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Abstract: The multi-objective design optimization of water distribution systems (WDS) is to find
the Pareto front of optimal designs of WDS for two or more conflicting design objectives. The
most popular conflicting objectives considered for the design of WDS are minimization of cost and
maximization of resilience index which are considered for the current study. Robust multi-objective
optimization is to find the optimal set of the Pareto front considering demand is uncertain. The
robustness is controlled by a single parameter that defines the size of the uncertainty set it can
vary. The study explores ellipsoidal uncertainty set with different sizes and co-variance matrices.
A combined simulation–optimization framework with a combination of self-adaptive multi-objective
cuckoo search (SAMOCSA) and the fmincon optimization algorithm is proposed to solve the robust
multi-objective design problem. The proposed algorithm is applied to medium and large WDS. The
main contribution of this paper is to study the effect of demand uncertainty and the correlation on
the WDS designs in a multi-objective framework. The study shows that the inclusion of correlation
into the multi-objective design framework can significantly affect the optimal designs.

Keywords: robust optimization; multi-objective design; water distribution systems; demand uncertainty

1. Introduction

A water distribution system (WDS) is a combination of multiple physical infrastruc-
tures that work in unison to provide high-quality water to the downstream customers
at required pressures. This WDS is essential for every developed city, making it a criti-
cal infrastructure that must be accurately designed and well managed and maintained.
The optimal design of these WDSs is a highly complex problem involving nonlinear-
ity. This problem becomes even more complex when the system needs to be designed
under uncertainty.

Water distribution system (WDS) design optimization is one of the most heavily re-
searched areas in the water resources and hydraulics domain. The design of new water
distribution networks was initially viewed as a least-cost optimization problem, with pipe
diameters, tank characteristics and pump characteristics being the most commonly con-
sidered decision variables. This classical problem is often aimed at meeting the consumer
nodes’ pressure requirements while minimizing the building’s cost or rehabilitating the
system. While maintaining the minimum pressures at the nodes is a necessary design
requirement, maintaining customer satisfaction throughout its design life is also essential.
The measure of customer satisfaction under unfavorable conditions is termed system relia-
bility. Even though there is no definite mathematical way to measure the system reliability,
multiple researchers accepted and used the resilience index to measure WDS reliability.
When we try to increase the network’s resilience, the networks become more complex,
and construction costs also increase. To overcome this problem of optimizing multiple
conflicting objectives simultaneously, multi-objective optimization has been introduced.

Multi-objective optimization has also been extensively explored in the WDS sector.
The studies ranged from two objectives, three objectives and even six objectives. Prasad and
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Park [1] proposed designs that minimize cost and maximize resilience. Farmani et al. [2]
proposed multiple designs for the Anytown WDS benchmark, considering cost and re-
liability as conflicting objectives. Kapelan et al. [3] considered minimization of design
cost and maximization of the robustness of WDS [4–8] and have tried to improve the
design Pareto fronts of cost and resiliency using different multi-objective metaheuristics.
Wang et al. [9] used five different multi-objective algorithms and combined the results to
propose the true Pareto fronts for many WDS benchmark networks considering cost and
resilience index as conflicting objectives. All these studies have formulated their design
problem assuming the parameters are deterministic. When applied to real-life networks,
these designs often do not meet their design performance. Not accounting for the uncer-
tainty involved in the design parameters is one of the reasons for their poor performance
than expectations.

1.1. Optimization under Uncertainty

The most popular optimization under uncertainty approach is the probabilistic ap-
proach. In the probabilistic approach, an uncertain parameter is assumed as a random
number associated with the assumed probability density function (PDF). The PDF is as-
sumed to be based on an expert’s opinion or previous statistical data. The probabilistic
analysis aims at obtaining the PDF of the output dependent variable based on the variations
of the input uncertain independent variable. There are multiple techniques to approximate
the output dependent variable’s PDF. The most common method used is sampling methods
like Monte Carlo simulations (MCS) or Latin hypercube sampling (LHS). The major differ-
ence between these two sampling methods is that the sampling is completely random in
MCS. The method requires a huge number of samples. In the LHS method, the sampling is
performed in a more stratified manner, reducing the number of samples required. The other
methods are analytical methods, where the variance of the output parameter is estimated
around its mean value. The most common analytical-based methods are the first-order
reliability method (FORM) and first-order second moment (FOSM).

Bargiela and Hainsworth [10] increased the accuracy of the nodal pressure head
estimates and quantified the uncertainty by confidence bound analysis, and compared them
with Monte Carlo simulations. Kretzmann and van Zyl [11] developed a software package
named MoCaSim-II that uses MCS and WDS analysis software to estimate the relationship
between system reliability and tank capacity. Pasha and Lansey [12,13] analyzed the impact
of uncertainty in bulk and wall reaction coefficient, pipe diameters, pipe roughness and
demands in the water quality estimates of the system using EPANET. They used Monte
Carlo simulations to obtain the estimates. Sumer and Lansey [14] worked on estimating
the effect of pipe roughness uncertainty on rehabilitation and expansion design decisions.
They worked with a steady-state hydraulic simulation model. The parameter uncertainty
was quantified through FOSM, and then the propagation of this input uncertainty on
output uncertainty was also evaluated through a second FOSM. Stochastic formulation
of the WDS design problem is first studied by Lansey et al. [15]. They assumed PDFs
for the uncertain parameters and developed chance constraint formulations to handle
the uncertainty. Xu and Goulter [16] formulated a single objective optimization problem
considering the minimization of the design cost as the main objective. They added an
additional constraint of system reliability, which is formulated as a chance constraint
considering the demand as uncertainty. Kapelan et al. [3] proposed a stochastic least-cost
design problem under uncertainty. They assumed a known PDF for the uncertain input
parameter and the output uncertainty is analyzed using LHS technique, the proposed
design model is then solved using a genetic algorithm (GA) and robust genetic algorithm
and the results are then compared. Babayan et al. [17] replaced the Monte Carlo simulation
(MCS) or any other sampling techniques by adding a margin of safety factor for pressure
at nodes and assuming the fluctuations of heads at nodes are caused by uncertainty in
demand. They then reformulated the stochastic formulation into a deterministic case and
solved the design problem using GA. Babayan et al. [18] further extended this work by
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proposing two stochastic modeling approaches for least-cost design problems, the first
approach was an integrated approach where the stochastic formulation is converted to the
deterministic formulation and then the problem is solved using standard GA. The second
modeling approach was the sampling approach, where the stochastic formulation was
directly tackled using standard GA and LHS sampling techniques for uncertainty analysis.
Perelman et al. [19,20] proposed two non-probabilistic approaches to solve the least-cost
design problem. Both approaches used robust counterpart (RC) techniques combined
with a cross-entropy optimization algorithm for solving the problem. The first approach
was to consider that the demand uncertainty only affects the mass balance constraint and
formulate the RC whereas the second approach considered the explicit formulation by
carrying the uncertainty to the energy constraint as well. To apply the RC technique, the
authors suggested a linear approximation for the head loss function and then used this
linear surrogate to simplify the least-cost design problem formulation and then use robust
optimization techniques to convert the uncertain formulation to tractable formulation and
solve the problem using the single objective cross-entropy optimization algorithm.

1.2. Multi-Objective Optimization of WDS Design under Uncertainty

Kapelan et al. [21] proposed a multi-objective optimization problem with design cost
minimization and system robustness as objectives. They considered nodal demands and
pipe roughness as uncertain with a known PDF. They used Latin hypercube sampling to
overcome the additional computational complexity that arises due to stochastic formulation.
A modified NSGA-II algorithm is used for obtaining Pareto fronts. A two stage multi-
objective optimization model was proposed by Giustolisi et al. [22]. The first stage was
to obtain the solutions based on deterministic least cost design formulation using GA
and then use the solutions obtained as the initial population set for solving the stochastic
least-cost design formulation with two objectives one being the least cost and other being
maximizing robustness using OPTIMOGA algorithm. LHS was used as the uncertainty
analysis technique. They considered both demand and pipe roughness as uncertain in their
formulation. Jung et al. [23] proposed a MOGA based stochastic problem formulation. The
reliability is measured using two different approaches, the first being the variability of
only the critical node and the second is to consider all the nodes variability. The results are
compared using a disturbance index. They stated that the robustness is not achieved when
only critical nodes are considered. A brief description of uncertainty-based studies in WDS
design area are shown in Table 1.

Table 1. List of few works in the area so WDS design and analysis under uncertainty.

Uncertain
Parameters

PDF
Assumed

Uncertainty
Handling

Techniques

Optimization
Techniques References Type

q, H, RC Normal FORM GRG2 [16] Hydraulic
analysis

q, H, RC Normal MCS GRG2 [15] SO Design

q, RC Normal MCS SFLA [24] Hydraulic
analysis

q, RC Normal FOSM and
MCS – [25] Hydraulic

analysis
q Gaussian LHS GA [17] SO Design

q, RC Normal FORM GA [26] SO Design
q Gaussian LHS RNSGA-II [21] MO Design

q – Robust
optimization cross entropy [19,20] SO Design

Note(s): q—demand; RC—roughness coefficient; H—pressure head; LHS—Latin hypercube sampling;
MCS—Monte Carlo simulations; GA—genetic algorithm; FORM—first-order reliability method; SO—single
objective; MO—multi-objective design; SFLA—shuffled frog leap algorithm.
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Stochastic optimization methods have been extensively explored in the past to solve
the least-cost design problem; later, it has also been explored to solve multi-objective design
problem with the second objective being robustness or reliability of the design. Even
though these design methodologies are reliable in terms of handling uncertainty, the heavy
computational time and the uncertainty in the PDF assumptions reduced the practical
application of these methodologies. Non-probabilistic optimization techniques proved to
be much more reliable and faster in computation than stochastic formulations. Many non-
probabilistic based optimization techniques were explored in the recent past in the water
resource management sector [19,20,27–32]. Robust optimization techniques are one of the
promising non-probabilistic techniques to handle uncertainty. These techniques are used to
solve least cost design problem under uncertainty with single [20] and multiple loading
conditions [32]. There are no reported studies that used non-probabilistic techniques to
solve a multi-objective problem formulation of WDS design. The current study aims to
fill this research gap. Minimization of design cost and maximization of resilience are
considered as design objectives. A combination of robust optimization techniques and
a self-adaptive multi-objective algorithm is proposed to solve this multi-objective WDS
design under demand uncertainty. The proposed methodology is applied to a medium and
large WDNs, and the results obtained are discussed.

2. Methodology
2.1. Robust Optimization

Robust optimization concepts can be easily explained through linear optimization
problems, the uncertain linear optimization problem can be written as,

minimize atx (1)

subject to : g̃T
i x ≥ 0 ∀g̃i ∈ Ui ∀i (2)

where x = [x1, x2, x3, . . . xn, . . . ,−1]T is a vector of decision variables, a is a vector of co-
efficeints associated with objective fubnction, g̃i =

[
g̃1

i , g̃2
i , . . . . . . , g̃n

i ,−b̃i

]
is a vector of

uncertain coefficients associated with the ith constraint which can vary within the uncer-
tainty set Ui and b̃i is the right hand side parmeter of the constraint. Ui ∈ U where Ui is
the projection of uncertainty set U in the direction of ith dimension.

Based on the type of uncertainty set, the robust optimization formulations vary. For
the current study, we look into ellipsoidal uncertainty sets. These ellipsoidal uncertainty
sets have many advantages such as (a) they can be used to incorporate correlations between
the uncertain variables, (b) it provides less conservative solutions than box uncertainty set
(where the uncertain parameters can take worst values at the same time).

2.2. Ellipsoidal Uncertainty Set

Let us assume that for every ith constraint, g̃ij, j ∈ J can vary within the interval[
ĝij − δgij , ĝij + δgij

]
, where ĝij is the nominal value and δgij is the maximum deviation from

the nominal value.
For any uncertain coefficient g̃ij with nominal value ĝij and covariance matrix Σ, the

ellipsoidal uncertainty can be defined using Mahalanobis distance in the form:

U(Γ) =
{

g̃ij

∣∣∣(g̃ij − ĝij
)TΣ−1(g̃ij − ĝij

)
≤ Γ2

}
(3)

Here, Σ correlation matrix, “u” is the perturbation vector, ‖·‖2 is the Euclidean norm,
and “Γ” is a value controlling the size of the ellipsoidal uncertainty set which is also referred
to as the protection level Ben-Tal and Nemirovski [33].
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So, for the problem defined in Equations (1) and (2), the robust equality formulation
for the constraint in Equation (2) is as follows:

min
g̃i∈U(Γ)

{g̃ix} ≥ 0 (4)

The solution for Equation (4) can be easily attained using Karush–Kuhn–Tucker (KKT)
conditions to find that

g̃i = ĝi −
Γi√

xTΣix
Σix

By substituting the value of g̃i in the constraint we obtain,

min
g̃i∈U(Γ)

{g̃ix} ≥ 0⇒ ĝi − Γi

√
xTΣix ≥ 0 (5)

As Σ is a covariance matrix, we can use Cholesky decomposion to simply the LHS
term in Equation (5). Assume Σ = P.PT , then the Equation (5) can be written as

ĝi − Γiabs
(

PT
i x
)
≥ 0 (6)

In summary, we restrict all of the parameters from obtaining their worst-case values
simultaneously by using an ellipsoid set.

2.3. Two-Objective Cost vs. Resilience Design of Water Distribution System

The optimal design of water distribution systems is an np-hard problem due to its
large search space, discrete combinatorial nature and nonlinear and complex constraints. In
the past, the optimal design of WDS was treated as a single objective optimization problem,
where the optimal pipe diameters were obtained that minimize the overall construction
cost of the WDS. Multiple scholars criticized this design method as a few of the designs
obtained through this method lacked reliability [34–36]. The reliability of water distribution
system can be estimated by surrogate measures. There have been many surrogate measures
proposed and utilized in the past to estimate the reliability of WDS and also obtain reliable
designs using multi-objective optimization algorithms. The surrogate measures can be
categorized into entropy-based, power/energy-based and also the hybrid surrogate.

Entropy-based surrogate measures for reliability are initially proposed by
Shannon et al. [37]. Redundancy or increase in multiple flow paths and flow uniformity
can increase the entropy in WDS.

Power or energy-based surrogate measures are the most explored surrogate reliability
measures in WDS. They use the total energy supplied to the systems by sources and
pumps to determine the WDS’s resistance to pipe failures. Todini [38] proposed a resilience
index indicator based on excess energy quantification in the system. Maximization of
this resilience index ensures less energy is dissipated in the system flow due to friction
enabling higher energy available at demand nodes that can be used to overcome abnormal
network conditions.

“Optimizations based on resilience index and flow entropy revealed that the sys-
tem optimized with resilience index was more reliable and cheaper in hydraulic failure
conditions rather than mechanical” stated Gheisi et al. [39].

The energy efficiency index was proposed by Dziedzic and Karney [40]. Energy
efficiency was defined as the ratio of the energy of water supplied to consumers to the total
energy of water entering the WDS from sources, tanks and pumps. The performance index
comprises four different indices (reliability, vulnerability, resilience, and connectivity),
making it more comprehensive. Reliability was defined as the average of computed energy
efficiencies over different scenarios of failure. Vulnerability was defined as the minimum
energy efficiency that occurred in various failures. Resilience was defined as the average
energy efficiency during the recovery period after failure. Connectivity was defined as the
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minimum percentage of delivered water to consumers during different failure scenarios,
according to Gheisi et al. [39].

In addition to these surrogate measures, researchers have also used additional con-
straints like maintaining the system pressure and flow velocities [41] within specific limits
to increase the reliability of the obtained system design

As most of the studies in the past used the resilience index as the reliability mea-
sure, we also used this resilience index metric as our second objective function for the
current study. The final multi-objective problem formulation can be written as follows
Equations (7)–(12):

Minimize
np

∑
i=1

UC(D(i)) ∗ L(i) (7)

Maximize RI =
∑nn

i=1 qi
(
hi − hmin

i
)(

∑nr
s=1 QsHs + ∑

npu
b=1

Pb
γ

)
−∑nn

i=1 qihmin
i

(8)

subject to: A21Q− q = 0 (9)

A11Q + A12h = 0 (10)

h ≥ hmin (11)

Here Uc—unit cost per length of pipe corresponding to the diameter, D—set of design
diameters, L—length of pipe, np—number of pipes, qi—demand of node “I”, h—pressure
head at node, hmin—minimum pressure required, nr—number of reservoirs, Qs—flow
from reservoir “s”, Hs—pressure head of reservoir “s”, npu—number of pumping units,
Pb—energy of pump “b”, γ—efficiency of the pump, nn—number of nodes in the network,
A21=AT

12 is the connectivity matrix of the network based on topology, A11—nonlinear
elements representing the frictional resistance of the pipe, Q—Flow values in each pipe.

The Equation (10) represents the energy conservation constraint where A11Q is the
head loss term which can be expanded as:

∆h = ∆h(Q) = RcQa1 (12)

where Rc(resistance coe f f icent) = a3L
f a1
c ×Da2 , fc—pipe friction coefficient, a1 = 1.852,

a2 = 4.87 and a3 is the Hazen–Willams coefficient.

2.4. Robust Optimization Formulation Considering Demand(q) as an Uncertain Variable

In this work, we assumed that consumer demands are uncertain, and we employ ro-
bust optimization formulations to obtain optimal designs under uncertainty. The proposed
model is based on the correlated uncertainty model proposed by Perelman et al. [19].

For the explicit formulation of the constraints under demand uncertainty, a linear
surrogate model is used to replace the head loss function Equation (12). This linear
formulation of head loss within a domain [Q1, Q2] underestimates the nodal heads within
the range and overestimates outside the range (Perelman et al., 2013a)

∆h =

(
∆h(Q2)− ∆h(Q1)

Q2 −Q1

)
Q +

∆h(Q1)Q2 − ∆h(Q2)Q1

Q2 −Q1
; L1Q + L0 (13)

This Equation (13) along with Equation (9) can be combinedly written as follows
(Equation (15)) [

A12 L1
0 A21

][
h
Q

]
= G

[
h
Q

]
=

[
−L0 + ho

q

]

⇒
[

h
Q

]
= K

[
L∗0
q

]
=

[
K11 K21
K12 K22

][
L∗o
q

] (14)
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where G−1 = K =

[
K11 K21
K12 K22

]
is the inverse of the matrix

[
A12 L1
0 A21

]
, K11 is of the size

[nn× np], K12 is of size [nn× nn] and L∗o = −Lo + ho, where ho is a given vector of fixed
known heads.

From the Equation (15), the nodal heads ”h” can be computed as

h = K11L∗0 + K12q (15)

Using this formulation, we can rewrite the optimization problem as

Minimize
np

∑
i=1

UC(D(i)) ∗ L(i) (16)

Maximize RI =
∑nn

i=1 q̃i
(
(K11L∗0 + K12q̃)i − hmin

i
)(

∑nr
s=1 QsHs + ∑

npu
b=1

Pb
γ

)
−∑nn

i=1 q̃ihmin
i

; (17)

K11L∗0 + K12q̃ ≥ hmin (18)

q̃ ∈ U (19)

Now consider the Equations (18) and (19), the equation contains demand (q) as
an uncertain parameter, the robust optimization formulation for this is assuming the
demand varies in the uncertainty set U(Γ) =

{
q̃ij

∣∣∣(q̃ij − q̂ij
)TΣ−1(q̃ij − q̂ij

)
≤ Γ2

}
and

P : Σ = P.PT Then, as explained in the ellipsoidal robust optimization formulation
(Equations (3)–(6)), we can write the formulation as follows.

Min
q̃∈U

K11L∗0 + K12q̃ ≥ hmin ⇒ K11,iL∗0 + q̃TKT
12,i − Γ‖PTKT

12,i‖ ≥ hmin (20)

Robust optimization formulation for resilience index, for simplifying the problem, let
us assume that the network consists of only one source and no pumps. Then, the simplified
resilience index equation can be written as:

Maximize RI =
q̃TK12q̃ + q̃TK11L∗o − q̃Thmin

(Σq̃)Hs − q̃Thmin ; K11L∗0 + K12q̃ ≥ hmin; q̃ ∈ U (21)

The robust optimization formulation for the problem in Equation (21) is,

maxτ

subject to : min
q̃∈U(Γ)

q̃TK12 q̃+q̃TK11L∗o−q̃T hmin

(Σq̃)Hs−q̃T hmin ≥ τ; K11L∗0 + K12q̃ ≥ hmin (22)

The resilience index formulation is still nonlinear with a form similar to quadratic over
linear, but all the elements in the matrix K12 are according to negative Perelman et al. [19].
The denominator is always positive as energy at the source ((Σq̃)Hs) is always greater than
energy reached at the nodes

(
q̃Thmin), this problem will never be of the form quadratic

over linear with the positive definite quadratic matrix.
In order to solve the optimization problem in Equation (22), an inbuilt nonlinear

optimization algorithm in MATLAB named “fmincon” is used.
The overall robust multi-objective formulation used in this study is as follows:

Objective Minimize
np
∑

i=1
UC(D(i)) ∗ L(i)

function (1) Subject to : K11,iL∗0 + q̃TKT
12,i − Γ‖PTKT

12,i‖ ≥ hmin
(23)
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Objective maxτ

function (2) Subject to : min
q̃∈U(Γ)

q̃TK12 q̃+q̃TK11L∗o−q̃T hmin

(Σq̃)Hs−q̃T hmin ≥ τ;

K11L∗0 + K12q̃ ≥ hmin

(24)

3. Case Study

The proposed method is applied to the two standard benchmark problems (medium-
sized network and large network). (1) Hanoi WDS proposed by Fujiwara and Khang [42],
(2) large network extracted from Alperovits and Shamir [43].

3.1. Multi-Objective Optimization Method

Self-adaptive multi-objective cuckoo search algorithm (SAMOCSA) combined with
the fmincon nonlinear optimization model is used to solve the robust multi-objective WDS
design optimization problem. SAMOCSA is an improved version of the multi-objective
cuckoo search that adapts the algorithm’s exploration and exploitation governing param-
eters at every iteration. This algorithm has been tested on the two-loop network, Hanoi
network and Pamapur network (Indian network) for the deterministic multi-objective
design problems of WDS. The complete details of the algorithm and its efficiency can be
obtained from Pankaj et al. [7].

The flowchart of the working mechanism of SAMOCSA is shown in Figure 1. The first
step is to initialize algorithm parameters, which generates the initial nests (population) us-
ing uniform random distribution within the search space, and also evaluates the generated
random nests and store the corresponding objective function values. The next step is to
obtain the leader nest, which belongs to the first Pareto front and has highest crowding
distance after non-domination sorting of the initial nests. The non-domination sorting is
inspired from the NSGA-II algorithm. The next step is to generate the new nests using Levy
flight random walk and update the nests. Then, the new nests are replaced with generated
nests with a discovering probability “Pa”. After updating the population, these steps
are repeated until maximum number of iterations initialized at the start. The “Pa” value
is dynamically adapted using the Equation (27). The step-length “alpha(α)” is updated
using the current rank (Pareto front number) and crowding distance and also the nests in
the first Pareto front. The step-length changes are based on the conditions shown below
(Equation (28)).

nestt
i = nestt−1

i + α ∗ H(Pa− rand)
⊗

(nestt−1
j − nestt−1

k ) (25)

nestt
i = nestt−1

i + α ∗ f (leader, β) (26)

Pa(t) = PaMax ∗ e
t

time (27)

Here nesti belongs to set of nests, i, j, k ∈ [1, n], rand—random number generated using
uniform random distribution, f (leader, β) is a function of leader nest and the Levy-flight
parameter β, PaMax—maximum value of the discovering probability (0.9), t—Iteration
number, time—maximum number of iterations.

If rank of new nest < old nest
a(i) = rand ∗ e

1
t−1

Else if rank of new nest == rand of old nest and crowding distance of new nest > old nest
a(i) = rand ∗ e

1
t−1

Else if rank of nest == 1
α(i)= (Max of all values of variables in PF1 – Min of all values of variables in PF1)/100

(28)
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Figure 1. Flow chart of self-adaptive multi-objective Cuckoo search algorithm (SAMOCSA). 

  

Figure 1. Flow chart of self-adaptive multi-objective Cuckoo search algorithm (SAMOCSA).

3.2. Case Study 1-Hanoi WDS

Hanoi WDS is a medium gravity-based WDS proposed by Fujiwara and Khang [42].
The network consists of 32 demand nodes and 34 pipes connected to a single source with
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a head of 100 m. The minimum pressure head required at every node is 30 m. The network
needs to be designed with six different sized pipes. The unit cost corresponding to the
available diameter are shown in Table 2. The full data for this example can be found in
University of Exerter data files [44]

Table 2. Diameter options and associated unit costs for Hanoi WDS.

Diameter (in) Unit
Cost ($/m) Diameter (in) Unit

Cost ($/m) Diameter (in) Unit
Cost ($/m)

12.0 45.73 20 98.39 30 180.75
16.0 70.4 24 129.33 40 278.28

To model uncertainty in demands, the WDS nodes were partitioned into three demand
regions: region 1—nodes 1:15, region 2—16:24, and region 3—25:32 (Figure 2). Demands in
region 2 were assumed to be certain and in regions 1 and 3 as uncertain with a standard
deviation of 12% from the mean demand of each region, (i.e., 80 and 50 (m3/h), respectively.
Four different protection levels are studied Γ = [0.5, 1, 1.5, 2]. Furthermore, the correlation
between the nodes within the region and the correlation between the regions are also
altered. The intraregional correlation values are set to be ρ = 0.8, and the interregional cor-
relation varies between positive, no correlation and negative correlation ρ = [0.6, 0,−0.6].
SAMOCSA algorithm is used to solve the outer design problem, and the fmincon algorithm
is used to solve the nonlinear inner optimization problem for minimization of the resilience
index within the demand search space.
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Figure 3a–c and Table 3 show the variation in the design Pareto fronts with changes in
the uncertainty sets and correlation between the demands of consumer nodes. The Hanoi
network is a low resilient network; the variation in protection levels significantly affects the
design Pareto fronts can be inferred from the graphs. With the increase in the protection
levels, higher design costs are required to satisfy even minimum resilience levels. Among
the three cases, a positive correlation between the demands shows the highest effect on the
designs, followed by negative and no correlation, respectively. For the no correlation case,
the effect of an increase in the protection levels seems to have little variation in the cost for
low resilient designs compared to high resilient designs.
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Table 3. Cost and resilience comparison of extreme points in the Pareto front for two different
uncertainty set sizes.

Correlation Uncertainty Set Size
Extreme Point-1 Extreme Point-2

Cost Resilience Cost Resilience

Positive
2 7.9157 0.154 10.969 0.186

0.5 6.7115 0.2394 10.755 0.3118

Negative
2 7.154 0.207 10.121 0.2593

0.5 6.61 0.2516 10.305 0.3298

Zero(No)
2 6.656 0.2211 10.747 0.308

0.5 6.584 0.2232 10.769 0.342

3.3. Case Study 2-Large Network

This network is a much larger network based on a real-life WDS (Figure 4) introduced
by Alperovits and Shamir [43]. All the demand nodes are assumed to be uncertain with
a specified covariance matrix. The network system is shown in Figure 3. The network
consists of 52 nodes and 65 pipe segments. The two pumping stations in the original
network are removed, and the reservoir head is increased to 410 m to balance the energy
supplied by the pumps. The minimum pressure head required at every node is 30 m in
addition to the elevation of the nodes. The design search space consists of 11 different pipe
sizes (Table 4) for each pipe segment. The Hazen–Williams coefficient is fixed at 130.
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Table 4. Diameter options and associated unit costs for large network.

Diameter 1 2 3 4 6 8 10 12 14 16 18 20

Unit Cost 2.0 5.0 8.0 11.0 16.0 24.0 32.0 50.0 60.0 90.0 130.0 170.0

All the demands are considered uncertain, and the mean demands are assumed to
be base demands mentioned in Table 9d in Alperovits and Shamir [43]. The input file
for this network is attached as supporting material. The standard deviation from the
means is assumed to be 20% for each node. The unit cost of the available pipe diameters is
shown in Table 3. The co-variance between the demand nodes is assumed to be completely
heterogenous. Three different co-variance matrices are evaluated with correlations between
−0.3 to 0.8 as shown in Figures 5–7.

The design Pareto fronts are obtained for three different sets of correlation matrices
with four different protection sizes (theta = 0.5, 1, 1.5, 2). Figures 5–7 depicts the various
Pareto fronts obtained for corresponding co-variance matrices.
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matrix (1) shown adjacent.
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Three different co-variance matrices are defined randomly, the first with more positive
correlation, the second with more negative correlation, and third with a random pattern.
As the network has higher resilience inherently, the demand uncertainty with varying
uncertainty sets did not effect as much as it effected for Hanoi WDS. From all the three
cases, we can see that as the design resilience increases, there is no effect of increase in
the protection level. This shows that designs with higher resilience can handle demand
uncertainty. Most variation is seen only in the low resilience designs, and the variation is
similar to the results obtained for Hanoi, in which the increase in the protection level leads
to an increase in cost.
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4. Conclusions

Multi-objective design of water distribution systems under uncertainty is not much
explored especially using non-probabilistic techniques to handle the uncertainty. In the
current study, one such methodology is proposed, wherein we employ robust optimiza-
tion techniques combined with standard multi-objective optimization techniques to solve
a WDS design problem with uncertain demands, considering the minimization of cost
and maximization of resilience as objectives. The proposed methodology is tested on
two case studies of standard WDS benchmark problems. The results show that the effect of
uncertainty in demand is higher for networks with inherently low topological resilience
compared to higher topological resilience networks. Positively correlated demand patterns
require higher cost designs to maintain even low resiliency in the network can be inferred
from the Hanoi case study. Application to other larger scaled water distribution systems
should be explored in future research for overcoming the expected high computational
effort involved in such implementations. The extension of this work to multiple loading
conditions including storage is another important future research direction.
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