230 AMS 4RO S615 6410 7.205 8000 0800 0840 0880 0920 090 1000 1040 1080 1120 1160 1200
Parameter Range Parameter Range
ISSR MSLS CRC
100.00% 450 100.00% 600
400
S0
75.00% 350 75.00%
I 5. 30 g . 40
] o T 9
2 g 250 3 ¢
5000% £ El 50.00% E 3 300
3 o 200 3 g
o P s [
< 150 < 200
25.00% 100 25.00%
100
50
0.00% 0 0.00% 0
0 005 01 015 02 025 03 035 04 045 05 0.0001 0008 0021 Q034 Q08 Q061 0074 Q.087 Q00 Q114 0127 0340
Parameter Range Parameter Range Parameter Range
100.00% 4% 100.00% 49
400 400
75.00% 30 75.00% 0
S o S o
= ¢ = ¢
5 § 2% 5 £ 2%
S000% E 3 S000% E 3
2 g 200 2 g 200
< “ 1% < “ 1%
25.00% 10 25.00% 100
S0 50
0.00% 0 0.00% 0

75.00%

50.00%

75.00%

0.00%

0.00%

715.00%

25.00%

Accumulate

Accumulate

Accumulate

Accumulate

0600 Q670 740 Q810 0880 0950 1020 1090 1160 1230 L300 0900 0920 090 090 09%0 1000 1020 1040 1060 1080 1100 0250 OGS 1000 1375 1750 2125 2500 2875 31250 15 4000

Parameter Range

(b4-6) CSWS

Parameter Range

(b4-5) CSP

Parameter Range

(b4-4) CLCRC





media/file23.png
Frequency
¥ 8 8 8 8

o

Frequency
g B

E§ 8 8

~
=3

Frequency
b= w
o o

w
(=1

10

70

Frequency

E 8§ £ 8 3 8

Frequency

CLCRC

§55%
Accumulate

X

#3535

Q600 Q670 0740 Q810 0830 0950 120 1090 1360 1230 1300

Parameter Range

(b3-4) CLCRC

CSHC

 EEEEERER

0050 Q845 1640 2435 31230 405 4R0 5615 6410 7.205 &000

Parameter Range

(b3-7) CSHC

0 005 01

0.15

ISSR

02 025 03 035

Parameter Range

04 045 05

(c3-1) ISSR

CLCRC

Q600 0670 Q740 0810 0880 0950 1020

Parameter Range

B EEEEREER

L1090 13160 1230 1300

(c3-4) CLCRC

CSHC

5

§ 3
Accumulate

g ¥

0050 O84S 1680 2435 3230 4MS 40 5615 6410 7.205 &000

Parameter Range

(¢3-7) CSHC

Accumulate

wu
2
Accumulate

Accumulate

Frequency

Frequency

~
<

e
=]

Frequency
w
o

3

Frequency
s 8 & & ¥ 8

<

&

Frequency
=

0900 090 00 09%0 090 1000 LO20

csp

Parameter Range

(b3-5) CSP

CsD

Parameter Range

(b3-8) CSD

MSLS

Parameter Range

(c3-2) MSLS

csp

Parameter Range

(c3-5) CSP

CsD

0800 0840 0830 090 Q%0 1000 1040

Parameter Range

1080 1120

(c3-8) CSD

1040 1060 1080 1300

0800 0840 0830 Q90 0960 1000 LOM0 1080 L1120 L1460 1200

0.0001 0.0008 0.0015 0.0022 0.0029 0.0036 0.0042 0.0049 0.0056 0.0063 0.0070

1160

SRR EERER
Accumulate

B EEEEREER
Accumulate

5

§§3
Accumulate

0900 0920 QM0 0960 090 1000 1020 1040 1060 L0B0 1300

585533583

7y

LX0

)
2
Accumulate

Accumulate

Frequency
o 2 8 8 8 8

Frequency

Frequency
S & & £ 8 = B

-
o o

Q250 0625 LO00 L375 L7S0 2125 2500 2875 1250 165 4000

(b3-6) CSWC

0008 Q02! Q034 Q048 0061 0074 0087 Q200 QN4 QN7 QX0

(c3-3) CRC

025 0RS 1000

(c3-6) CSWS

CSWS

Parameter Range

CRC

Parameter Range

CSWS

S EEEERER

P5355553855

Accumulate

Accumulate

§538%5%

Accumulate

%3

L3015 A7%0 2125 2500 285 1250 15 4000

Parameter Range





media/file14.png
Range of LLOG

-1500
-1600
-1700
-1800
-1900
-2000
-2100
-2200
-2300
-2400

Parameter Range

Range of LLOG

-1500
-1600
-1700
-1800

0.25 2.125
Parameter Range

Range of LLOG

0.05 4.025
Parameter Range

Range of LLOG

-1500
-1600
-1700 §
-1800
-1900
-2000
-2100
-2200
-2300
-2400

Parameter Range

(d1-5) CSP

(d1-6) CSWS

(d1-7) CSHC

(d1-8) CSD






media/file11.jpg
(d1-5) CSP (d1-6) CSWS (d17) CSHC (d1-8) CSD.





media/file6.png
andcover

~

High : 7

Low:1

o et Riod T
== Kilometers.

Soil map

o o

Low: 1

6 °

12,
== Kilometers

Soildepth






media/file36.png
m3/s 95PPU_LNSE LNSE:0'97
1400
1200
1000
800
600
400
200
0

o OO0 0 Q O 0 0 Q O O QOO0 O 000 0 0 0 Q0 0 Q O Q

e e e e B e B e B B B - e B R e B = = B B B

NN F N O™~ A AN M 1N O™ 0NN O AN M N

= el e e e e e e - - NN NN NN

[0 95PPU === Observation == e= e= Bestsimulation
(e2-1) 95PPU of LNSE

mifs 95PPU_Lper Lesg © 543
1400
1200
1000
800
600
400
200
0

2953835895998 9895889589:+5

HNMQM&DI\WQOHNMQU‘)QNEG\OHNmQI-n

™ = e e e NN NN NN

[ 95PPU

e Observation == == = Best simulation

(€2-3) 95PPU of LRSR

m3/s 95PPU_LPBIAS LPB|A5:564'33
1400
1200
1000
800
600
400
200
0

O O O O O O 0O O O 0 O 0 0O OO0 000 0O OO O O O O O

HFIF!FIHHFIFiHFIﬁHF!ﬂHHHHEHHH!#FIHH

= N M N O™~ 00 00 H NN S N WO~ DO = N M T N

= e e e e e e e e = NN NN NN

0000 95PPU  eesmm Observation == e= e= Best simulation
(e2-2) 95PPU of LPBIAS

m3/s 95PPU_LLOG LLOG:-1215
1400
1200
1000
800
600
400
200
0

TN AT RO RTS8 ddRTIEREFTSIARTE A

™ = e = e e e e - = NN NN NN

[ 95PPU emmmm Observation — == == e Best simulation

(e2-4) 95PPU of LLOG





media/file15.jpg
(a21) ISSR (a22) MSLS (a2:3) CRC (a24) CLCRC

(a2-6) CSWs. (a27) CSHC (a2:8)CSD.

(b2:3) CRC (b2:4) CLCRC

(b22) MSLS.

(b2:5) CSP. (b2-6) CSWS. (b2:7) CSHC (b2:8) CSD






media/file32.jpg
98P L s

EEEEEEEL

235323203823500

(e1-3) 95PPU of LRSR

95PRU_L

¥

L1546

¥58583

H

I TEE T PFTEFTFEH ETTTES

(e14) 95PPU of LLOG






nav.xhtml


  water-14-02210


  
    		
      water-14-02210
    


  




  





media/file29.png
& & £

Frequency

g

Frequency

Frequency

s & 8 B

o

Frequency
g

g & 8 8

o

Frequency
g

CSHC

Q050 OB45 1640 2435 3230 4M5 480 5615 6410 7.205 &000

0

0600 Q670 0740 Q810 0880 Q950 LO20 1090 L160 1230 L300

0050 0845 LG40 2435 3230 45 4RO 5615 6410 7.205 &000

0

Parameter Range

(b4-7) CSHC

005 01

ISSR

015 02 025 03 035 04 045
Parameter Range

(c4-1) ISSR

CLCRC

Parameter Range

(c4-4) CLCRC

(

005 01

CSHC

Parameter Range

c4-7) CSHC

ISSR

015 02 025 03 035 04 045
Parameter Range

(d4-1) ISSR

0.5

05

15.00%

&
§
Accumulate

25.00%

0.00%

50.00%

Accumulate

75.00%

s
§
Accumulate

25.00%

&
$
Accumulate

25.00%

120.00%

100.00%

80.00%

60.00%

Accumulate

20.00%

0.00%

53

Frequency
g8 E

o

Frequency

Frequency
5 8 8 8

-~
=3

Frequency
-
8

CsD

0800 0840 Q880 0920 090 1000 1040 1080 1120 1160 1200
Parameter Range

(b4-8) CSD

MSLS

Parameter Range

(c4-2) MSLS

Csp

Q900 0920 00 09%0 0950 L000 LO20 L.040 1060 1080 L1100
Parameter Range

(c4-5) CSP

CsD

0800 0840 0,880 0920 Q960 1000 LOK0 1080 1120 1160 1200
Parameter Range

(c4-8) CSD

MSLS

5
$
Accumulate

75.00%

0.00%

15.00%

25.00%

0.0001 0.0008 0.0015 0.0022 0.0029 0.0036 0.0042 0.0049 0.0056 0.0063 0.0070

Parameter Range

(d4-2) MSLS

Accumulate

Accumulate

Accumulate

Accumulate

Frequency

& & 8

Frequency

CRC

<

0008 0021 0034 Q048 Q061 0.074 Q087 Q100 0114 Q127 0.140
Parameter Range

(c4-3) CRC

CSWs

0900 0920 00 Q%0 0980 L1000 1020 1040 L1060 1080 1100
Parameter Range

(c4-6) CSWS

CRC

o .

75.00%

50.00%

25.00%

2

v

00%

0.00%

535558533583

0008 Q021 00K QOA8 0061 0074 0087 Q300 Q114 Q127 Q1K

Parameter Range

(d4-3) CRC

Accumulate

Accumulate

Accumulate





media/file2.png
4Seod|
Incheon e ®
South Korea R  Jzsonahion
O 5 5 \!
Daej eon he by
E éaegu
i
: Ulsan
‘ 3
»i
Pusan
.“.

1
o

vt g

Ny g p o I

' Eumseong’

Ry r'ie oS

3; %‘&”ﬂ' Ve 13
iy

ainfal

©® GaugesStation(t :
{ » .GaugeStation(_,$tr§qmﬂ
' River(Cheongmicheon) -

0 1.7535 7 105 ;@ S
e — —Kilometers






media/file10.jpg
@nsse

i

@

@aER @aMls @9cRe (@





media/file5.jpg





media/file24.png
yenwnday

Esggss8s

-3 -3

g
o
=
o
Z
g
- <
o $5
S R
: £
s &
-
(=]
3
g
-]
o
@uﬁ.JEJUU(
EEEEB588883
%
NO.Q
A.b@mv
%
,.w.@w
9 o &
) M@.e 5
M #m&w m
o, &
<
mvnv@@
@,
& °
NG
c&.o
Acuanbauy
23e|NWINIDY
EE 85888858

ISSR

Aduanbauy

0 005 01 015 02 025 03 035 04 045 05

Parameter Range

(d3-2) MSLS (d3-3) CRC

(d3-1) ISSR

enwndoy

EE5E888888¢

Q&5 L000 1375 L750 2125 2500 2875 1250 1@S 4000

2 :
3 H
mmmmmmnwwnoa
Aduanbasy
yENWINIDY
EE 888888868 ¢«

==
=
H
-
g ;

CLCRC

0920 0940 09%0 0980 1000 L020 1040 1060 1.080 1300

8 8 8 R 8

8 8 8 R °

2enwndoy

EEEEE85888¢

Q670 0740 Q810 0830 0950 1020 1090 1360 1230 1300
Parameter Range

8 8 8§ R 8

- e e e e

8 8 8 R °

(d3-5) CSP (d3-6) CSWS

(d3-4) CLCRC

S1EINWINDDY

REERSBRAE

1

CsD

0.800 0.840 0.880 0.920 0.960 1.000

8 8 8 R 8 8 8 8 R °

11111
Aduanbauy

23e|NWINddY

CSHC

o o o
111111 wm‘vz

Aduanbauy

Parameter Range

Parameter Range

(d3-8) CSD

(d3-7) CSHC





media/file33.png
Legias : 9.83

95PPU_Lpgas

m3/s
700
600

95PPU_Lyse Licce = G5
NSE - -

m3/s

= e == Best simulation

Observation

[ 95PPU

== == e Best simulation

e Observation

I 95PPU

(e1-2) 95PPU of LPBAIS

(e1-1) 95PPU of LNSE





media/file1.jpg





media/file16.jpg
(27) CSHC (28 CSD

i=

(d2:4) CLCRC

(d2:7) CSHC





media/file31.jpg
™ sseeu.L
g i 038

RO TR ETE R

(e1-1) 95PPU of LNSE

SEEEEER AL

9SPPU L

(e1-2) 95PPU of LPBAIS

Lose: 983






media/file25.jpg
e crere

@SS

s

(a4 C5D.






media/file12.png
Range of LNSE

0 0.25
Parameter Range

(a1-1) ISSR

0.5

0.0001 0.00355
Parameter Range

(a1-2) MSLS

0.007

. o

0.008 0.074
Parameter Range

(a1-3) CRC

0.14

Range of LNSE

0.6 0.95
Parameter Range

(a1-4) CLCRC





media/file9.jpg
[—

(al-1) ISSR (a1-2) MSLS. (a1-3) CRC (a1-4) CLCRC





media/file0.png





media/file17.png
Range of LNSE

0 0.25 0.5 0.0001 0.00355 0.007 0.008 0.074 0.14 0.6 0.95

Parameter Range Parameter Range Parameter Range Parameter Range

(a2-1) ISSR (a2-2) MSLS (a2-3) CRC (a2-4) CLCRC

Range of LNSE
Range of LNSE
Range of LNSE

0.9 1 1:1 0.25 2.125 4 0.05 4.025 8 0.8 1 1.2

Parameter Range Parameter Range Parameter Range Parameter Range

(a2-5) CSP (a2-6) CSWS (a2-7) CSHC (a2-8) CSD

Range of LPBIAS
Range of LPBIAS
Range of LPBIAS

Range of LPBIAS

0.0001 0.00355 0.007
Parameter Range Parameter Range Parameter Range

Parameter Range

(b2-1) ISSR (b2-2) MSLS (b2-3) CRC (b2-4) CLCRC

‘Q
@
.
.
®

s
»
. .

-
g

Range of LPBIAS

e ®

Range of LPBIAS
Range of LPBIAS
Range of LPBIAS

0.05 4.025 8
Parameter Range Parameter Range Parameter Range

Parameter Range

(b2-5) CSP (b2-6) CSWS (b2-7) CSHC (b2-8) CSD





media/file8.png
Generate random Parameters

A

v

Rainfall-Runoff simulation using GRM

v

uoljewolny

Likelihood estimation for uncertainty analysis

v

Behavioral Model Selection and Uncertainty Evaluation






media/file34.png
95PPU_Lgeg 95PPU_L o6

me/s Lecg : 656 ™78 Liog : -1546
700 700

SSR8%38888392853885585828888¢838 S9R833R588292832828323825858888¢83
e e A A A NN AN ANN NN N N e e e A AN NN ANAN NN N N M
[0 95PPU  ewmmmmm Observation — == e= e= Best simulation [ 95PPU Observation == e= e Best simulation

(e1-3) 95PPU of LRSR (e1-4) 95PPU of LLOG





